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Abstract

Alzheimer disease and cerebrovascular dementia are two common causes of dementia and, by present diagnostic criteria, are mutually
exclusive using vascular pathology as an arbitrary demarcation in differential diagnosis. However, evidence from epidemiological,
neuropathological, clinical, pharmacological, and functional studies suggest considerable overlap in risk factors and pathological changes
suggesting shared common pathogenic mechanisms between these two diseases such that vascular factors play a vital role in the pathogenesis
of Alzheimer disease. A high energy demand and lack of an endogenous fuel reserve make the brain highly dependent upon a continuous
blood supply where disruption of cerebral blood vessels and blood flow can have serious consequences on neural activities. Indeed, many
studies implicate metabolic defects in Alzheimer disease, such a reduced brain metabolism is one of the best documented abnormalities in the
disease. Notably, since endothelial reactive oxygen species such as nitric oxide act as vasodilators at low concentrations, increased production
coupled with elevated reactive oxygen species scavenging of nitric oxide, can lead to reduced bioavailability of nitric oxide and increased
oxidative stress that damage sensitive vascular cells. In this respect, we and others have demonstrated that oxidative stress is one of the
earliest pathological changes in the brain of Alzheimer disease patients and plays a critical role in the vascular abnormalities underlying
metabolic defects in Alzheimer disease. Here, we discuss vascular factors in relation to Alzheimer disease and review hypoperfusion as a
potential cause by triggering mitochondrial dysfunction and increased oxidative stress initiating the pathogenic process.
© 2007 Elsevier B.V. All rights reserved.
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1. Vascular abnormalities in Alzheimer disease

Cerebrovascular function declines with aging as evidenced
by declines in cerebral blood flow (CBF), loss of endothelial
mitochondria, a thickening of the vascular basement mem-
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brane, and an increase in degenerative pericytes in the elderly
[1]. A more pronounced decline is present in cases of
Alzheimer disease (AD) with: reduction in number of cerebral
microvessels, significant aberrations in capillary walls includ-
ing decreased capillary diameters and increased capillary
; Aβ, amyloid-β; AβPP, amyloid-β protein precursor; ApoE, apolipoprotein
; CATCH, a critically attained threshold of cerebral hypoperfusion; COX,
8-hydroxy-deoxyguanosine; MCI, mild cognitive impairment; mtDNA,
yunsaturated fatty acids; ROS, reactive oxygen species; SOD, superoxide
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densities [2,3], agrin deposition in capillaries suggestive of the
thinning and fragmentation of the basal lamina [4], atrophy of
smooth muscle cells in cerebral vessels and attenuation of
capillary endothelium resulting in the rupture of the vesselwall
and intracerebral bleeding [5]. Resting CBF is reduced and the
increase in CBF stimulated by neural activity is attenuated [6]
and several factors that may ameliorate AD have either been
associated with improved CBF or prevent CBF decline [7].
Several morphometric features of blood brain barrier (BBB)
dysfunction in patients with pathologically confirmed AD
have also been reported [8]. The association of serum amyloid
P component, a protein not synthesized in the brain, with senile
plaques and neurofibrillary tangles (NFT), supports the notion
of BBB leakage in AD [9]. Amyloid-β (Aβ) deposits, one of
the prominent features of AD, are found in cortical and
subcortical gray matter and in meningeal and gray matter
blood vessels [10,11], and the source of this Aβ is likely
vascular endothelial cells and smooth muscle cells rather than
neurons since endothelial cells and smooth muscle cells show
abundant amyloid-β protein precursor (AβPP) immunoreac-
tivity [12,13]. The frequent deposition of Aβ in arteriolar
media and collagen deposition in the adventitia in AD may
cause a narrowing of the lumen of cerebrovessels, even in the
absence of overt endothelial injury, not mentioning the
vasoconstriction effect of soluble Aβ [14]. Therefore,
perivascular Aβ deposits may be a risk factor for reduced
regional CBF [7]. Ultrastructural studies on blood vessels
associated with Aβ deposits have shown their intermittent
association with membrane abnormalities of smooth muscle
cells [5]. Indeed, in AD cases with a clinical history of cerebral
bleeding, the muscle layer is sometimes completely replaced
by Aβ deposits, suggesting that the vascular systemmay be an
initiator for the development of disease [12,13]. That said, the
contribution of amyloid angiopathy in cases that do not
progress to AD is less clear.

2. Vascular oxidative stress in Alzheimer disease

Reactive oxygen species (ROS) are generated at sites of
injury and/or inflammation. At low levels, ROS can function
as signaling intermediates in the regulation of fundamental
cell activities such as growth and adaptation responses,
however, at higher concentrations, ROS cause cell injury and
death. The vascular endothelium, neurons and glia are all
able to synthesize, store and release ROS and vasoactive
substances in response to certain stimuli, especially those by
chronic hypoxia/hypoperfusion. The vascular endothelium,
which regulates the passage of macromolecules and
circulating cells from blood to tissue, is a major target of
oxidant stress, playing a critical role in the pathophysiology
of several vascular diseases [15,16]. Specifically, accumu-
lated oxidative stress: 1) interferes with nitric oxide (NO)
function and endothelial relaxation; 2) increases vascular
endothelial permeability and promotes leukocyte adhesions;
3) leads to alterations in endothelial signal transduction,
redox-regulated transcription factors and reduced CBF [16].
It is well-characterized that there are increased regional
levels of oxidative stress in the ADbrain [17,18]. For example,
recent studies have demonstrated a decline in polyunsaturated
fatty acids (PUFA) [19,20], increased levels of lipid peroxida-
tion markers [19,21,22], as well as protein oxidation [23,24],
DNA oxidation [25–27] and RNA oxidation [28–31] during
AD. Additionally, the presence of oxidative stress markers
such as advanced glycation end products (AGE), glycoxida-
tive end products, e.g., Nε-carboxymethyllysine and lipid
peroxidation adducts are detected in both NFT and senile
plaques in AD [21–24,32–35]). Notably, similar increases in
oxidative stress also occur systemically in AD. Lower plasma
antioxidant levels and alterations in antioxidant enzyme
activities are reported in mild cognitive impairment (MCI)
patients and patients at early AD stages [19,36–39] suggesting
a systemic imbalance between ROS production and antioxi-
dant defense systems in the plasma of AD patients and this is
substantiated by increases inDNA, lipid, and protein oxidation
products found in blood and cerebrospinal fluid (CSF)
obtained from AD patients in comparison with controls
[35,40,41]. Reflecting such a systemic oxidative imbalance in
AD, we also found oxidative damage in olfactory neurons and
the surrounding epithelial cells from AD donors [42], and
another group reported increased 8-hydroxy-deoxyguanosine
(8OHdG) in the DNA of lymphocytes from AD donors [43],
which inversely correlated with the plasma levels of several
antioxidant carotenoids [44].

Interestingly, our recent finding demonstrated ultrastruc-
tural features of vascular lesions and mitochondria in brain
vascular wall cells from human AD brain biopsy are also
suggestive of oxidative damage [45,46]. In situ hybridization
using mitochondrial DNA (mtDNA) probes for human wild
type, 5 kb deleted and mouse mtDNA and immunocytochem-
istry using antibodies against AβPP, 8-hydroxy-2′-guanosine
(8OHG) and cytochromeC oxidase subunit 1 (COX) revealed
similar ultrastructural localization [45,46]. As expected, there
was a higher degree of amyloid deposition in the vascularwalls
in AD compared to aged-matched controls[45,46] and in
addition, vessels with more severe lesions showed immuno-
positive staining for AβPP and contained large, lipid-laden
vacuoles in the cytoplasm of endothelial cells. Significantly
more mitochondria abnormalities were seen in microvessels
where lesions occurred [45,46]. In situ hybridization using
wild and chimera (5 kB) mtDNA probes revealed positive
signals in severely damaged mitochondria from the vascular
endothelium and in the perivascular cells of lesioned
microvessels close to regions of large amyloid deposition.
These features were absent in undamaged regions of human
AD tissues or in age-matched control subjects. Importantly,
vessels with atherosclerotic lesions revealed endothelium and
perivascular cells possessing clusters of wild and deleted
mtDNA-containing positive probes that were associated with
increased amounts of immunoreactiveAβPP, 8OHGandCOX
in the same cellular compartment [45,46]. Our observations
demonstrate that vascular wall cells, especially their mito-
chondria, appear to be a central target for oxidative stress-
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induced damage before the development of AD pathology
[45,46]. Notably, long-term ischemia/reperfusion leads to
disintegration of mitochondria ultrastructure [47,48] and
apoptosis of degenerating neurons occurs in association with
the accumulation of perikaryal abnormal mitochondria and
oxidative damage to the nucleus [49]. Likely not coinciden-
tally, this same pattern of mitochondria lesions is observed in
human AD brain biopsy samples [50].

3. Nitric oxide malfunction and vascular oxidative stress
in Alzheimer disease

The vascular endothelial cells transduce circulatory stimuli
to the arterial wall leading to the regulation of vascular tone,
haemostasis, blood pressure and vascular remodeling through
the synthesis and release of vasoactive NO [51,52]. NO is
synthesized by the conversion of L-arginine to L-citrulline by
the enzyme of nitric oxide synthase (NOS) which exists in
three isoforms in brain: eNOS localized in endothelial cells;
nNOS localized in neurons; and inducible NOS (iNOS)
induced in neurons and glial cells after cytokine activation
[51,52]. Due to its vascular effect, NO, at physiological level,
improves tissue perfusion and exerts a protective action and
reduced bioavailability of NO is thought to be one of the
central factors common to vascular diseases. However,
overproduction, either by activation of nNOS by excitatory
[53], or by induction of iNOS in glial, vascular or blood cells
[54–56] might be deleterious, which is especially true if
combined with concurrent increases in free radical production.
For example, excess NO production is found during
excitotoxicity, inflammation and ischemia reperfusion injury
[57] and it is known that NO can react with superoxide and the
reaction is approximately six-times faster than the dismutation
of superoxide by superoxide dismutase (SOD) [58]. Therefore,
if the levels of NO or superoxide increase sufficiently, NO is
able to outcompete SOD which leads to dual effects of
scavenging NO and thereby actually reducing its bioavailabil-
ity (ROS scavenging), but also of producing the potent oxidant
peroxynitrite. Once formed, peroxynitrite can nitrate tyrosine
residues to form nitrotyrosine. Additionally, substantial
amounts of ONOO− can be protonated at physiological pH
to form peroxynitrous acid, a strong oxidant itself, which in
turn can yield the highly reactive OH⁎, a much more powerful
oxidant that will readily react with any biological molecules it
meets [51,52].

Increased nitrotyrosine is found in astrocytes, blood vessels
and the neuronal cytoplasm of the cerebral cortex within
regions of neurodegeneration in AD, yet it is undetectable in
corresponding control regions [24,59,60]. There is also a
significant two- to three-fold increase in the lipid nitration
product, 5-nitro-γ-tocopherol, in affected regions of the brain
in AD, suggesting NO is a significant contributor to lipid
oxidation [61]. The widespread occurrence of nitrotyrosine
immunoreactivity [24,59,60] suggests that chronic oxidative
damage is not restricted to long-lived polymers such as NFTs,
but instead, reflects a generalized oxidative stress contributing
to the pathogenesis of AD. Consistent with these observations,
aberrant expression of all isoforms of NOS and some related
proteins is observed in AD. Dimethylargininase, primarily
expressed in tissues containing the constitutive forms of NOS,
like brain, kidney, and endothelium [62,63], regulates NO
production by hydrolyzing free methylated arginine deriva-
tives (effective endogenous inhibitors of NOS) [64]. The
expression of dimethylargininase is dramatically increased in
AD [65]. However, there are controversial reports regarding
asymmetric dimethylarginine levels in AD [66,67]. The
mRNA and protein levels of the enzyme argininosuccinate
synthetase, the rate limiting enzyme in the metabolic pathway
leading from L-citrulline to L-arginine (the physiological
substrates of NOS), are significantly higher in glial cells of AD
brain [68,69]. Metabolism of tetrahydrobiopterin (BH4), an
essential cofactor for NOS, is disturbed inADpatients [70,71],
which will lead to the “uncoupling” of NOS favoring the
production of superoxide anion and hydrogen peroxide [72].
Large and small multipolar and pyramidal neurons demon-
strate increased nNOS levels over the entire chronic AD
evolution [72,73]. eNOS levels are also increased in AD brain
and colocalize with nitrotyrosine [59,60]. The expression of
iNOS is found in a variety of cells in response to
lipopolysaccharides, certain cytokines and ROS generators
[74]. Because iNOS produces much greater amounts of NO
than either eNOS or nNOS [75], it is an important mediator of
cytotoxicity in the brain. It is consistently reported by various
groups that there is increased iNOS in glial cells and a subset of
pyramidal neurons in AD [59,68,69,76–78]. Colocalization of
argininosuccinate synthetase and iNOS is detectable in these
cells, coupled with increased expression levels, suggesting
high output of NO production [69] Genetic ablation of iNOS
substantially protects AD-transgenic mice from premature
mortality, cerebral plaque formation, amyloid-load, protein
tyrosine nitration, astrocytosis and microgliosis [79]. Despite
the consistent evidence of increased NOS expression in AD,
the steady level of NO in the plasma of AD patient is actually
decreased, suggestive of reduced bioavailability of NO
underlying reduced cerebral blood flow [66]. Given that
protein nitration is a non-crosslink-related oxidative modifi-
cation which indicates more recent active modifications, the
widespread nitrative modifications and decreased steady level
of NO in AD actually highlights a critical pathogenic role of
increased production coupled with elevated ROS scavenging
of NO which leads to a net outcome of reduced bioavailability
of NO and increased oxidative stress.

4. Vascular risk factors, vascular oxidative stress and
Alzheimer disease

There are many common underlying risk factors that play
key roles in the development of vascular diseases and AD
including the presence of apolipoprotein E4 (ApoE) allele,
hyperhomocysteinemia, diabetes mellitus, atherosclerosis
and hypertension [80]. Almost all of these factors are
associated with vascular oxidative stress and/or vascular NO
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malfunction. For example, there is an isoform specific
difference for ApoE in microglial NO production [81–83]:
Mice expressing the ApoE4 protein isoform have a
greater NO production than mice expressing the ApoE3
protein isoform and both neurons and microphages from
ApoE4 transgenic mice exhibit a similar increase in the
uptake of arginine, the sole substrate for NOS, over that
from ApoE4 mice. Elevated cerebral oxidative stress has
been observed in AD individuals carrying the ε4 alleles.
Diabetes mellitus also appears to cause NO malfunction
at least partly through enhancement of oxidative stress:
advanced glycation products, accumulated in diabetic tissues
[84], are toxic to endothelial cells which may lead to
uncoupling of endothelial NO synthase such that it generates
superoxide anion in addition to NO. Also, hyperglycemia
and hyperinsulinemia increase both superoxide and hydro-
gen peroxide production [85,86] that enhances ROS
scavenging of NO. Similarly, hyperhomocysteinemia can
elicit mitochondrial damage that leads to increased ROS
production as well as directly scavenge NO by forming S-
nitrosohomocysteine [87].

5. Potential sources of vascular oxidative stress in
Alzheimer disease

The enzymatic origin of superoxide could potentially
involve NAD(P)H oxidase, xanthine oxidase, lipoxygenase,
NOS and also respiratory chain enzymes in the mitochon-
dria, which all demonstrate alterations in AD. NAD(P)H
oxidases are implicated in vascular oxidative stress associ-
ated with various vascular conditions such as hypertension
and hyperhomocysteinemia and NADPH oxidase is signif-
icantly activated in AD brain [88]. Lipoxygenase enzymes
by oxidizing polyunsaturated fatty acids synthesize hydro-
peroxyacids, which are potent pro-oxidant mediators
[89,90]. Levels of 12/15 lipoxygenase as well as their
metabolic products are significantly elevated in AD brain
[88]. Mitochondrial dysfunction is a key step in AD
progression. Damaged mitochondria are less efficient
producers of ATP but more efficient producers of ROS.
There is ample evidence suggesting mitochondrial abnor-
malities in AD brain as discussed earlier [91].

6. Hypoperfusion as a potential cause of Alzheimer
disease

Neuroimaging studies supports the notion that in MCI
patients who later converted to AD, the presence of
temporoparietal (including hippocampal) hypoperfusion, hip-
pocampal-parahippocampal hypoperfusion, and posteriorcin-
gulate hypoperfusion distinguish this population group from
other groups suggesting that hypoperfusion is a very early
feature during the development of AD [92–97]. Similarly,
there are profound alterations in the regulation of the cerebral
circulation in AβPP transgenic mice at a very early age which
is well before other pathological changes [98]. It is likely that
hypoperfusion plays a critical role in the pathogenesis of AD.
de la Torre [99] proposed that advanced aging with a comorbid
condition, such as a vascular risk factor, which further
decreases cerebral perfusion, promotes a critically attained
threshold of cerebral hypoperfusion (CATCH). Clearly,
mitochondria in vulnerable cells almost always show signs
of damage during ischemia [100]. Importantly, chronic
reductions in cerebral flow of a magnitude thought to be
harmless to neurons (i.e., reduced by 25–50%) induced
disorganization of the CA1 sector where neurons demonstrate
increased lipofuscin pigments, suggestive of mitochondrial
abnormalities [101]. Therefore, it is likely that chronic
hypoperfusion will trigger mitochondrial damage/dysfunction
in vascular cells which, in turn, will enhance the production of
ROS. The accumulation of ROS scavenges NO, impairs
endothelial barrier function and promotes leukocyte adhesion,
induces alterations in normal vascular function and results in
further decreased CBF. Because glucose is the main fuel of
brain cells, suboptimal delivery of energy substrates to
neuronal tissue due to decreased CBF, together with a deficient
delivery of oxygen, compromises neuronal stability because
the supply for aerobic glycolysis fails to meet brain tissue
demand and hypometabolism ensues. Clearance of Aβ
through the vascular pathway is likely also impaired that
may lead to its deposition in the brain parenchyma. Sustained
hypoperfusion, and then oxidative stress of brain tissues, could
also stimulate secondary damage via the overexpression of
inducible and neuronal specific nitric oxide synthase (NOS:
iNOS and nNOS, respectively) in brain cells. It is possible that
continuous accumulation of oxidative stress products, such as
peroxynitrite accumulation (via the overexpression of the
iNOS and/or nNOS), appear to be secondary and accelerating
factors for damage and for compromising the blood brain
barrier (BBB) in hypoxia/hypoperfusion or AD. All of these
alterations probably contribute to the progressive cognitive
decline characteristic of patients with AD, and regional
anatomic pathology, consisting of synaptic loss, senile
plaques, and NFT.

7. Conclusions

Vascular cells are sensitive to oxidative stress and it is
likely that oxidative stress plays a critical role leading to
vascular abnormalities in AD. We suspect that chronic
vascular hypoperfusion is a central initiating factor for
vascular alterations by inducing mitochondrial dysfunction,
increasing ROS production, reducing NO bioavailability via
ROS scavenging, and damaging vascular functions as well as
severely affecting regional CBF, ultimately leading to cog-
nition decline and the disease.
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