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To understand the nature of mechanical instabilities of dislocation structures, which plays a central
role, for example, in determining the plastic behavior and fatigue in crystalline metals, it is essential to
investigate a critical condition in which a dislocation structure collapses. A criterion for the mechanical
instability of arbitrary dislocation structures is proposed in this paper. According to the criterion, the
mechanical instability can be described by the positiveness of the minimum eigenvalue of the Hessian

geﬁwqrds: matrix, which is composed by the second-order differential of potential energy of the system with respect
mr;tigﬁilly to the dislocation coordinates. In addition, the collapse mode can be simultaneously determined by the

Dislocation structure eigenvector of the minimum eigenvalue. We applied the proposed criterion to the veins and dislocation
Vein walls under external loading, and it successfully describes the onset of instabilities and the corresponding

Dislocation wall collapse modes, regardless of the difference in structures and sizes. This success in the criterion paves

Deformation mode
Dislocation theory

the way to address the mechanical instability issues on more complex dislocation structures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Dislocations, which are one-dimensional topological defects,
are central to understand the mechanical properties of crys-
talline materials. The motion and interaction of dislocations over
mesoscopic distances are fundamental to many phenomena in
crystalline materials, such as plastic deformation and fracture of
bulk solids. For example, strain hardening is induced in crystalline
materials by the increased number of interacting dislocations that
trap each other in minimum energy configurations [1], and the soft
persistent slip bands (PSBs) cause fatigue cracking due to the local-
ization of plastic strain [2,3]. On the other hand, dislocations in
deformed metals tend to cluster into various kinds of dense regions
with high dislocation densities, which are separated by regions
with reduced dislocation densities, resulting in the formation of
characteristic dislocation structures [4,5] such as dislocation cells,
slip bands, microshear bands, PSBs, and dislocation tangles [6-12].
In addition, the configuration of dislocation structures changes with
the motion and multiplication of dislocations due to applied exter-
nal load. For example, dislocation structures in pure metals change
from veins to PSBs, and further cell or labyrinth structures with
the development of fatigue [13-18]. This indicates that disloca-
tion structure evolution dominates typical plastic deformation and
fracture behavior in fatigue of metal. It is thus critically impor-
tant to investigate the instability of dislocation structures to gain a
microscopic understanding of the deformation and fracture char-
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acteristics of metals. However, due to the complexity of numerous
dislocations included in a structure, the mechanism of instability
of dislocation structures has rarely been investigated in detail. It
is thus necessary to develop an appropriate criterion to precisely
evaluate the mechanical instability of dislocation structures.

In this study, a criterion is proposed to describe the mechanical
instability of arbitrary dislocation structures from the viewpoint of
energy balance to external load by considering all the degrees of
freedom of dislocations. The proposed criterion is applied to dislo-
cation structures such as veins and dislocation walls subjected to
external loads.

2. Analytical instability criterion for dislocation structures

For simplicity, we consider a dislocation structure on the pri-
mary slip plane of (11 1) of a face-centered cubic (fcc) metal crystal
under a constant external load, where the x-axis corresponds to the
primary slip direction of [101] and the y-axis is aligned with the
[11 1] direction of the crystal. For further condition, e.g., the multi-
slip condition, the same formulation is available by appropriately
accounting for the degrees of freedom of the system.

We consider a two-dimensional dislocation structure consisting
of N parallel edge dislocations under an external load, as schemati-
cally shown in Fig. 1. The edge dislocations are numbered from 1 to
N and the coordinates and the Burgers vector of the i-th dislocation
are r;=(x;, y;) and

b; = (¢;b, 0,0)(¢; = £1), (1)

respectively. Here, b is the magnitude of the Burgers vector, and {;
represent the positive (L) and negative (T) edge dislocations. Since


dx.doi.org/10.1016/j.msea.2011.12.027
http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:yan.yabin@ht5.ecs.kyoto-u.ac.jp
dx.doi.org/10.1016/j.msea.2011.12.027

682 Y. Yan et al. / Materials Science and Engineering A 534 (2012) 681-687

the dislocation motion is restrained in the direction of the Burgers
vector (the x-direction), the dislocation structure has N degrees of
freedom. Moreover, to eliminate rigid translation of the system,
the system has a total of M=N —1 degrees of freedom. Therefore,
an arbitrary change to the configuration of the dislocation structure
can be described by an M-dimensional vector consisting of the x-
coordinates of the dislocations,

X ="(x2,x3, -, xn)="(X1, X2, - -, Xm).- (2)

The total energy of the system, ][, in an equilibrium state (Xo)
consists of the interaction potential energy of dislocations U, the
work done by the external load W, and the dislocation self-energy
Eselfv

IT =U+W + Egg (3)

where U is the sum of the interaction potential energy originated
by every two dislocations and is given by

N N C_x:)? C_v)?
_1 Ggigb? log \/ (i = %) + (i —y5)
ZZ Z 27 (1 —v) Rc
i=1j=1j i

(i —y]’)z
T ) (4)
i — %) + i — ¥ }
Wis
N
W= Z{ib/ryxdx,-. (5)
i=1

Eqef has the form [19]
Eceif = NaGb? (>~ 0.4). (6)

Here G is the shear modulus, v is Poisson’s ratio, R. is the cut-off
radius of the integration path, and tyy is the shear stress component
imposed by an external load. The Taylor’s series expansion of [ [(Xo)
in terms of an infinitesimal displacement, AX, has the form

U w
(Xo + AX) = IT(X) +Z e AX;
i=1 Xilx- T x=xq
& Ten L 2w
= AX X+ 4 5>
B AX - A
i=1 j=1 0X; X=Xo im1 jo 0X;9X; X=Xp

Because the system is at equilibrium, the second term on the
right-hand side is zero. Additionally, since the external load is con-
stant, we obtain

12w
X 0X;

=0(i,j=1,---, M). (8)
X=Xp

By neglecting higher-order terms, the change in the total energy,
ATT induced by the infinitesimal displacement, AX, is written as

t
AIT = M(Xo + AX) — (Xg) = % AXHAX, 9)
where H is the M x M Hessian matrix with components, Hj;,
*U .
Hjj aXaxjxx(lj_l,---,M). (10)

Substituting Eq. (4) into Eq. (10), the components of H are
obtained as
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Fig. 1. Schematic illustration of a two-dimensional dislocation structure under a
shear stress, 7, due to an external load.
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By solving the eigenvalue problem of the Hessian matrix H,

Hp;=np; (i=1,---,M), (12)

the eigenvalues n; (71 <---<n; <---<ny) and the corresponding
eigenvectors p; are obtained. Using the eigenvectors p;, the matrix
H is diagonalized as

m 0
P 'HP = !PHP = , (13)
0 M
where P=(p;---py). Since the eigenvectors of the Hessian matrix
are related by
pi - pj =3y, (14)

where §; is the Kronecker delta, the set of eigenvectors {p;} is an
orthogonal base of M-dimensional vector space. Thus, the infinites-
imal displacement, AX, can be expressed as a linear combination
of the eigenvectors p; as

M
AX = uip; =Pu, (15)

where u; is the component of AX in the p; direction and u="(u,-- -,
uy). Therefore, the change in the total energy, ATl, due to the
infinitesimal displacement, AX, is written as

M
_1; _ 1 _ 1 12
AIT = ' (PuH(Pu) = S u('PHP)u = 5Z:n,u,.. (16)
i=1
When the change in the total energy AT for the infinitesimal
displacement AXis positive, the dislocation structure is stable and

all the eigenvalues are positive (see Eq. (16)). On the other hand,
when ATl is negative, the dislocation structure is unstable. Since
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Fig. 2. Simulation models of (a) veins and (b) dislocation walls. L and T denote positive and negative edge dislocations, respectively.

N1 <---<n; <---<ny, the critical condition AIl=0 appears when
the smallest eigenvalue reaches zero

m =0, (17)

u;=0(i=2,---,M). (18)
Under this condition, AX becomes

AX =Pu=up; (19)

Here u; has an arbitrary magnitude and p; is determined by the
Hessian matrix H.

Eq. (17) is the criterion for the instability of a dislocation struc-
ture. Eq. (19) shows that the dislocation displacement AX at the
onset of instability is proportional to the eigenvector, p;. Thus, the
displacement mode at the collapse of the dislocation structure is
described by the eigenvector p;.

The above formulation can be extended to three-dimensional
systems by adding the corresponding degree of freedom (dis-
placement along the direction of the Burgers vector) of discrete
dislocation points to the freedom vector X in Eq. (2).

3. Instability of dislocation structures due to an external
load

3.1. Simulation models

Simulation models of veins and dislocation walls in
Taylor-Nabarro lattices [20,21] are employed here because of
their importance in the fatigue process. Since the purpose of
this study is to evaluate the proposed criterion, ideal veins and
dislocation walls are used, although the scale and arrangement of
dislocations are quite different from actual dislocation structures.

Fig. 2 shows simulation models of veins and dislocation walls
with Taylor-Nabarro lattices in a copper single crystal. The edge
dislocations are in the primary slip plane of (111) and the x-axis
corresponds to the primary slip direction of [101] and the y-axis
is along the [11 1] direction of the crystal. For copper, the magni-
tude of Burger vector b=0.25 nm, the shear modulus G=41.05 GPa,
the Poisson ratio v=0.33, and the cut-off radius of integration path
Rc=1.0 wmare used in this study [22,23]. Taylor-Nabarro lattices of
the vein structure consist of the elementary quadrupole, as shown
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Fig. 3. Total energy per dislocation, IT/4N2, of veins with N,=3, 9, and 15 as a
function of applied shear stress tyy.

by the solid lines in Fig. 2(a), and the simulation model of the
vein structure has N, x N, quadrupoles with dy=15nm. Simula-
tion models with N, =3, 9, and 15 are analyzed in this study. The
simulation model of a dislocation wall consisting of elementary
quadrupoles illustrated in Fig. 2(b) has Ny, quadrupoles in the x-
direction and Ni =10 quadrupoles in the y-direction. The distance
between slip planes of neighboring dislocations, dyy, is same as that
for veins, i.e., dyw =15nm. Dislocation walls with Ny, =1 and 3 are
investigated.

3.2. Stable structure

At first, the dislocation structures shown in Fig. 2(a) and (b) are
relaxed by discrete dislocation dynamics (DDD) [24-26] calcula-
tions under the applied uniform shear stress. During the relaxation
of dislocation structures, the dislocation motion is determined by
the experimentally obtained velocity equation for the copper single
crystal

, (20)

where v'=1.0x10"2m/s, T =0.25x103Pa, and m=0.7 [27].
Numerical integration is performed by the Euler method and the
time step is taken to be At=1.0ps. Here, v; is the velocity of the
i-th dislocation and 7; is the shear stress acting on the i-th dis-
location, which is calculated by the superposition of the external
load induced shear stress 7y, and other dislocations induced stress
fields,

(i — %) = i =¥
Ti=Tpx+ 57— 272'(1 ZQ %) : 2] .
Jj#i {(Xl —X]) +(y1 ) }

(21)

To obtain the fully relaxed equilibrated dislocation structure, the
DDD calculation is performed until all the Peach-Koehler forces act-
ing on the dislocations are less than 2.5 x 10~7 N/m. The increment,
ATy, and the relaxation are repeated until the onset of collapse of
dislocation structure.

3.3. Vein structure

Fig. 3 shows the variation of the total energy per dislocation,
I1/4N2, for veins with N, =3, 9, and 15 as a function of the applied
shear stress, tyx. The total energy increases smoothly with the
applied shear stress. At a high shear stress level (tyx>15MPa in
N, =9), the slope of the energy curve becomes larger, and the total
energy increases rapidly at the last.
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Fig. 4. Snapshots of a vein with N, =9 (a) before and (b) during the instability.

Fig. 4(a) and (b) shows snapshots of a vein with N, =9 imme-
diately before (tyx =16.763 MPa) and during (tyx =16.764 MPa) the
rapid increase of the total energy, respectively. For a shear stress
of Tyx =16.763 MPa, the rhomboidal shape of the vein is preserved,
although the vein structure is stretched in the x-direction relative
to the unloaded vein. On the other hand, for Tyx=16.764 MPa, the
vein structure breaks into dipolar walls of dislocations and the dis-
location walls move away from each other. The dislocation wall at
the right tip of the vein structure exhibits an eminent displacement
than the others. Therefore, the rapid increase of total energy indi-
cates the collapse of vein structure. Veins with N,=3 and N, =15
exhibit similar collapse behaviors with the applied shear stress.
Table 1 lists the critical shear stresses for veins with N, =3, 9, and
15. The critical shear stress is higher for a smaller vein, which
means that the smaller vein structure is more resistant to external
load.

Table 1
Critical shear stress, 7, of veins with N, =3, 9, and 15.
Ny 3 9 15
7. (MPa) 26.360 16.764 13.532
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Fig. 6. Instability mode vector of the vein with N, =9.

Fig. 5 shows the relationships between the minimum eigenvalue
11 and the applied shear stress tyx for veins with N,=3, 9, and 15.
Here, 17 is normalized by its magnitude in the unloaded state, n(lo).
The arrows in Fig. 5 indicate the critical shear stresses of the mod-
els, t.. For the vein with N, =9, the magnitude of n; continuously
decreases with the applied shear stress and finally reaches zero
at Tyx=16.764 MPa. n; =0 corresponds exactly with the instability
condition. In addition, for veins with N, =3 and 15, 1 =0 also does.
This indicates that the collapse of the vein structure is caused by the
structural instability of dislocations. Moreover, since the minimum
eigenvalue 7, decreases monotonically as the applied shear stress
approaches the critical stress (the onset of instability), it is possible
to evaluate the stable degree of the structure with the reduction of
n1. However, discussion on this issue is beyond the scope of this
study and remains for further investigation.

10 ; i ; - . T
N,=1 5
E I NW=3 4
s £ 08
29
33 oe '
E
= e ]
S T 04
5
8 F 02 i
L <t
s ¥
S o ]
&~
g =
e]
& E -0.2 i
—04 ‘ ‘ . - - - -

0 5 10 15 20 25 30 35 40
Applied shear stress Tyx (MPa)

Fig. 7. Total energy per dislocation, IT/4N?2, of dislocation walls with Ny, =1 and 3
as a function of applied shear stress yy.

(a) Before instability ('ny =26.150MPa)

LeREEERREEERRRELL
L R I e R |
R L L,
4 A
T g qaaadadd
r
A

" ¥
(b) During instability (*cyx =26.151MPa)
(1) t=0.52ps

a7
AT
LT
LT
AT
aT
LT

AT

n
LrREREERREERE R

2T

-141-11...;.'_‘.,.‘.‘1-;1-!14-1

P L N T

44 44
R

LT
LT
LT
AT
LT
LT
aT

LT

4
LREERFEFFERER R

arT

LI I R R e I ]
FrerbFEEFFRFR R R R Ly
R

FE
44
L
44
r
1!'

FEEREFFFFEFEFERE

Ad AT A dd a4 44444444

FrrFFFEFFREFEFFEREFEEREE

R R k|
F

X

Fig. 8. Snapshots of dislocation wall with Ny, =3 (a) before and (b) during the insta-
bility.

Fig. 6 shows the eigenvector of the N, =9 vein at the onset of
instability (17 =0), i.e., the instability mode at the collapse of vein.
The instability mode vector reveals that the vein decomposes into
dislocation walls and the walls tend to depart from each other. In
addition, a prominent displacement exists at the right tip of the
vein structures. Therefore, the instability mode represented by the
eigenvector p; correctly describes the dislocation motions at the
onset of collapse.

3.4. Dislocation wall

Fig. 7 shows the relationships between the total energy per dis-
location, I7/4N2, of the dislocation walls with N,y=1 and 3 and
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Table 2
Critical shear stress, 7, of dislocation walls with N,, =1 and 3.
Ny 1 3
7. (MPa) 32.995 26.151

the applied shear stress, tyx. The total energies of dislocation walls
of both sizes increase smoothly with the applied shear stress, and
rapidly increase at a specific stress. This is the same trend as that
observed for veins, as discussed in the previous section.

Fig. 8(a) and (b) shows snapshots of the N, =3 dislo-
cation wall immediately before (tyx=26.150MPa) and during
(Tyx=26.151MPa) the rapid increase of the total energy, respec-
tively. Ata shear stress of Ty = 26.150 MPa, although the dislocation
wall is broader than its unloaded configuration, the wall structure
is still kept. However, at Tyx=26.151 MPa, the quadrupolar dislo-
cation wall decomposes into dipolar dislocation walls and a single
dislocation array, which show the trend of leaving each other. Thus,
the dislocation wall collapses during the rapid increase in the total
energy. Table 2 lists the critical shear stresses 7. for dislocation
walls with Ny, =1 and 3. The critical shear stress of smaller disloca-
tion wall is larger, which indicates the higher instability.

Fig. 9 shows the relationships between the minimum eigen-
value, 11, and the applied shear stress, tyx, of dislocation walls
with Ny =1 and 3. Similar to veins, the minimum eigenvalue con-
tinuously decreases with increasing applied shear stress. All the
minimum eigenvalues of the dislocation walls finally obtain zero,
n1 =0, at the critical shear stresses, which means that ; =0 exactly
represents the critical condition for instability.

Fig. 10 shows the instability mode vector p; of the Ny, =3 dislo-
cation wall at the onset of instability. It shows that the quadrupolar
dislocation wall breaks into dipolar walls and a single dislocation
array, which induces the collapse of the quadrupolar dislocation
wall. This is identical to the displacement behavior of dislocations
at the onset of collapse. Thus, the proposed criterion precisely
describes the instability of dislocation walls.

In summary, the mechanical instability criterion proposed in
this study correctly describes the onset of instability and the corre-
sponding displacement mode at the onset of collapse for different
dislocation structures (i.e., veins and dislocation walls) of different
sizes. Owing to this success, we can address the mechanical insta-
bility of more complex dislocation structures such as PSBs by using
the proposed criterion.
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Fig. 10. Instability mode vector of dislocation wall with N,, =3.

4. Conclusion

In this study, to investigate the mechanical instability of arbi-
trary dislocation structures, a criterion of mechanical instability is
proposed to exactly evaluate the critical condition for the onset
of instability and the instability mode at the collapse of disloca-
tion structures. The developed criterion is applied to veins and
dislocation walls under external loads. The obtained results are
summarized as follows:

(1) The instability criterion is evaluated by the positiveness of the
minimum eigenvalue, 1, of Hessian matrix, H, whose com-
ponents are second-order differentials of the potential energy
of the system with respect to the dislocation coordinates. The
displacement mode at the onset of collapse of dislocation struc-
tures (the instability mode) is represented by the eigenvector
of the matrix at n; =0.

(2) The proposed criterion is applied to a loaded vein structure,
and the instability of the vein is successfully picked up by the
criterion for models with different sizes. The instability mode
represented by the eigenvector, p;, accurately describes the
displacement mode at the collapse of the vein.

(3) Fordislocation walls, the critical condition for the onset of insta-
bility and the corresponding displacement mode at collapse are
precisely determined by the proposed criterion.

(4) The successful application of the proposed criterion to veins
and dislocation walls under external loads indicates that the
criterion is a powerful tool for investigating the instability of
arbitrary dislocation structures, and it enable us to address the
mechanical instability of more complex dislocation structures
such as PSBs.
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