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Nonlocal effects in torsional deformation
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Abstract

The stress distribution in torsionally deformed cylindrical polycrystalline copper samples was investigated. The strain in
torsional deformation changes with distance from the torsional axis and thus the local extent of work hardening and consequently
the local flow stress changes as well. The variation of the flow stress with radial position in the samples was measured by
microhardness tests. It was found that except for the near-axis region the local flow stress can be correctly calculated by the Nadai
evaluation from the experimentally measured torque versus torsional angle function. Hardening is observed in the axis of the
torsionally deformed samples in spite of the fact that the shear strain is zero here. The hardening obtained in the axis depends
approximately linearly on the torsional angle, and it increases with grain size. This effect is interpreted by introducing nonlocal
effects in the continuum description. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Torsion tests are often used for the investigation of
plasticity at high strains, since in this deformation mode
much higher strains can be achieved than in tension or
compression tests [1–4]. In case of torsion, however,
the deformation is inhomogeneous inside the sample,
which makes the derivation of stress–strain curves from
the measured torque-angle relations difficult. A com-
monly accepted method for the determination of the
stress–strain relation for rod-shaped cylindrical sam-
ples from torsion tests is the Nadai evaluation [5] which
is based on two assumptions:

(1) The shear strain, g is proportional to the distance
from the axis of the sample, r : g=qr where q is the
angle of torsion per unit length. (This assumption
was investigated and proved experimentally by
Grewe and Kappler [6].)

(2) The shear stress (t) is determined only by the shear
strain: t=t(g).

From these assumptions for the surface of the sample
the

t(g=Rq)=tN(g)=
1

2pR3

�
q

dM
dq

+3M
�

(1)

relation can be derived where

M=2p
& R

0

t(r)r2 dr (2)

is the applied torque.
At a given angle of torsion (q=const.) the stress–

strain relation tN(g) determined by the Nadai evalua-
tion from the measure M(q) curve can be converted to

tN(r)=tN(g=qr) (3)

which describes the variation of stress as a function of
r.

The aim of this work is to check the validity of the
stress distribution determined by this method in tor-
sionally deformed samples.

2. Experimental procedure

Cylindrical samples of electrolytic copper (purity
99.99%), with a diameter of 4 mm, and a gauge length
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of 40 mm were used for torsion and tension tests. The
samples for the stress distribution measurements were
annealed at 600°C for 1 h to get a fully recrystallized
and untextured structure with an average grain size of
20 mm. Additional measurements were made on sam-
ples with grain sizes of 50 and 75 mm, which were
obtained by annealing at 800 and 900°C, respectively.
The tension tests were carried out in an INSTRON
machine at a constant crosshead velocity of 2 mm
min−1.

For torsion tests, a free-end torsion machine was
used, in which the sample is deformed at a constant
angular rate. This gives a constant strain rate on the
surface of the sample, which was 0.014 s−1 in the
measurements presented in this paper. During the test
the actual torque, the torsional angle and the length
change of the samples were measured.

Microhardness measurements were carried out on the
cross-section of the deformed samples. After torsion or
tension the samples were cut at right angles to the axis
of the sample. The surface was mechanically polished
and etched for the microhardness tests. The microhard-

ness measurements were performed on a Leitz hardness
tester, with a constant load of 2 N, resulting indenta-
tion sizes of 50–100 mm, and a Shimadzu DUH-202
dynamic hardness tester with a maximum load of 0.2
N, causing indentation sizes of 10–20 mm.

3. Results

In torsional deformation the strain changes as a
function of position along the radius of cylindrical
samples, consequently the work hardening varies along
the radius. According to the Nadai-method the local
stress distribution tN(r) can be determined from Eqs.
(1)–(3). Using the von-Mises relation [2] this can be
converted into equivalent tensile stress:

sN(r)=
3tN(r) (4)

The microhardness, which is an affine function of the
yield stress, was measured on the cross-section of the
samples as a function of r to determine the distribution
of the local flow stress developing during torsion. To
scale the relation between the microhardness, HV, and
the equivalent tensile stress, s, microhardness measure-
ments were carried out on the cross-section of tensile
deformed samples. The s versus HV relation obtained
(Fig. 1) can be described with the linear relation:

HV=51+0.12s (5)

The microhardness versus radius (distance from the
axis) curve of an undeformed sample as well as of three
samples deformed up to different amounts of g=qR
surface strain are shown in Fig. 2. The microhardness
of the deformed samples is monotonously increasing
from the axis (r=0) towards the surface (r=2000 mm).
It is important to note that the microhardness of the
torsionally deformed samples at r=0 (where the shear
strain according to the g=qr relation should be zero)
increases relative to the hardness of the undeformed
sample with increasing surface strain. This is in contra-
diction with the assumptions of traditional local plastic-
ity, like assumption No. (2) of the Nadi evaluation [5]
according to which the local flow stress depends only
on the local strain.

The maximum length of the diagonal of the Vickers
microhardness indentation in the present experiments
was smaller than 100 mm, consequently taking into
account the plastically deformed zone around the in-
dentation the microhardness value is a measure of the
average local flow stress in a region of 100–200 mm
diameter. By applying Eq. (3) it is found that the shear
strain in the axis is zero, at r=100 mm it is about 0.3
(in the case of g=6.33 surface strain). Averaging the
local flow stress for a region of 100 mm around the axis
on the basis of Fig. 1 and from the stress–strain curve
of Fig. 3 the microhardness at the r=0 position should

Fig. 1. The relation between the microhardness and the flow stress in
the case of tension.

Fig. 2. The microhardness vs r in samples deformed in torsion up to
the indicated g=qR surface shear strains.
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Fig. 3. Shear stress–shear strain curve determined by the Nadai-
method from the experimentally measured M(q) function.

A recent model for large strain work hardening of
Estrin et al. [7] that taking into account both disloca-
tion strucures and texture changes, suggests that during
torsion the Taylor factor changes from 1.65 (von-
Mises) to 1.52 at the and of stage IV. Taking into
account this change the sN versus sloc diagram can be
plotted (Fig. 4). By comparing the sloc and sN stresses
in Fig. 4 it can be seen that apart from the points in the
axis region the measured local stresses are close to the
Nadai-stress proving that in those regions the two
assumptions of the Nadai-method are valid. The size of
the region where the measured local stresses are signifi-
cantly larger than the Nadai-stresses is approximately
300 mm (Fig. 2), while the grain size is 20 mm. It
indicates that the excess hardening is not a simple single
grain effect.

4. Discussion

The deviation from the Nadai-stress is the conse-
quence of the inhomogeneous deformation mode,
where the microstructure of the sample becomes impor-
tant. To interpret the results in a continuum plasticity
theory we adopted the mathematical formalism of the
recently developed strain gradient plasticity theories
[8–12]. The purpose of these theories is to account for
the effect of microstructure in inhomogeneous plastic
deformation using continuum plasticity theories. In
these theories an internal length scale parameter is
introduced in continuum plasticity and it is assumed
that the stress in a deformed material depends not only
on the local strain, but also on the gradients of strain.
There are two different approaches developed so far for
taking into account the influence of strain gradients.
Aifantis proposed the first gradient theory [8–11] in
which, independently from any microscopical mecha-
nism, the invariants of the strain gradients are added to
the conventional (only strain dependent) stress. The
general form of the stress-strain relation up to second
order gradient terms is the following:

t= f(g)−c92g− c̄(9g)(9g) (6)

where the c and c̄ constants are proportional to the
square of some internal length scale (e.g. grain size) and
f(g)is the ‘conventional stress’.

The other gradient theory proposed by Fleck et al.
[12] is based on the concept of geometrically necessary
dislocations [13]. In this approach to take into account
gradient terms an effective strain measure ē depending
on the first order invariants of the strain ēe and the
strain gradient, xe, and an effective stress measure, S
are introduced in the following way:

ē=
e e
2+ l2x e

2 (7)

and

Fig. 4. The relation between the Nadai-stress and the measured local
stress distribution in the torsionally deformed samples.

be about 57 MPa, i.e. an increase of only 6 MPa
relative to the undeformed value instead of the mea-
sured 25 MPa. This means that the Nadai-method can
not account for the hardening observed at the r=0
position in Fig. 2.

The stress distribution in the case of g=6.33 was
also measured by a smaller load of 0.2 N resulting
indentation sizes of 10–20 mm. In this case the hard-
ened zones around indentations are much smaller al-
lowing the measurements of more points near the axis,
without significant interference between the indepen-
dent indentations. The result of these tests are also
shown in Fig. 2.

Using Eq. (5) the local microhardness values of Fig.
2. can be converted into local (equivalent) stress values:
sloc. If the assumptions of the Nadai-method were valid
these values should be equal to sN(r). For the calcula-
tion of the Nadai-stresses one has to take into account
that at higher torsional strains due to the microstruc-
tural changes (texture development, dislocation cells,
subgrains) the von-Mises relation [2] between the shear
stress and the equivalent tensile stress is no longer valid.
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S=
dw
dē

(8)

where l is the internal material length scale an w is the
strain energy density.

The internal length scale parameter which occurs in
both strain gradient theories should be some mi-
crostructural length, such as grain size in the case of
polycrystals, or interparticle spacing in the case of a
composite structure.

Applying the formalism of Fleck et al. [12] for the
case of the torsional measurements the effective strain
measure, ē has the form [12]:

ē=q
'r2

3
+ l2 (9)

where l is now the grain size. It follows that ē(r=0)"0
consequently the stress measure does not disappear in
the axis, which is in agreement with the experimental
results.

According to Eq. (8) the work done by the external
torque increases the strain energy as [12]:& q

0

M(q) dq=
& & ē

V,0

S(ē) dē dV (10)

Differentiating this expression with respect to q :

M=2p
& R

0

r
'r2

3
+ l2 S(r) dr (11)

To see the connection between S(ē) and the Nadai-
stress let one define an effective shear stress (teff) giving
the same torque on the surface as S(ē) by the following
expression:

M=2p
& R

0

teff(r)r2 dr (12)

From (11) and (12) it is obtained that:

teff(r)=
1
r

S(r)
'r2

3
+ l2 (13)

Far from the torsional axis r2� l2 the effective shear
stress is

teff=
S


3
(14)

giving back the von-Mises relation between teff and S.
Eq. (12) from which the effective shear stress teff was

calculated is of the same form as Eq. (2), from which
the tN Nadai-stress is obtained. In the case of tN,
however, only local strengthening is considered, conse-
quently if there are no gradient effects or if they are
negligible, tN is approaching teff. In the case of r2� l2

the gradient effects are negligible (according to [12] S
and ē should give the ‘conventional’ stress and strain)
so in this case:

teff=tN=
S


3
(15)

Thus in this region the S stress measure (which is
experienced also by the microhardness) and the
sN(r)=
3tN(r) equivalent Nadai-stress are equal, as is
also confirmed by the results shown in Fig. 4. Conse-
quently in the case of sample diameters considerably
larger than l the nonlocal effects hardly influence the
M(q) function.

In contrast to this, near the axis where r2� l2 gradi-
ent effects are not negligible, teff (and S) may differ
significantly from tN (see the points at sN=0 Fig. 4).

In this case using a series expansion for the square-
root in Eq. (13):

teff=
1
r

S(r)
�

1+
r2

6l2

�
(16)

is obtained.
The explicit form of the S(ē) constitutive relation is

not known, nevertheless its initial behaviour can be
investigated. If the derivative of the S(ē) function is
finite at ē=0 than for small values ē :

S(ē)=S0ē (17)

where S0 is the finite initial slope.
If the initial derivative is infinite:

S(ē)=S0ē
N (18)

where NB1.
From the linear Eq. (17), using Eq. (9):

S(r)=S0ql (19)

and so with Eq. (13):

teff=S0

ql2

r
(20)

For the power law relation given by Eq. (18):

S(r)=S0q
NlN (21)

and

teff=S0

qNlN+1

r
(22)

Since S is the stress measured by the microhardness,
the hardening in the axis, DHV=HV(r=0)−HV0

(where HV0 is the hardness of the undeformed sample)
should follow either Eq. (19) or Eq. (21).

As visible in Fig. 2, DHV increases with the torsional
angle, q, i.e. with increasing g=qr surface shear strain.
The dependence of DHV on q is approximately linear
and definitely not below linear. Consequently the be-
haviour described by Eq. (18) can be ruled out. The
experimentally measured Nadai-stress versus shear
strain curve (Fig. 3) also suggests a finite initial slope.

Additional measurements were made on samples with
average grain sizes of 50 and 75 mm to illustrate the
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dependence of the hardening in the axis on the mi-
crostructural length parameter for a torsional strain
g=3. It was found that the axial hardening DHV
increases linearly within experimental error with in-
creasing grain size (Fig. 5).

The results show that the dependence of DHV on
both q and l is consistent within experimental error
with the linear relation given by Eq. (19) while the
power law of Eq. (21) with NB1 contradicts the exper-
imental results.

According to the theory of Aifantis et al. [8–11] the
expression of the stress of Eq. (6) for the case of torsion
gives the following:

t= f(g)−
cq

r
− c̄q2 (23)

Using this with Eq. (2), the torque at the surface can
be calculated:

M=2p
& R

0

f(g)r2 dr−pcqR2−
2
3

c̄pR3 (24)

In this expression the first term is the contribution of
the ‘conventional’ stress, while the second and third
term is the effect of strain gradient on the torque.

From [8] the constant c for copper of 25 mm grain
size is approximately 15 N (and c is negative), while c̄ is
about 0.005 N, so the contribution of the gradient
effect at the surface is negligible compared to the
‘conventional’ stress.

In contrast with this, near the axis the ‘conventional’
stress should disappear, the third term in Eq. (23) is
constant and the dominant term is cq/r, where c� l2

[8–11]. As can be seen, this expression has the same
form as that obtained for teff in Eq. (20) by applying
the theory of Fleck et al. [12] for torsion with the linear
constitutive relation for S.

So both formalisms (Fleck et al. [12] and Aifantis et
al. [8–11]) predict that in our torsion tests far from the

axis (compared with the microstructural length scale l),
conventional plasticity theory is valid, and the Nadai-
stress correctly describes the stress distribution in the
samples. Near the axis, however, the experiments reveal
significant deviations from conventional plasticity (i.e.
the Nadai-stress). The observed discrepancy can be
interpreted on the basis of both currently available
strain gradient theories.

5. Summary and conclusions

The stress distribution developing during torsional
deformation was studied by performing microhardness
measurements on the cross section of the deformed
samples. Work hardening was observed in the axis
(r=0) of the torsionally deformed cylindrical samples,
which contradicts conventional local plasticity accord-
ing to which the plastic deformation and consequently
the work hardening at r=0 should be zero. The axial
strengthening increases approximately linearly with the
torsional angle, i. e. with the surface torsional strain.

Investigating samples of 20, 50 and 75 mm average
grain sizes the work hardening at r=0 was observed to
increase with grain size, the dependence being linear
within the experimental accuracy and within the range
of grain sizes investigated. These experimental observa-
tions, cannot be explained in the framework of the
conventional constitutive description where stress is a
unique function of strain. It was pointed out that to
describe the experimental results nonlocal effects should
be introduced in the constitutive equation. To do this
the strain gradient formalism of both Aifantis [8–11]
and Fleck et al. [12] can be applied. The experimental
results support an initially linear S(ē) constitutive rela-
tion. Taking into account this linear constitutive rela-
tion for torsional deformation, in the vicinity of the
axis the gradient formalism of Fleck et al. [12] gives the
same result as the theory of Aifantis et al. [8–11].

Since the region where nonlocal effects are significant
is of the order of 100 mm, these effects do not alter the
stress distribution far from the axis, where the Nadai-
method gives correct results for the flow stress. In the
vicinity of the axis, however, or in samples the diameter
of which is comparable to the grain size [12] nonlocal
effects should be taken into account, which can be
achieved by applying strain gradient formalisms.
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Fig. 5. The hardening in the axis vs grain size in the region of
0.02–0.1 mm at a fixed torsional strain of g=3.
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