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Abstract: The mechanical behavior of commercial purity titanium with a nanocrystalline (NC) 

grain size was investigated using split Hopkinson pressure bar tests at high strain rates and 

over a range of temperatures. The study was accompanied by detailed microstructural 

investigations before and after compression testing. The results show that rotary dynamic 

recrystallization operates during compressive deformation at strain rates of ~3000 and ~4500 

s
-1 

at temperatures from 298 to 573 K but cells form at 673 K. The dynamic mechanical 

behavior of NC Ti shows a strong dependence on temperature and strain rate such that the 

flow stress and the strain hardening rate both increase with increasing strain and decreasing 

temperature. A constitutive equation is derived to relate the flow stress to the temperature, 

strain rate and true strain and to predict the yield strength and the peak stress of NC Ti 

subjected to dynamic deformation at elevated temperatures. 

Keywords: dynamic compression; microstructure; mechanical behavior; constitutive equation; 

titanium 



 2 

1. Introduction 

Commercial purity titanium is widely used in the aerospace and biomedical fields due to 

its excellent mechanical and physical properties such as good ductility, excellent corrosion 

resistance and biological compatibility [1,2]. Nevertheless, the low strength of pure Ti tends 

to significantly reduce the potential applications. Through the introduction of severe plastic 

deformation (SPD) techniques, and combinations of SPD with other traditional deformation 

procedures, it is possible to fabricate ultrafine-grained (UFG) and nanocrystalline (NC) Ti 

which shows excellent properties including enhanced strength and good ductility [3-9]. 

Equal-channel angular pressing (ECAP) [10], one of the major SPD techniques, is especially 

attractive for fabricating relatively large volumes of homogeneously deformed bulk UFG/NC 

materials [11-15] and some reports suggest that a two-step processing route of ECAP 

combined with drawing [16-18], extrusion [19,20] or rolling [8,21] may be utilized 

successfully to even further improve the mechanical properties of UFG/NC Ti. 

In practice, because of the overall features of many of its applications, pure Ti is 

frequently subjected to dynamic impact loading during the course of its service life, even 

under high temperature working conditions, and, as a result, it is subjected to high strain rates 

in elevated temperature deformation. In order to fully characterize titanium for 

potential applications under extreme conditions, it is necessary to examine the dynamic 

mechanical behavior and to clarify the microstructural evolution during dynamic deformation 

over a wide temperature range. Whilst there are many studies documenting the properties of 

UFG/NC Ti focusing on annealing instabilities [22], strain hardening behavior [23], 

tribological properties [24,25] and micro-hardness [26], relatively little attention has been 
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directed towards the effects of strain rate and temperature on the mechanical behavior and the 

microstructural evolution of UFG/NC Ti during dynamic impact deformation. Accordingly, 

this research was initiated to examine the dynamic mechanical properties and the 

microstructural evolution of NC Ti at high strain rates of ~10
3
 s

-1
 over a range of 

temperatures. The fundamental emphasis of the research was to establish a constitutive 

relationship to predict the value of the flow stress under these extreme conditions. In addition, 

the dynamic mechanical properties are analyzed and compared directly with an earlier study 

where NC Ti was subjected to compression testing at a lower strain rate of 10 s
-1 

[27]. 

2. Experimental material and procedures  

The experiments were conducted using commercial purity (CP) Ti of Grade 2 (ASTM B 

348) with a chemical composition (in wt.%) of C 0.01; Fe 0.09; H 0.001; N 0.01; O 0.13 and 

with Ti as the balance. The material was processed at 473 K using ECAP-Conform [28,29] in 

which rods, having square sections of 14  14 mm
2
, were constrained within a groove in a 

conventional conform facility and then forced to exit at an abutment where they were turned 

abruptly through an angle of 90 so that a strain of ~1 was introduced on each passage 

through the facility [30].  In the present experiments, the rods were processed for a total of 8 

passes using processing route C in which the rods are rotated around their longitudinal axes 

by 180 between each pass [31].  Processing by ECAP-Conform was followed by drawing 

at 473 K to give rods with diameters of 6.3 mm.  

Typical microstructures observed by transmission electron microscopy (TEM) and 

selected area electric diffraction (SAED) patterns are shown in Fig. 1 after ECAP and 

drawing for (a) a transverse section and (b) a longitudinal section.  On the transverse section 
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in Fig. 1(a) there are uniform equiaxed grains with an average size of ~90 nm and the SAED 

pattern indicates a high fraction of high-angle grain boundaries (HAGBs).  On the 

longitudinal section in Fig. 1(b) there are banded structures with elongated grains and sets of 

tangled dislocations and dislocation clusters distributed within the grain interiors.   

For dynamic testing, cylindrical specimens with diameters of 5 mm and heights of 5 mm 

were cut from the two-step processed billets with the longitudinal axes oriented parallel to the 

axial directions of the cylinders.  Dynamic compression was conducted using a split 

Hopkinson pressure bar (SHPB) at the two strain rates of ~3000 s
-1 

and ~4500 s
-1

 over a 

temperature range from 298 to 673 K.  Elevated temperatures were obtained using a small 

furnace placed between the input and output bars of the SHPB setup.  Before dynamic 

testing, each specimen was held at the test temperature for 10 min to ensure a homogeneous 

heat distribution throughout the sample.  In order to separate the microstructure evaluation 

induced by high strain rate deformation during compressive testing from the thermal 

treatment prior to compression, a separate group of specimens was subjected to isothermal 

annealing for time of 10 min at temperatures of 473, 573 and 673 K. 

The annealed and deformed specimens were cut along their longitudinal axes, prepared 

by mechanical grinding using grit papers with different particle sizes from 800 to 2000 mesh 

and then thinned to electron transparency using a Gatan Dual Ion Milling System. The 

prepared samples were examined with a JEM-2100 LaB6 microscope operating at 100 kV for 

TEM investigations and for recording appropriate SAED patterns. 
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3. Experimental results 

3.1  Microstructures after annealing 

In order to evaluate the thermal stability of NC Ti, samples were heated to constant 

temperatures of 473, 573 and 673 K, respectively, held for 10 min at each temperature and 

then cooled in air.  The TEM microstructures in the longitudinal sections and the 

corresponding SAED patterns are shown in Fig. 2 after annealing at each temperature.  By 

comparing with Fig. 1(b), it is apparent from the microstructure and SAED pattern in Fig. 2(a) 

that no obvious transformation of grain size and shape occurs except that a much more 

clearly defined elongated structure is formed at 473 K.  However, annealing at 573 K in Fig. 

2(b) leads to elongated grains with diffuse boundaries and with recrystallized grains having a 

size of ~150 nm.  The presence of diffuse boundaries was reported in early studies of 

materials subjected to SPD processing [32] and it is apparent from the SAED pattern in Fig. 

2(b) that these new grain boundaries have high-angle misorientations.   

Comparing Fig. 2(c) with Fig. 2(b), it can be seen that annealing at 673 K promotes both 

the formation of additional nano-sized grains and their subsequent growth.  In Fig. 2(c), the 

structure generally evolves into polygons, the elongated grains transform to essentially 

equiaxed grains but the grain distribution is non-uniform.  Thus, a few grains grow to sizes 

of ~700 nm while some grains have sizes of less than 150 nm.  For this condition, the 

average grain size was measured as ~400 nm and the SAED pattern indicates the presence of 

a high fraction of HAGBs.  

3.2  Microstructures after dynamic compression 

Dynamic compressive deformation was conducted at ~3000 and ~4500 s
-1

 over a 

http://dict.youdao.com/w/transformation/
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temperature range from 298 to 673 K with the tests continued to fracture and the resultant 

microstructures and SAED patterns are displayed in Fig. 3.  When NC Ti is compressed at 

298 K with a strain rate of ~3000 s
-1

, a large number of dislocations are generated and they 

propagate and tangle inside the elongated grains where the grain boundaries are visible but 

diffuse.  In addition, some very small equiaxed grains of less than ~50 nm are also visible in 

Fig. 3(a) suggesting the occurrence of incomplete dynamic recrystallization (DRX).  In Fig. 

3(b) for the same strain rate at 473 K, the elongated grains develop into equiaxed grains via 

DRX to give an average grain size of ~190 nm.  The grains formed during high strain rate 

deformation are nearly dislocation-free and the SAED patterns consist of rings of diffraction 

spots demonstrating the presence of boundaries having high angles of misorientation.  

Uniformly distributed equiaxed grains are visible in Fig. 3(c) after dynamic compression at 

the same strain rate at 573 K.  For this condition, measurements gave an average grain size 

of ~80 nm which is smaller than the size of the grains after thermal treatment at the same 

temperature in Fig. 2(b) thereby confirming the occurrence of DRX induced by impact 

loading.  In Fig. 3(d) after compression at ~3000 s
-1 

at 673 K, dislocation clusters and cells 

are observed inside the equiaxed grains which are formed during annealing in Fig. 2(c).  The 

average grain size for this condition was measured as ~ 240 nm and the corresponding SAED 

pattern clear indicates small orientation differences between the cell structures which implies 

that the cells are formed when the dislocations abruptly multiply in high stain rate 

deformation.  

The lower row of Fig. 3 shows similar observations for samples of NC Ti deformed at 

various temperatures at a strain rate of ~4500 s
-1

.  In Fig. 3(e) at 298 K, the original grain 

http://dict.youdao.com/w/propagation/
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boundaries achieved by the two-step processing are not visible and instead there are equiaxed 

grains with an average size of ~100 nm formed by the process of DRX.  The corresponding 

SAED pattern suggests large misorientations between these recrystallized grains.  At 473 K 

in Fig. 3(f), there are no well-defined grains and instead there is a polygonal structure 

consisting of dislocation clusters and networks.  With increasing temperature to 573 K in 

Fig. 3(g), the equiaxed grains are visible again and they have grown to a coarser size of ~200 

nm.  The discontinuous rings in the SAED pattern implies the misorientations between these 

grains decreased by comparison with the microstructure in Fig. 3(c).  Finally, in Fig. 3(h) at 

673 K the microstructure is similar to Fig. 3(d) with a cell structure and an average size of 

~200 nm.  

These observations demonstrate that dynamic deformation at 3000 s
-1

 at temperatures of 

298 to 573 K leads to the occurrence of DRX and this DRX becomes even more significant 

as the strain rate is increased to 4500 s
-1

 so that dislocations appear within the recrystallized 

grains.  It is interesting to note also that both equiaxed grains and dislocation substructures 

are formed during dynamic compression and these are distributed very uniformly so that high 

strain rate deformation appears to be a favorable process for achieving a high level of 

microstructural homogeneity.   

3.3  Significance of the flow stress 

Fig. 4 illustrates the true stress-true strain curves of CP-Ti under dynamic compression 

at strain rates of ~3000 and ~4500 s
-1

 over a range of temperatures.  It is readily apparent 

that the flow stress behavior is strongly influenced by the testing temperature so that, with an 

increase in temperature from 298 to 673 K, the flow stress decreases and the fracture strain 



 8 

increases at both strain rates.   

A comparison of Fig. 4(a) and (b) also provides information on the nature of the strain 

rate sensitivity of NC Ti.  At the same testing temperature, the flow stress increases with 

increasing strain rate.  Thus, at 298 K the yield strength (σ0.2) is ~1570 MPa at a strain rate 

of ~3000 s
-1

 whereas it is ~1760 MPa at ~4500 s
-1

.  Nevertheless, when the temperature is 

increased from 298 to 673 K, the strain rate sensitivity of the flow stress is reduced.  For 

example, at 673 K the value of σ0.2 is ~1200 MPa at both strain rates of ~3000 and ~4500 s
-1

.  

It should be noted that, based on earlier results [27], if the strain rate is increased from 10 s
-1

 

to ~3000 s
 -1

 then the flow stress increased even more.  It is also apparent from Fig.4 that 

when the true stress reaches σ0.2 there is a short period where the true stress increases quickly 

to the peak value and then gradually decreases suggesting that flow softening plays a 

significant role in further deformation.  

4.  Discussion 

4.1  The recrystallization mechanism 

It is generally considered that the static recrystallization (SRX) mechanism operating in 

deformation-induced UFG/NC metals during annealing is a continuous static recrystallization 

(c-SRX) [33,34] which may be classified into the three separate stages of recovery, transient 

recrystallization and normal grain growth [35].  In the present research, three stages were 

also present in NC Ti during the thermal treatment.  Firstly, at 473 K static recovery occurs 

and produces no change in the grain size as shown in Fig. 2(a) but internal stresses are 

released due to the non-equilibrium nature of the grain boundaries and the presence of 

interior dislocation rearrangements.  Thus, this stage may be considered as an incubation 
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period for the formation of new grains in the next stage.  Secondly, SRX continues until 

completion at 573 K so that more new grains are formed until they impinge upon each other.  

Finally, conventional normal grain growth takes over in the third stage at 673 K with further 

annealing and the merging of larger grains with small grains. 

The SRX operates during the thermal treatment at 573-673 K and this is significantly 

lower than the conventional recrystallization temperatures of 823-923 K for CP-Ti.  It 

appears, therefore, that the intrinsic interfacial energy of the NC material is an important 

additional driving force which, in association with the deformation-stored energy and the 

added heat from the environment, facilitates the process of static recovery (SRV) and SRX 

during annealing.  A similar result was also reported earlier where the grain size of UFG Ti 

was thermally stable at ~400 nm up to 723 K but SRX occurred at 773 K [22]. 

The dislocation-free grains presented in Fig. 3 indicate the occurrence of dynamic 

recrystallization (DRX) during dynamic compression testing and this was also reported 

during high strain rate deformation [36,37].  While SRX occurred at 473-573 K, the DRX 

initiated at a much lower temperature of 298 K.  In practice, the recrystallization process 

may be assisted by the fast heat generation in the severe plastic deformation during impact 

testing.  The magnitude of the adiabatic temperature rise, △T, during high strain rate 

deformation was calculated in an earlier analysis [38].  During the deformation at ~3000 s
-1

 

at 298 K, the instantaneous temperature of the sample increases to ~370 K and this is 

accompanied by the strain energy generated in high strain rate compression to stimulate the 

initiation of incomplete DRX as shown in Fig. 3(a).  As the process is supported by 

increased values of △T at 473 and 573 K, together with deformation at the high strain rate, 

http://dict.youdao.com/w/initiate/
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DRX proceeds completely and leads to a homogeneous microstructure composed of 

dislocation-free nano-grains.  At the higher strain rate of ~4500 s
-1

, more adiabatic heat and 

strain energy are generated so that grain growth takes place and dislocation clusters emerge 

within the grains after DRX at 298~573 K.  

A high strain rate will introduce a large strain in a very short time so that dislocations 

generate and multiply within the material in several hundred microseconds.  With further 

deformation, these tangled high density dislocations evolve into cell structures and other 

dislocation substructures.  Thus, these cell boundaries act as barriers to dislocation motion 

and gradually gain a grain boundary character by developing as subgrain boundaries with 

small misorientations.  The orientation differences between the subgrains gradually 

increases so that the subgrain boundaries evolve into HAGBs in the process defined as DRX. 

In general, DRX is a phenomenon in which new grains with very few dislocations are 

developed homogeneously or inhomogeneously along initial grain boundaries through a 

nucleation and growth process [38]. The mechanism of DRX may be classified into 

migrational and rotational types [39] where it was reported that primarily migrational DRX 

operates in metals subjected to static deformation or low strain rate dynamic deformation 

[27,40,41]. Nevertheless, in deformation at very high strain rates, there is insufficient time for 

long-range migration of the boundaries so that the DRX operates via the rotation of subgrain 

boundaries [40,42].  

The grain boundary rotation has been calculated in terms of grain boundary diffusion 

[43] and it was shown that grains having sizes of ~0.1-0.2 µm may be formed within an 

adiabatic shear band of a STS 316 stainless steel by rotational DRX (r-DRX) since grain 
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boundary diffusion is several times faster than the bulk diffusion at high deformation 

temperatures.  In the present research, the initial NC Ti grain size after annealing at 473 and 

573 K was no more than ~150 nm and the temperature rise due to the high strain rate 

deformation at the two experimental strain rates accelerated the grain boundary diffusion and 

thereby promoted the easy occurrence of r-DRX.  

4.2  Dislocation cell formation 

The r-DRX mechanism proceeds incompletely or completely when NC Ti is compressed 

at a high strain rate at temperatures of 298-573 K but at 673 K, although much adiabatic heat 

is generated during deformation, no DRX occurs because there are no equiaxed grain visible 

in Fig. 3(d) and (h).  This is attributed to the process of recrystallization and grain growth 

which occurs during the annealing and consumes most of the stored energy to lead to an 

improved microstructural stability [44]. 

It is apparent that cells formed at the two strain rates show different sizes by comparing 

Fig. 3 (d) and (h) and this difference is explained by the following relationship [45]:  

2/1 KD
               (2)  

where D is the size of the dislocation cell, K is a constant related to the temperature and strain 

rate and ρ is the dislocation density.  From Eq. (2) it follows that a higher strain rate will 

produce a higher dislocation density and therefore a smaller cell size.  In addition, an 

increased strain rate introduces more dislocations and increases the propensity for the 

formation of dislocation intersections and tangles so that cell structures form more easily and 

tend to be smaller in size [46]. 

4.3  The strain hardening behavior 
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The strain hardening rate, Ɵ, defined as Ɵ = dσ/dε, is always employed to characterize 

the strain hardening behavior for a wide range of deformation conditions.  From the flow 

curves in Fig. 4, it is obvious that the stress increases rapidly with strain at low strain levels 

and many dislocations are introduced during this early deformation resulting in a high value 

of the strain hardening rate in the initial deformation as shown in Fig. 5.  Inspection shows 

that both Fig. 5(a) and (b) present a clear demonstration that the strain hardening rate 

decreases at a given true stress as the compressive temperature increases.  

Moreover, the combined effect of changes in temperature and strain rate on the strain 

hardening rate may be considered and represented by a temperature-compensated strain rate 

using the Zener–Hollomon parameter Z defined as [47] 











RT

Q
Z exp

                (3) 

where   is the strain rate, Q is the activation energy of deformation, R is the gas constant 

and T is the absolute temperature.   

It is easy to conclude from Eq. (3) that an increased strain rate and lower temperature 

leads to a higher value of Z.  Accordingly, in order to clarify the relationship between Z and

θ, three values of Z corresponding to three typical deformation conditions were selected.  

These were T = 298 K and   = 3000 s
-1

, T = 673 K and   = 3000 s
-1

 and T = 298 K and   

= 4500 s
-1

 which were calculated as Zl, Zm and Zh in terms of the value of the Z parameter.  

The curves of the strain hardening rateθand Z versus strain are illustrated in Fig. 6 which 

shows that an increasing strain rate and decreasing temperature, corresponding to an 

increased value of Z, leads to an increase inθ.  

This can be understood on the basis of the following relationship [48]: 



 13 

0 1/q

R
  


                 (4) 

where R and q are temperature dependent constants which are independent of stress and 

strain rate andθ0 is a constant.  It is clear that the strain hardening rate increases with 

increasing strain rate or decreasing temperature and this is because higher strain rates or 

lower temperatures provide shorter time for energy accumulation and reduced grain boundary 

mobility, thereby producing an increase in the strain hardening rate.  

It is should be noted thatθdoes not always decrease with increasing temperature in Fig. 

5(a) becauseθat 673 K is higher than at either 473 or 573 K.  In practice, the decline 

is closely related to the initiation of DRX during deformation.  Thus, the recrystallized 

grains evolve from subgrains which are a consequence of the interaction of dislocations and 

subgrain boundaries and, as discussed elsewhere [49], some low-angle boundaries may act as 

sinks for dislocations.  This means that dislocations disappear after the formation of new 

grains as shown in Fig. 3(b) and (c).  It is intrinsically impossible to keep dislocations within 

these nanocrystalline grains due to image forces and interactions with grain boundaries and 

this suggests that dislocation pile-ups are not possible when the grain size is smaller than ~20 

nm [50].  Thus, as new dislocation-free nano-grains are formed in the process of complete 

DRX, the new interfaces contribute to the strain hardening.  

4.4  Establishment of Arrhenius-type constitutive equations 

The stress–strain data obtained from the compression tests at elevated temperatures and 

different strain rates may be used to determine the material constants of the constitutive 

equation which is used to estimate the flow stress of a material during hot deformation. The 

effect of temperature and strain rate on the flow behavior is expressed by Eq. (3). 
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The Arrhenius-type constitutive equation is widely used to describe the relationship 

between the flow stress, strain rate and temperature.  Three types of Arrhenius equations 

have been proposed and they are shown by the following [51,52]: 

    









RT

Q
A

n

exp1

1            8.0           (5) 

    2 e x p ( ) e x p
Q

A
RT

 
 

  
 

          2.1         (6) 

[sinh( )] expn Q
A for all

RT
  

 
  

 
      (7) 

where Q is the deformation activation energy (in kJ mol
-1

), A1, A2, A, n1, n, α and β are 

material constants and α = β/n1. 

 For low stresses (ɑσ< 0.8) and high stresses (˛ɑσ> 1.2), it is possible to substitute a 

suitable function Aexp(-Q/RT) by B and take the logarithm of both sides to obtain 

1 1ln ln ln 0.8n B for               (8) 

and 

   
2l n l n 1 . 2B f o r                    (9) 

Generally, the peak value of the flow stress is adopted to establish the constitutive 

model.  Thus, substituting the values of peak stresses and the corresponding strain rates at 

elevated temperatures where NC Ti was compressed at 3000 and 4500 s
-1

, and using earlier 

results in Eqs. (8) and (9) where NC Ti was compressed at 10 s
-1

 [27] give the relationship 

between flow stress and strain rate as depicted in Fig. 7.  Thus, it is obvious that the peak 

stresses obtained from the compression tests at 473, 573 and 673 K can be estimated by a 

group of straight and parallel lines and the values of n1 and β are obtained from the slope of 

each line for a different temperature.  Taking ln  -lnσ and ln -σ plotted by linear fitting, 
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the average values of n1 and β were computed as 15.423 and 0.0127 MPa
−1

, respectively. 

The average linear correlation coefficient was also calculated as 0.9836 and 0.9870, 

respectively, as given in Fig. 7.  The material constant ɑ is defined as ɑ = β/n1 = 

8.208×10
4
 MPa

−1
. 

For all stress levels, Eq. (7) can be changed to the form  

ln ln[sinh( )] ln
Q

n A
RT

           (10) 

From Eq. (10), it is seen that at a constant temperature ln[sinh(ɑσ)] and ln  should 

show a linear relationship, and this is confirmed by the experimental results given in Fig. 8(a) 

for the peak stresses.  The value of n is then obtained by making a linear fitting of ln 

-ln[sinh(ɑσ)].  From the group of straight lines in Fig. 8(a), it is deduced that the average 

value of n is 11.537. 

Differentiating Eq. (7) gives 

     
l n l n [ s i n h ( ) ]

l n [ s i n h ( ) ] ( 1 / )
T

Q R
T



 



    
    

    
    (11) 

where  

ln

ln[sinh( )]
T

n








                      (12)     

Therefore, by substituting the values of temperatures and peak stresses obtained at a 

fixed strain rate into Eq. (11), the value of Q may be derived from the slope of a plot of 

ln[sinh(ɑσ)] as a function of 1/T, as shown in Fig. 8(b).  Since the slopes of these lines have 

approximately the same tendency, the average slope may be used to derive a value for the 

activation energy, Q, of ~285 kJ mol
-1

.  The value of lnA in Eq. (10) can be derived from the 

intercept of the linear fitting of ln  -ln[sinh(ɑσ)] and the value is estimated as ~5.6 × 10
4
 s

-1
.  
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The value of Q for coarse-grained pure Ti was reported as 218–240 kJ mol
-1

 [53] which is 

lower than in the present research.  Thus, it appears that the activation energy may increase 

as the grains are refined. This is consistent with earlier research indicating that UFG Ti shows 

a relatively high value of Q of ~323-344 kJ mol 
-1

[54]. 

     It follows, therefore, that the constitutive equation established to describe the peak stress 

of NC Ti deformed at constant strain rates ranging from10 to 4500 s
-1

and at temperatures 

varying from 473 to 673 K can be expressed as 

      
5

4 4 1 1 . 5 2 . 8 6 1 0
5 . 6 1 0 [ s i n h ( 8 . 2 1 0 ) ] e x p

RT
   
    

 
        (13) 

The constitutive equation for σ0.2 was also inferred from the experimental data in the 

same way and leads to the following relationship:  

5
5 4 11.5 3.10 10

6.4 10 [sinh(7.7 10 ] exp
RT

   
    

 
    (14) 

5.  Summary and conclusions 

1.  Experiments were conducted on commercial purity Ti to examine the effect of 

temperature and strain rate on the microstructural evolution and compressive behavior over a 

range of temperatures and dynamic strain rates after processing to produce a nanostructured 

condition using a two-step procedure of ECAP-Conform and drawing. 

2.  Continuous static recrystallization (c-SRX) was motivated by the high stored energy 

and high interfacial energy in nanocrystalline Ti including the three stages of recovery, 

transient recrystallization and normal grain growth.  Rotary dynamic recrystallization 

(r-DRX) was promoted by the high strain rate deformation accompanied by an adiabatic 

temperature rise during dynamic compression at temperatures from 298 to 573 K at strain 
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rates of both ~3000 and ~4500 s
-1

.  

3.  The formation of cells at these strain rates at 673 K was attributed to the energy 

consumed by SRX and grain growth during annealing, thereby leading to an enhancement in 

microstructural stability. The dynamic compressive behavior of nanocrystalline Ti was 

sensitive to the strain rate and temperature, such that the flow stress and strain hardening rate 

increased with increasing strain rate or decreasing temperature and the fracture strain 

increased with strain rate and temperature. 

4.  A constitutive Arrhenius-type relationship was derived from these results to 

formally define the flow stress and the peak stress. 
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Figure  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. TEM images and SAED patterns of a CP-Ti billet processed by 

ECAP-Conform and then drawing (a) in a transverse section and (b) in a longitudinal 

section. 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

Figure 2. TEM microstructures and SAED micrographs in the longitudinal sections of 

specimens annealed for 10 min at (a) 473 K, (b) 573 K and (c) 673 K. 
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Figure 3. TEM microstructures and SAED micrographs in the longitudinal sections of 

specimens deformed under high strain rate compression at various temperatures. 
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Figure 4. True stress-true strain curves of NC Ti deformed at different deformation 

temperatures at strain rates of (a) 3000 s
-1

 and (b) 4500 s
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Strain hardening rate vs. true stress at different deformation temperatures 

with strain rates of (a) 3000 s
-1

 and (b) 4500 s
-1
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Figure 6. Variation of strain hardening rate with true strain at high, medium and low Z 

values. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Evaluating the value of (a) n1 by fitting ln -lnσ and (b) β by fitting ln -σ. 
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Figure 8. Evaluating the value of (a) n by fitting ln -ln[sinh(ɑσ)] and (b) Q by fitting 

ln[sinh(ɑσ)]-1/T. 

 

 

 

 




