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Abstract

Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechan
properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then invebtigate whe
the Oliver—Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic—pla:
solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answeraisedtions r
in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction spherical indentation in viscoelastic sol[d8,19] In this paper,
we investigate spherical indentation in linear viscoelastic solids

Instrumented indentation is playing an increasing role in thausing analytical and finite element modeling. Specifically, we
study of small-scale mechanical behavior of “soft” matters, suctexamine the relationship between initial unloading slope, con-
as polymers, composites, biomaterials, and food products. Sind¢act depth, and mechanical properties for spherical indentation
many of these materials exhibit viscoelastic behavior, itisimporin linear viscoelastic solids since this relationship is the basis
tant to have a sound understanding of instrumented indentatidor the Oliver—Pharr method. We then investigate whether the
in viscoelastic solids. Although instrumented indentation hacommonly used Oliver—Pharr method for determining the con-
recently become popular for measuring the small scale mechatact depth or contact area is applicable to spherical indentation
ical properties of soft materials, theoretical studies of lineatin viscoelastic solids. This work, together with our two previous
viscoelastic bodies in contact became active since the mid 195@aublications on conical indentation in linear viscoelastic solids
by the work of Le€g[1], Radok[2], Lee and RadoK3], Hunter  [20,21] helps improve the understanding of indentation in linear
[4], Graham[5,6], Yang[7], and Ting[8,9]. In recent years, a viscoelastic solids and resolve questions raised in recent litera-
number of authors have extended the early work to the analystsire about measuring viscoelastic properties from spherical, as
of indentation measurements in viscoelastic solids using eithexell as conical indentation experiments.
conical or spherical indentefB0—15] It has been reported, how-
ever, that a most commonly used method due to Oliver and
Pharr[16,17] for analyzing instrumented indentation experi- 2. Analytical results
ments does not produce accurate results when it is applied to

2.1. Spherical indentation in linear viscoelastic solids

* Corresponding author. Tel.: +1 586 986 0939; fax: +1 586 986 3091. We consider arigid, smooth, and frictionless spherical inden-
E-mail address: yang.t.cheng@gm.com (Y.-T. Cheng). ter with a radiusR indenting a viscoelastic solid that can be
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when the displacement is the independent variable. When the
force is the independent variable, the relationship between dis-
placementf(z), and force F(¢), is given by[1-9]:

described by the following constitutive relationshij22,23]
between deviatoric stress and straip,andd;;, and between
dilatational stress and strait; ande;;,

! ad; (1) 3(1-v) [? dF(z)
s,~t:2/Gt—r+dr BP0 ==L | n-1)—2dr 6
i0=2] Gl-1=p o (=== | hl-0 =g ~dr (6)
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0 ot The load—displacement relationship can therefore be obtained if

the viscoelastic properties of material&y) or J1(7), andv, are
where G(7) is the relaxation modulus in shear afds)  known using the respective E€5) or (6). Conversely, the vis-
is the relaxation modulus in dilatation. The time-dependenboe|astic properties may be obtained from measﬂ‘(ed/ersus
Young's modulus and Poisson’s ratio are then giveny(y) relations by solving integral E¢5) or (6) [10-15] Eqs.(5)
by E(7) = [9K(nG()]/[3K(r) + G(r)] and v() =[E(®)/2G()] —1,  and(6) reduce to the well-known equation for spherical inden-

respectively. tation into purely elastic solidg4],
Alternatively, the stress—strain relations can be written as
[22,23]
8 G
F=_——+/Rn¥? (7)
t 851‘ (T) 31-v
Zdij(t) = / J]_(t - ‘L’) 2 de
0 at

‘ dou(r) (2)  whereG=1/J; andv are the time-independent shear modulus
3e;i(t) = / Jo(t — 1) ;% dr and Poisson’s ratio, respectively.
0 t Egs.(5) and (6) are special cases of more general expres-

. . . . sions derived by Grahai®b] and Ting[8]. They showed that
whereJy (1) is the shear compliance aug() is the volumetric Egs.(5) and(6) are valid when the contact area is a monotoni-

compliance. Obviously, Eq¢l) and(2) are not independent of cdally increasing function of time. Under the same condition, the

each other. In fact, the relationships between the relaxation and;, . . .
. relationship between contact depth(r), and contact radius,

creep functionsG(r) andJ1(7), as well ask(r) andJx(f), have . : . :
. . . a(?), and indenter displacemerit(y), is the same as that in the
simple forms after transforming them using Laplace transfor- urely elastic casis,8]
mation[22,23], purely e

t t az(t)
/ Ji(t — 1)G(r) dr = / J1(t)G(t —1t)dr = ¢ h(t) = = = 2hc(2). (8)
0 0
‘ : : ©)
/0 Jolt = T)K(r) dr = /0 J(T)K(t —7)dv =1 The equations for unloading where the contact area decreases
monotonically have also been derivfsi8], though they are
As a conseguence, we have, more complicated. As a result, a number of authors have pro-
posed methods for deducin{z) or J1(r) from indentation load-
J1(0)G(0) = J1(00)G(o0) = 1 ing curves using Eq5) or (6) without using the information

(4)  contained in the indentation unloading cur{8,25] However,
Egs.(5) and(8) may be used to evaluate the initial unloading

. : , L slope of unloading curves, as we have shown in the similar case
In the following, we assume that Poisson’s ratio is time indepen-

) - of conical indentation in linear viscoelastic solif0,21] In
dent. Consequently, eithéi(r) andv or J1(f) andv are sufficient . . . - ) ]
. . : . . Section2.2, we derive equations for initial unloading slopes
to describe the linear viscoelastic behavior.

using Egs(5), (6), and(8). In Section3, we validate the initial
unloading slope equations using finite element calculations and

2.2. Relationships between load, displacement, and contact discuss the applicability of the Oliver—Pharr method for deter-
depth mining contact depth or contact area.

J2(0)K (0) = J2(00)K(00) = 1°

In the “classical spherical” indenter approximation, where
the indenter shape is a paraboloid of revolution, the relation2.3. Relationships between initial unloading slope, contact
ship between forceF(f), and displacement(r), is given by  depth, and viscoelastic property

[1-9]:
2.3.1. Initial unloading slope when displacement is the
8/R [ dn®/2(z) independent variable
Fo = 3(1-v) ./o GU-n—g & ®) Suppose unloading takes place ratsy, with a constant

unloading rate of‘é—i’ . = —un, We have, using Eq(5) for
'm
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O0<t<tmandAr— 0,
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The initial unloading slope is then given by, usiffj = gggﬁ Egs.(10)and(12) suggest that the initial unloading slopes con-
and Eq.(8), verge when the unloading rate, either in displacement or load
control, is sufficiently fast. Once this limiting case is reached,
dr 8VR 3G(O)h1/2( 1) _ /’m dG Egs.(10) and(12) become the same as that for purely elastic
dn ~ 3(1-v) vhJo dnl_. . case, i.e.,
dn3/2 o 4 4G(0 dr _ 4G(0)a
a0 =T o g, =Ty )
— -

2.3.2. Initial unloading slope when force is the independent
variable
Suppose unloading takes place ratry, with a constant

unloading rate ode(’) . = —vr, We have, using Eq(6) for
'm
Oftftm+AtandAt—> 0,

since G(0) = 1//(0) according to Eq(4). Thus, the “instanta-
neous” moduli,G(0)/(1— v) or E(0)/(1—v?), can be obtained
provided that the contact radius, or contact depthig, is
known as a function ok, = A(tn). The latter condition is pro-
vided by Eq(8). An interesting, though not necessarily surpris-
ing, implication of Eqs(10) and (12) is that, aside from the
requirement that the contact area should remain monotonically

h32(tm + A1) — h3/2(tm) 3(1—v) [ [m+ae dF () tm dr(@)
Ar = B/RAL /0 Ji(tm + At — 1) = dr — /O J1(tm — 1) =
31— [ /,m F(T) /fm dJa(n) dF(7)
= J1(tm — dr + At d
8VRAL | o 1(tm — 1) o dn |, . dr 1

+J1(0)

30—y / dJ1 (n)
~ 8/R |Jo dp

dF/dr _

The initial unloading slope is then given by, us%@ = Td =

@322
O o and Eq(8),

VE

B
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dF(7)
B g dr
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UF—> 00 4a 1
T 1-vJ0)

12)

F(t* m
d (tm)At—/ J1(tm — 1)
dr 0

dF(z)
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11)

(f) }

e dr — J1(O)UF]

increasing, the details of loading history, i) or F(¢) in the
respective displacement- or load-controlled measurements, are
unimportant as long as the unloading rate is sufficiently fast. To
satisfy the requirement that the contact area be a monotonically
increasing function of time, it is sufficient thafs) or F () are
monotonically increasing with time prior to unloading.

2.4. Oliver—Pharr method

The mostwidely used method for estimating the contact depth
or area is the procedure proposed by Oliver and Fi&rd. 7]
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Based onthe results of SneddaH], Oliver and Pharr developed 06
an expression fokg, at the indenter displacement, 05 |
Fm 04 | N
he = m =& (o ), (14) E Ll \\ 5.0 sec
whereFy, and (&F/dh)y, are the respective load and the initial < 02 | 6. Sec\\/
slope of the unloading curve at the indenter displacement depth, 0.01 sec L
hm. The numerical value of is 3/4 for paraboloids of revo- 0.1 F o | / N
lution (“classical spherical” indenter). Although E({.4) was 0 : : : —
derived from solutions to elastic contact problems, it has been 0 2 4 6 8 10 12
used to estimate contact depth for indentation in elastic—plastic (a) t (sec)
solids[16,17] and viscoelastic solidgL8,19,25,26,29-34]In 250
the following, we examine the conditions for using E3) +5 figec
and the applicability of Eq(14) by analyzing the complete 200
loading—unloading curves and contact depths using finite ele- P =0.1 sec
ment calculations. 2 B0 B ,.//
[T 100 | _/

3. Numerical results '.,‘.»“‘"

50 | o
3.1. Finite element model 0 ~ _ . ‘

00 01 02 03 0.6
We consider a frictionless, spherical indenter of radius
(b) h (um)

R=2pmindenting an isotropic, three-parameter “standard” lin-

ear viscoelastic model solid (s€&g. 1). The shear and hydro- Fig. 2. Displacement-time profiles (a) and the calculated loading—unloading
static relaxation modulus are given by: curves (b) for the same loading rate and three different unloading rates. The
tangent line with initial unloading slope is also shown for the converged unload-

G1 e ing curve (b). The loading—unloading curves are labeled by the time duration of
G()=G1 <1 T Git Gy (1-e lm)) unloading.
: (15)
K . . -~ .
K() =K1 (1 - ﬁ(l - e"/“’)> the independent variable. The finite element mesh is the same
1 2

as that used in Ref28].

where the relaxation times=n/(G1+G2). Various materi-
als parameters are given & =235MPa, Go=25.8MPa, 3.2. Displacement control
K1 =688 MPaK,=75.6 MPa, and=0.99 s. The parameters are
chosen such that Poisson’s ratia; 0.483, is time independent, For constant indentation displacement rate profiles given in
though bothG(r) andK(r) are time dependent. Specifically, their Fig. 2a, the corresponding loading—unloading curves from finite
“instantaneous” and “equilibrium” values at the respectiv®  element calculations are shown kig. 2b. These examples
andoo are as followsG(0) =235 MPa andi(c0) =23.2MPa;  clearly show that, for the same loading history, the initial unload-
K(0)=688 MPa andK(co) =68.1 MPa. The parameters of this ing slopes converge when unloading rate is sufficiently fast, in
fictitious model solid are used for illustration purposes. Becausagreement with Eq(10). A tangent line with the converged
of linearity, the results can be scaled to represent other materiailsitial unloading slope is also shown Fig. 2b. Furthermore,
of the same general type when the dimensionless parametefsg. 2b suggests that the complete unloading curve converges to
such asG1/G2, K1/K», G1/K1, andt/ts, are equal. It is important  one limiting case as the unloading rate increases.
to note thatG(0)/G(c0) is about 10 which is typical of many poly-
mers and biomaterials. Finite element calculations were carriegl 3. Load control
out using the classical isotropic linear viscoelastic model imple-
mented in ABAQUS[27] using either displacement or load as  For constant indentation loading rate profiles giveRim 3a,
the corresponding loading—unloading curves from finite ele-
G, ment calculations are shown Fig. 3. When unloading is
! slow, the indentation depth continues to increase after the force
G, reaches a maximum, resulting in a “bulge” or “nose” in the
— unloading curve, which has also been observed experimentally
ﬂ [25,26,29-34] This bulge is the consequence of material mem-
j ory effect carried over from the continuing forward movement of
the indenter prior to unloading. Because of this forward move-
ment of the indenter, the maximum contact area occurs after the
Fig. 1. A three-parameter “standard” model for linear viscoelastic solids. force maximum. This delayed maximum contact area behavior

n
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300 has been attributed to the fact that E¢0) was derived using
_ linearized boundary conditions and infinitesimal theory of con-
\\ tinuum mechanics, finite element calculations take into account
200 - N, 10.0sec non-linear effects, including large strain and moving contact
\ boundarieq§20]. Because the values afand g are nearly the
.l 1.0 sec \\ same as that for purely elastic and elastic—plastic cases, we
el kY believe they are insensitive to the particular choice of viscoelas-
Bidleee |y Jasse e tic properties used in the finite element calculations. Although
' further improvement in the precision and accuracy ofthadg
0 5 10 15 20 valuesis possible by additional calculations, either Etg)and
(a) t (sec) (17)or (8) and(13) can be used to obtain, to within 5% of accu-
racy, contact deptlic, and “instantaneous” moduti;(0)/(1— v)

300 = or E(0)/(1— v?), when unloading rate is sufficiently fast.
+ U.01 secC

= 0.1 sec \
1.0 sec .
200 |—10.0 sec

F (uN)
N

3.5. Oliver—Pharr method

We now discuss the applicability of the Oliver—Pharr method
j for estimating contact depth for indentation in viscoelastic
e i solids. Finite element calculations were carried out using con-
i stant indentation displacement rate profiles givefign 4a. The
5" 7 load—displacement curveshiig. 4b show that the force required
s o2 a3 e - to reach a given indentation depth increases with the loading rate,
(b) h (um) consistent with the expected behavior of viscoelastic solids. The
unloading rates chosen in the calculations are sufficiently fast
Fig. 3. Force—time: profiles (a) and thg calculated Ioe_lding—unloading curves'(b:-}O that they generate the Corresponding converged unloading
for the same loading rate and four different unloading rates. The tangent IIn?:urves. Furthermore, finite element calculations show that the
with initial unloading slope is also shown for the converged unloading curve (b). . ’ o
The loading—unloading curves are labeled by the time duration of unloading. cOntact depthic, is the same for all three cases shown in Fig. 5b,
as expected from E¢8) or (16) sincein, is the same. According

F (uN)

was predicted by the analytical theories of Graj&hand Ting

[8,9], and was verified for conical indentation by numerical cal- 06
culations[20,21]. With increasing unloading rate, the “bulge” 0.5 sec
disappears. For the same loading history, the initial unloading e
slope converges when the unloading rate is sufficiently fast, 0.4 //‘
in agreement with Eq(12). Furthermore, the entire unload- ‘é:; e 5.0 sec X
ing curve converges to one limiting case as the unloading rate = R ~ 50 sec
increases. 0.2 L/
0.1 ff :
3.4. Contact depth and unloading slope | 1

The contact areaA, and contact depthj, are also (a) t (sec)
obtained from finite element calculations. The calculations show
helh ~0.524 0.01, which s slightly larger than 1/2 predicted by
Eq. (8). This suggests that E¢B) needs to be slightly modified
to become,
he 1
ZC _ o= 16

Ko Y2 (16)
wherea =1.04+ 0.02. Furthermore, the finite element results
show that there is a small correction to E4Q),

dF| _ 4G(Oa 2 E(0)
'Bl—v N ﬁl—vzﬂ’

dh |y
where 8=1.024+0.01. The same correction factor has also _ _ _ _ . .
Fig. 4. Displacement-time profiles (a) and the calculated loading—unloading

been seen in the mOdelmg of conical indentation in purely elasc'urves (b) for three different loading rates and sufficiently fast unloading

tic solids and in elastic—plastic solid%7,20] The origin of  rates. The tangent lines with initial unloading slopes are also shown (b). The
this correction factor has been discussed previolisty20]. It loading—unloading curves are labeled by the time duration of loading.

17 0 0.1 0.2 0.3 0.4 0.5 0.6

(b) h (um)
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to Eqg.(13)or (17), therefore, the unloading slopes are the same,  unloading slope is nevertheless a function of holding his-

which is evident frontig. 4b. tory and unloading conditiof29—-34] A correction formula

On the other handkig. 4b demonstrates that the Oliver—Pharr has been proposed by Ngan and coworkers for the initial
procedure for estimating the contact depth using(E4) is not unloading slope after the hold period so that the instanta-
applicable to indentation in viscoelastic solids. This can be seen neous modulus can be obtained from unloadBi-34]
by the fact that Eq14)would have predicted very different con- Egs.(10) and (12) suggest, however, that the hold-period
tact depthshc, sinceFy, is different whilean, and (&F/dh), are may be unnecessary if unloading can be made sufficiently
the same for the three cases, contradicting the factithatthe fast so that the instantaneous modulus can be obtained from

same. Indeed, the contact depth calculated from the Oliver—Pharr the unloading slope.

procedure for the three cases showkig. 4b are 0.287, 0.415, (3) For spherical indentation a simple relationship exists
and 0.46g.mforthe 0.5,5.0,and 50 sloading time, respectively.  between contact depth and indentation depth (B.or

In contrast, the actual contact depth for all three cases is about (15)) from which contact area can be determined without
0.2574+0.001um from finite element calculations. The errors invoking the Oliver—Pharr method.

are 12, 61, and 82%, respectively. Errors of the same magni-

tude are also seen from finite element calculations when load, These general guidelines should help improve the accu-
instead of displacement, is the independent variable. We notgicy and reproducibility of spherical indentation measure-
that the Oliver—Pharr method always overestimates the contagients for determining properties of purely linear viscoelastic
depth, resulting in underestimating the modulus values detegolids.

mined using Eq(13) or (17). Thus, the Oliver—Pharr procedure

may cause significant error in determining contact depth or COMy cknowledgements

tactareawhenitis applied to the analysis of spherical indentation

in viscoelastic solids. This observation is not surprising since the  The authors would like to thank Wangyang Ni, Mike Luk-
Oliver—Pharr procedure, specifically E@4), was derived using itsch, Yue Qi, Tom Perry, and Wes Capehart, Lou Hector, and

Eq. (7). which is only valid for spherical indentation in purely \jark Verbrugge for valuable discussions. C.-M. Cheng
elastic solids. would like to acknowledge partial support from NSF of China,
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