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ABSTRACT

The current paper explores experimentally and numerically obtained mechanical responses of the
Nakazima-type sheet forming for the magnesium alloys ZE10 and AZ31 at elevated temperature (200 °C).
The results from the experiments revealed sufficient ductility allowing sheet forming processes at the
prescribed test temperature. The material's anisotropy recorded in previous experiments was confirmed.
Differences in the mechanical response between the two materials in terms of strain paths during the
forming experiments were quantified. The corresponding numerical responses were obtained employing
a suitable constitutive model taking into account the characteristic anisotropy in deformation. In
addition, for predicting limit conditions of the forming process, the localization criterion by Marciniak
and Kuczynski was adopted. The constitutive model together with the localization criterion was
implemented in a finite element framework based on a fully implicit time integration scheme. The
reasonably good agreement between the responses of the model and the respective experiments

Localization criterion

indicated the predictive capabilities of the implemented model for the considered magnesium alloys.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The utilization of magnesium sheets for the application as
components and structures describes one step to pave the way for
metallic light-weight applications. Sheets are known as a funda-
mental base material for forming procedures and are thus required
to exploit the potential of magnesium alloys used for light-weight
applications. However, drawbacks for using magnesium sheets are
multifold, dealing with the need to perform forming operations at
elevated temperatures, the anisotropy of mechanical properties
or the limited ductility of formed parts. For the assessment of
magnesium sheets and their performance, typically results of
uniaxial mechanical tests, such as strength properties, ductility,
normal anisotropy (r-value) and strain hardening behavior are
used. However, forming involves many procedures with a variety
of strain paths, e.g. stretch forming or deep drawing to name two
of them with distinctly different contribution of material flow
from the sheets' thickness or in the sheet plane. Thus, tensile
testing does not suffice for evaluating forming operations.

A comprehensive way to assess the formability of sheets
accounting for these different aspects is based on experiments
prescribing different strain paths and limiting major strains

* Corresponding author. Tel.: +49 4152872543; fax: +49 41528742543.
E-mail address: dirk.steglich@hzg.de (D. Steglich).

0921-5093/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.msea.2013.07.088

determined in dependence of the minor strains [26,31,15-17,13].
A (usually hemispherical) punch is applied on a work-piece until
strain localization or fracture is observed in the sheet. During this
process, the work-piece is clamped in place by dies. The results of
such formability tests are commonly represented by the forming
limit diagram (FLD), as proposed by [25]. From these tests a
forming limit curve (FLC) results which represents strains of
limiting uniform deformation as a function of the (linear) strain
path. Limit strains are the boundary between safe and failed zones,
where the region above the forming-limit strain curve is the
failure zone. This measure of formability can then be applied in
the design of forming procedures.

Alternatively, there is a need for accurate predictive simulation
techniques for metal forming based on finite element (FE) ana-
lyses, which represent the current state-of-the-art in virtual
prototyping, cf. [1]. For realistic finite element predictions, it is
vital to use accurate plasticity and localization models. As the
quality of the prediction strongly depends on the constitutive
model used, its selection and its calibration become a key issue.
Over the years, several authors have proposed a number of such
models describing the yielding behavior in terms of macroscopic
yield functions for various alloys, e.g. [18,20,3,24,7]. Cazacu and
Barlat introduced a yield function (CaBa2004) as a modification of
the Drucker model [11], accounting for the material anisotropy as
well as for the stress-differential effect observed in textured
magnesium alloys [8]. This plasticity model has been successfully
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applied to predict the deformation of magnesium alloys [30] and is
therefore employed in the following.

The application of the aforementioned model requires in
addition a criterion for the determination of limiting conditions.
Several theoretical approaches are proposed: Methods which
evaluate the initiation of a localized strain band based on the
plastic instability in a homogeneous sheet, cf. [36,19], and methods
which establish localization from a plastic instability of a hetero-
geneous sheet, with the assumption of a preexisting inhomogeneity
in the sheet, cf. [28,29,21]. Damage models are also proposed to
predict the forming limits [10,9], but their use is numerically costly
due to additional internal variables to be included in the modeling
and thus they are rarely used in practice. For a comprehensive
presentation of the numerical methods the reader is referred to
[6,1,27]. In this work, a nonlinear approach proposed in the work of
Marciniak and Kuczynski [28] (M-K model) is employed. These
authors showed that the presence of an imperfection in the sheet
can lead to unstable deformation in the weaker region and to
subsequent localized necking and failure. Although the M-K model
is one of the early imperfection theories, its concept can still be
regarded as useful due to its flexibility and simplicity. Recent
contributions considering the M-K model deal, e.g. with texture
and slip system hardening effects on the FLD [32], strain paths
changes and different combinations of yield criteria and hardening
rules [2] and comparison between the M-K model and an alter-
native localization criterion [5].

In an attempt to determine the formability of the two magne-
sium sheet alloys ZE10 and AZ31 at elevated temperature, form-
ability tests were conducted. The respective results are reported in
Section 4. Numerical predictions are presented in Section 4.2 and
compared with the test results in terms of both, macroscopic
quantities and local strain paths. The application of an advanced
plasticity model in conjunction with a localization criterion
allowed a deeper insight into the interaction of field quantities
and the impact of model parameter calibration, which is discussed
in Section 5.

2. Materials and methods
2.1. Material under investigation

Formability tests reported in the following were conducted for
two different magnesium alloy sheets (sheet thickness 1.3 mm),
namely ZE10 (Mg-1Zn-Ce based mischmetal) and AZ31 (Mg-3Al-
1Zn-Mn) in a heat treated condition (O-temper). The choice of
these alloys is motivated by the differences in their mechanical
behavior and formability, described in earlier works, see [4,34,37].
ZE10 shows improved ductility at room temperature compared to
AZ31 which is associated with an effect of the included rare earth
elements to weaken the crystallographic texture, resulting in
higher work hardening and increased ductility.

Table 1

Mechanical responses obtained from tensile tests: yield stress (YS), ultimate tensile
stresses (UTS) together with uniform (Us) and failure (Ts) strains measured for ZE10
and AZ31 at 200 °C and nominal strain rate of 0.02 s

Mat. Ori. YS (MPa) UTS (MPa) Us (%) Ts (%)

ZE10 RD 86 112 171 50.7
45° 78 104 19.5 73.7
TD 80 105 19.3 64.4

AZ31 RD 80 119 121 53.8
45° 81 118 109 53.7
TD 86 122 10.3 52.5

The mechanical characterization of these materials under
uniaxial tensile loading conditions has been detailed previously,
cf. [30]. A summary of the resulting responses is exemplarily
presented in Table 1 in terms of the in-plane yielding behavior and
ductility and in Fig. 1 in terms of r-values, the normal anisotropy,
as a function of accumulated plastic strain. The differences in the
yield stresses between the different specimen orientation and
r-values reveal the materials anisotropy. Contrary to the common
assumption, the computed r-values also show a strain depen-
dence, which is pronounced in case of AZ31. A positive strain rate
effect on the yield strength is recorded while the opposite effect
was observed on the ductility. Moreover, the strain rate influence
on the material's anisotropy is small. The reasonably large level of
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Fig. 1. r-Values measured for ZE10 (a) and AZ31 (b) at 200 °C at a strain rate of
0.02 s7! [30]; the shaded section indicates localized deformation.
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work-piece
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Fig. 2. Forming limit test setup (a) and work-piece geometries proposed by Hasek
[14] (b). Measures in millimeters.

deformation for both alloys implies the suitability of the test
temperature for a sheet forming process.

2.2. Nakazima-type sheet forming test

The Nakazima-type forming limit tests were conducted based
on the ISO 12004 standard using a universal sheet metal testing
machine (ERICHSEN® 145-60). The dimensions of the tool geo-
metry are given in Fig. 2a. The tests constitute seven circular work-
pieces with an outer diameter of 200 mm and recesses of different
radii, namely 0, 40, 50, 57.5, 65, 72.5 and 80 mm [14], see Fig. 2b. It
is worth to mention that the recesses on the work-pieces are all
made perpendicular to the rolling direction. The tests cover the
negative as well as the positive domain of the FLD, i.e. negative
and positive minor principal strains. In addition, the strain
responses obtained from the different geometries during the
forming tests should follow linear paths in the FLD, cf. [1]. The
test temperature was maintained at 200 °C. This was established
by heating up the tools, i.e. the die, holder and punch, along with
the work-piece in a separate furnace prior to forming. As recom-
mended by the ISO standard, the punch speed was set to 1 mm/s.
The clamping force applied to hold the work-piece in place
without causing edge fracture was set to 300 kN. The lubrication
between the punch and the work-piece was established by the use
of PTFE foil placed between two layers of lubrication oil. For
checking the reproducibility of the test results, at least two work-
pieces per geometry were tested. In addition to the force response
and punch displacement, the history of the deformation field was
recorded using a digital camera connected to an optical strain
measuring system (ARAMIS®). The use of this optical system
requires special surface treatment of the test specimens, necessary
for establishing a stochastic pattern that can be analyzed with
image processing tools. The samples for Nakajima test were

—*— punch force

major strain /./ \

major strain
AN
punch force

T T T
punch displacement

Fig. 3. Principle for the determination of forming limit strains based on synchro-
nization of force and the strain responses.

cleaned with ethanol and sprayed with a white layer of a devel-
oper medium (Medium Nr. 3 - Entwickler of Fa. Helling GmbH)
which has shown to be resistant against heating in the tempera-
ture range of this study. A stochastic black pattern for measuring
with ARAMIS® was then carefully sprayed with a graphite spray
(Graphit 33 of Kontakt Chemie).

2.3. Methods for establishing the forming limits

For establishing the forming limits a method was elaborated
which makes use of the force-punch displacement signal of the
forming test and the strain response recorded from the sheet. The
force-displacement and strain-displacement signals were syn-
chronized. The maximum of the force-displacement curve was
assumed to indicate the onset of strain localization in the sheet,
referred to as softening point, see Fig. 3. Thus, the limiting strain
components can be derived from the recorded strain field corre-
sponding to the maximum punch force.

This method avoids fitting or usage of approximation functions
over the ISO 12004 standard. In addition to the forming limit
curve, a failure curve was established through a visual inspection
of the deformation history. This failure curve indicates the strain
levels at the onset of failure defined by the initiation of macro
cracks. Taking advantage of the continuous deformation field
measurement from the ARAMIS® system, it was possible to obtain
strain paths for each work-piece employed in the forming limit
tests. These strain paths were established by computing the major
and minor in-plane principal strain for selected points in the
neighborhood of a crack located at the center of the work-pieces.

2.4. Finite element model

The finite element (FE) modeling of the forming process aimed
at matching the numerically obtained strain history to the one
extracted from the experiments. Thus, the FE model followed
directly from the experimental setup. The model was composed of
three rigid tools (die, holder and punch) together with the work-
piece, see Fig. 2a. According to Fig. 2b, the work-piece adopted
seven different geometries covering strain states of the complete
forming limit diagram. The tools and the work-pieces were assembled
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in a 3D modeling space. The work-piece was discretized with 4-noded
linear shell elements with reduced integration. Numerical studies
focusing on the punch force response and the strain localization
pattern of the work-piece considering a 3D discretization revealed that
the modeling error while using shell elements is small. In order to
further reduce the computational cost, an orthogonal symmetry was
assumed. In practice, the tools undergo negligible deformation and are
therefore represented by rigid bodies. Isothermal conditions were
assumed within the simulations.

The interaction between the tools and the work-piece is an
important aspect in the forming process. The simulations per-
formed in this work adopted the so-called hard contact. This
method ensures the most accurate prediction of the contact while
challenging the convergence behavior of the simulation. Instead of
prescribing displacement boundary conditions to the work-piece,
a normal force of 300 kN was exerted by the flat region of the die
onto the work-piece representing the holder force. The tangential
constraint was applied by introducing a Coulomb-type friction.
The interaction between the punch and the work-piece was also
governed by friction and a pressure exerted by the motion of the
punch. The amount of friction used in the simulations was
assessed by monitoring the punch force record and the point of
strain localization in comparison with the experiments. While an
increase of the friction coefficient leads to a generally higher
punch force for all geometries, the point of strain localization
moves away from the pole of the tool. As a matter of fact, the
amount of friction is very small as a consequence of the lubrication
described earlier. From these observations, the friction coefficient
was found to be close to zero (¢~ 0) for this interaction pair. All
simulations reported in the following were conducted using the
implicit solver of the commercial code ABAQUS®. The underlying
constitutive model, which will be briefly described next, was
implemented as a user-defined subroutine (UMAT).

3. Constitutive model and localization criterion
3.1. Plastic deformation

Ayield function suitable for describing the plastic deformation
of magnesium alloys should capture the stress differential effect
and the anisotropy of the material. A function based on tensor
transforms complying with such requirements was presented
in a series of papers by Cazacu and co-workers, cf. [8]. This
function was also adopted in the present paper. The model was
re-formulated in terms of Mandel stresses automatically fulfilling
the principle of material frame indifference. Furthermore, it was
rewritten in tensor notation. Functions were introduced for the
model coefficients [12,33], allowing to account for distortional
hardening (distortion of the yield function). The numerical proce-
dure considered in this work adopts a constitutive model pre-
sented in [30]. For the sake of clearness the formulation is given in
the Appendix.

The feature of the model to predict a variation of the strain
ratio with increasing deformation directly evidences the distor-
tional character of the calculated deformation. The change of the
direction of the plastic strain increment requires a change in
the yield surface shape. This is modulated by a term referring to
the shape change. Strain hardening in the current model consists
of two parts: The distortional part expressed by transformation
tensors H; depending on the accumulated plastic strain a (see
Egs. (A.(17) and A.6)) and an isotropic part depending on the
accumulated plastic stain a and the current strain rate & (see
Egs. (A.(16) and A.9)). The isotropic part naturally does not depend
on the loading direction. In contrast, the distortional part allows

Table 2
Anisotropy parameters of the plasticity model.

Hy Ha

A B C A B C
ZE10
C —4.5 2.7 0 1.0 -59 6.5
C —41 —-6.5 0.1 1.2 2.2 3.2
C3 -35 -31 8.8 5.8 0.0 31
Cy 41 19 104 -54 3.4 3.9
Cs 1 0 0 0 0 0
Cs 1 0 0 0 0 0
AZ31
C 1.7 -19 0.3 21 -0.8 4.4
(&) 1.6 25 0.0 -15 0.6 0.8
C3 —-3.2 —-24 3.1 0.5 2.5 1.0
Cy 1.6 1.7 2.8 -09 —-1.2 33
Cs 1 0 0 0 0 0
[ 1 0 0 0 0 0

Table 3

Hardening parameters of the plasticity model.

Mat. Ao (MPa) 0 7o (MPa) p(]s) n()
ZE10 59.212 ~8.752 87.385 2.384E-2 0.0454
AZ31 42.069 —21.147 52.140 2185E—4 0.0841

for a strain-dependent change of the yield surface's shape.
A dependency on the strain rate in this part is not included, as
experimental results indicate that material anisotropy is not
significantly affected by the strain rate. Details on the determina-
tion of the model parameters are given in [30]. Tables 2 and 3
summarize the model parameters for both materials under inves-
tigation, ZE10 and AZ31.

3.2. Marciniak and Kuczynski localization criterion

For predicting limit strains of sheet forming processes, Marciniak
and Kuczynski introduced a localization criterion, the so-called
M-K-criterion, cf. [28]. This method assumes the existence of an
infinite long band of inhomogeneity in an otherwise homogeneous
work-piece. In the original work, the inhomogeneity band is
oriented along the minor principal deformation direction of the
work-piece. Localization is assumed to occur once the ratio of the
strains in the inhomogeneous to that in the homogeneous region
exceeds a prescribed critical value. The resulting limit strains are
presented in the so-called Forming Limit Diagram (FLD), cf. [25]. The
original M-K approach span only the positive domain of the FLD,
that is, only positive minor principal strains were considered. This
model was later improved by assuming an arbitrary orientation of
the inhomogeneity, see [21-23]. Such improvement allowed the
prediction of the limit strains for both the negative and the positive
domains of the FLD.

In this work, a further improved version of the M-K-criterion is
elaborated and subsequently applied. In contrast to most of the
previous models, no explicit assumption concerning the strain
field within the homogeneous and the inhomogeneous region is
made, i.e. fully three-dimensional deformation states are consis-
tently covered and three-dimensional constitutive models can be
directly employed. Plane stress conditions characterizing the stress
state within sheets are iteratively enforced.

Like the original M-K-approach, the inhomogeneity band is
introduced in terms of a reduced thickness t of the work-piece. The
orientation of the band with respect to the reference configuration is
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Fig. 4. Schematic representation of M-K model, cf. [28,22,23].

represented by the normal vector N, see Fig. 4. Without loss of
generality, a time-invariant cartesian coordinate system (e;, e, €3)
whose orthogonal base vectors e; and e, span the domain of the
undeformed sheet (reference configuration) is chosen. Consequently,
N belongs to the e;—e,—plane and is uniquely defined by the angle &
in Fig. 4. For the sake of simplicity, quantities characterizing the band
of inhomogeneity are represented in the following by the superscript
0P, while those characterizing the homogeneous region are repre-
sented by the superscript ()°. Accordingly, the deformation gradient in
the band is denoted as F” and that corresponding to the homogeneous
region is denoted as F“.

In line with the standard MK-approach, localization is assumed
to occur, once the thickness of the band relative to that of the
surrounding region reaches a certain critical minimum value.
Within the most general fully three-dimensional setting, the
relative thickness can be written as

b
b IF” . esl th

VTR el 1 @

where t§ and t} are the initial thicknesses, while t* and t” are those
belonging the deformed configuration. A spatially constant defor-
mation gradient (strain) within both regions has been assumed in
Eq. (1).

The relation between the homogeneous and the inhomoge-
neous regions is established in the M-K-approach through condi-
tions of geometrical compatibility and equilibrium. Concerning
the latter, equilibrium at the interface under the assumption of
constant stresses in thickness direction in both domains requires

t3[P* - N] = ty[P" - N]. @)

Here, P is the first Piola-Kirchhoff stress tensor (engineering
stresses). Clearly, Eq. (2) can be equivalently written in terms of
Cauchy stresses (true stresses). While the equilibrium condition
(2) is standard, the classical compatibility condition is too restric-
tive for the M-Kapproach. This will be explained next.

The classical Hadamard compatibility condition at the interface
reads

[[F]::Fb—Fa:a(X)N. (3)

In this equation, a< R? is an arbitrary vector. Thus, only three
effective components of the deformation gradients in the band
and the homogeneous region are different. Considering a uniaxial
stress state in e; —direction for a fully isotropic constitutive model
(the deformation gradient shows then a diagonal structure), Eq. (3)
implies Fi; =F5. As a result Eq. (1) leads to y =t}/t% = const
and localization cannot occur. Hence, the modified compatibility
condition

[[F];:Fb_l-‘":a ® N+ AF33e; @ e3 4)

is considered. The other components of the deformation gradient
associated with the thickness direction, Fy3, F»3, F31 and Fs,, do not
need to be taken into account. Due to the orthogonal material

symmetry resulting from the rolling process and due to plane
stress conditions, they automatically vanish, cf. [27].

By inserting the relaxed compatibility condition (4) into the
equilibrium condition (2), the residual

R(a, AFs3)=t3[P® - N]—t5[P" - N] (5)

can be introduced. It is obvious that R=0 cannot be solved
uniquely, since it is a set of three nonlinear equations depending
on four unknowns. The missing additional condition is that
enforcing a plane stress state also in the band, i.e.

P33 =0. (6)
a
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Fig. 5. Punch force-displacement responses observed in experiments (symbols)
and of the forming limit simulations (lines): ZE10 (a) and AZ31 (b).
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Finally, it is important to note that the system of Egs. (5) and (6)
depends also on the orientation of the initial imperfection, i.e. on
N =N(0). The most critical orientation is that leading to the
strongest thickness reduction of the band. As a consequence, the
algorithm linked to ABAQUS® via the user subroutine UMAT reads

b
minimize : y(6) =§—a (7
subjectto: R=0and P};=0. ®)

Within the implementation, the minimization (7) is done by
varying the angle 0 starting from 0° in steps of 1°. Localization is
considered to occur when

V> Yerit 9

Here, y.;. =10 is employed, cf. [1]. However, the choice of this
value is rather arbitrary, cf. [22,27].

4. Nakazima-type forming test results
4.1. Experimental results at 200 °C

The mechanical responses obtained from the forming limit
tests are presented here in terms of punch force-displacement
curves, strain paths, as well as limit and failure strain curves. The
punch force-displacement curves in Fig. 5 demonstrate the effects
of the work-piece geometries on the force response and the extent
of formability. Experimental results are indicated by symbols. The
general observation for both ZE10 and AZ31 is that a decrease in
radius of the recess increases the punch force response. This is a
direct result of the larger cross-section and an increased constraint
associated with a sharpening of the work-pieces recesses from
geometries | to VII, see Fig. 2b. Furthermore, the larger punch
displacement achieved in the case of ZE10 compared to that of
AZ31 associated with a higher load level indicates its improved
formability. Note that up to a punch displacement of 25 mm AZ31
revealed a slightly higher load level than ZE10. The further
increase in force in the case of ZE10 can be attributed to its
improved ductility and associated hardening characteristics evi-
denced during tensile testing [30].

Strain paths obtained from the optical system are shown in
Fig. 6. In order to avoid overloaded graphs, only those strain paths
resulting from geometries I, IIl, V and VII are considered in the
following. The strain history at the pole of each specimen basically
follows linear paths. The small deviation at the early stage of
forming results from stretching of the sheet over the hemisphe-
rical punch. Thus, the limit strains at the center of the work-pieces
can be approximated by offsetting the measured limit strains on
the surface of the work-pieces by the positive strains. Differences
in the principal strain paths between the two materials were also
observed during the forming of the fully circular work-piece
(geometry VII), for which an equi-biaxial loading condition is
generally assumed. While for geometry VII the strain path appears
as a straight line in case of ZE10, the major strain is evolving more
rapidly than the minor strain in case of AZ31. It is even more
significant that the work-piece with the largest recess, designed to
be close to an uniaxial loading state, resulted in a strain ratio
different from the theoretical value of —2. This observation
reaffirmed the anisotropic behavior of the materials considered.

Driven by the relatively early localization observed during the
uniaxial tensile test, the reference limit strain data were here
taken from the equivalent forming test responses, specifically from
geometry I. Hence, the FLC in Fig. 7 indicates a level of limit strain
as high as 0.5 in the uniaxial-like state (geometry I), but approxi-
mately 0.3 for AZ31 and 0.4 for ZE10 limit strain in the equi-biaxial
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Fig. 6. Comparison of selected experimentally measured (symbols) and numeri-
cally predicted (lines) strain paths for ZE10 (a) and AZ31 (b).

state (geometry VII) of deformation. This reveals a level of deforma-
tion generally sufficient for a practical forming application. Moreover
it is observed that the difference between the failure strain and the
forming limit strain is larger in the negative domain of the FLD than
in the positive domain. This is consistent with the large amount of
nonuniform deformation reported during the uniaxial tensile test
presented in [30]. However, the strain at localization of the forming
test (approximately 0.5) and the strain at the start of the diffuse
necking of the uniaxial tensile test, approximately 0.2 (in the case
of ZE10) and 0.13 (in the case of AZ31), differ from each other
significantly.

4.2. Simulations
4.2.1. Punch force-displacement and strain paths

The forming process was reproduced by means of a finite
element simulation described in Section 2.4 using the calibrated
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Fig. 7. Measured forming limits and failure curves: ZE10 (a) and AZ31 (b).

constitutive model outlined in Section 3. The numerically pre-
dicted force responses for the configurations I, IIl, V and VII are
included in Fig. 5. For both considered materials the predicted
force responses show a reasonably good agreement with the
experiments. However, the forces for higher deformation levels
are either underestimated in the cases of geometries I and III, or
slightly overestimated in the cases of geometries V and VII. This
effect is more pronounced for AZ31 than for ZE10. While the
overestimation in the case of geometries VII and V can be
explained by the absence of a damage criterion in the modeling,
the overestimation of the force for the low stress triaxiality
geometries I and II may result from the calibration of the plastic
potential. At this point, it is assumed that the r-values shown
in Fig. 1 may have contributed to this underestimation. Thus,

improvement of the responses could possibly be achieved by a
more careful assessment of the r-value evolution at a high level of
deformation. This will be considered hereinafter.

Together with the in-plane principal strains measured at the
middle of the upper surface of the work-piece, the corresponding
computed strain paths are analyzed. As it is shown in Fig. 6, all
work-piece geometries resulted in linear strain paths for higher
deformation levels. Consistent with the experimental response, an
offset in the minor principal strain into the positive domain of the
forming limit diagram is also observed. This is particularly pro-
nounced for geometries which exhibit negative minor strain
values, such as geometries I and III. Such effects can be explained
by the stretching of the work-piece. According to Fig. 6, the strain
paths are captured better for geometries I and VII of AZ31 than for
geometries IIl and V. The significant difference in the strain paths
between experiments and simulations for geometries Il and V for
AZ31 is evident.
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Fig. 8. Comparison of experimentally measured and numerically predicted limit
strains for ZE10 (a) and AZ31 (b).
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4.2.2. Forming limits

Finally, the numerical prediction of the forming limit strains is
presented by employing the M-K localization criterion, see Section 3.2.
Such predictions require the definition of a geometrical imperfec-
tion in the homogeneous work-piece, as results strongly depend
on this assumption. The magnitude of this imperfection is often
calibrated based on a simple uniaxial tensile test. The required
imperfection was obtained here by performing simulations with
different imperfection magnitudes. The responses obtained from
these simulations are presented in Fig. 8. It can be seen that the
higher the initial imperfection, the earlier the localization occurs.
The range of imperfection values required strongly depends on the
material considered. In the case of ZE10, the required imperfection
for the M-K model is about 0.1%. In the case of AZ31 with the
distortional hardening model, imperfection values between 4.0%
and 5.0% lead to limit strains within the range of the reference
values observed in the respective experiments, see Fig. 8. These
values are surprisingly high. Usually, the values for initial imper-
fections leading to realistic predictions of the forming behavior
range are taken from the interval [0%, 1%] [32]. This fact, together
with apparent mismatch of the strain path for geometries Il and V,
calls to reconcile the plasticity model used in the simulations of
the forming behavior of AZ31. In particular, an investigation
regarding the effect of r-value is presented below.

4.2.3. Re-calibration of constitutive model for AZ31 assuming
constant r-values

As described above, the constitutive law allows for a descrip-
tion of distortional hardening of the material. The respective
model parameters were calibrated based on the evolution of
r-values taken from tensile tests along three independent orienta-
tions, i.e. 0°, 45° and 90° with respect to the rolling direction of the
sheet, see Fig. 1. While the measurement of the plastic strain ratio
is straightforward as long as the deformation is uniform, it
becomes challenging once necking occurs. In the experiments
reported, the r-values were continuously determined over the
whole range of deformation using optical strain field measure-
ments as a local quantity (compare the shaded region in Fig. 1).
Although still a valid number, its significance is diminished in the
necking regime compared to the previous (uniform) stage. In order
to investigate the influence of this particular input on material
characterization, simulations based on the re-calibrated constitu-
tive model assuming constant r-values taken at strain levels of
0.03, 0.08 and 0.12 were performed for AZ31. All three values are in
the range of uniform deformation. Depending on the orientation of
the respective specimen during tensile testing, this leads to
r-values between 0.85 and 1.45 (strain of 0.03), 1.2 and 1.8 (strain
of 0.08) and 1.4 and 2.2 (strain of 0.12). Based on this input, the
complete identification procedure was repeated, assuming con-
stant parameters in the transformation tensors H; compare
Table 1b. The distortional character of hardening is suppressed in
this approach, while the orthotropic anisotropy of the material is
still considered.

The force-displacement curves for geometry I in Fig. 9a reveal
that a change in the r-value has a relatively small effect on the
force response. The simulation with a variable r-value results only
in a slightly higher force response. In contrast to that the figure
shows considerable differences in the force responses for geome-
try VIL In particular, the S-shape of the force-displacement curve
is captured by the simulations assuming a constant r-value, but
not with a variable r-value. The latter tends to delay strain
localization in the sheet, while the simulations based on a constant
r-value predict the experimentally obtained force response more
realistically. Note that the same effect can be observed in geometry [
which, however, appears to be less pronounced. A high r-value
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Fig. 9. Effect of the parameter identification procedure on the punch force
predictions (a) and strain paths (b) for two geometries of the Nakazima test
of AZ31.

indirectly influences the biaxial stress—strain curve, because the
resulting yield surfaces become elongated in direction of the equi-
biaxial (plane) stress state leading to an overestimation of the
(biaxial) stress. Due to the fact that experimental data related to
equi-biaxial stress states are not included in the calibration process
of the plasticity model, the resulting yield surfaces are determined
by the (uniaxial) stress signal in 0°, 45° and 90° as well as the yield
surface's slope while intersecting the x- and y-axes of the plane
stress representation. Consequently, the prediction of the biaxial
stress strain curve becomes vague. From this it can be concluded
that the extrapolation used for the determination of r-values is not
optimal.

The strain path of geometry VII is hence less affected by the
choice of the r-value, see Fig. 9b. As expected, geometry I reveals
significantly different strain paths depending on the plasticity
model: a shift to the left of the FLD domain with an increasing
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Fig. 10. Punch force-displacement responses observed in experiments and forming
limit simulations obtained for AZ31 assuming a constant r-value of 0.12.

r-value is reported. In the case of stress states close to uniaxial
tension the r-value has a big influence. The previously discussed
offset between experimentally and numerically obtained strain
paths, see Fig. 6, can thereby be explained. Therefore, in the
absence of accurate r-value measures at large deformation, the
model calibrated based on the constant r-value taken at a strain
level of 0.12 was now employed for the simulation of the forming
limit test for AZ31. The resulting punch force-displacement
responses, presented in Fig. 10, generally show a reduced punch
force compared to the distortional hardening model, see Fig. 5b.
The peak values for geometries I and III are still underestimated.
Nevertheless, the forming limits depicted in Fig. 10b are more
realistic than the previously obtained ones. For geometries II
and V, the strain path exactly follows the experimentally obtained
ones, and an assumed imperfection of 1% in the M-K model

reveals the forming limit. The strain path of geometry I is still not
captured to its full extent, but an improvement compared to
Fig. 7b could be achieved for AZ31.

5. Discussion and conclusions

The large number of process parameters involved in sheet
forming generally makes experimental investigations of the pro-
cess very expensive. Therefore, numerical analyses are efficient
and promising substitutes. For that purpose, a constitutive model
was adopted from [30], calibrated and implemented within the
finite element program ABAQUS®™ using an implicit integration
scheme. This physically sound constitutive model was employed
along with a localization criterion for the corresponding numerical
analyses.

The mechanical responses of the forming experiments revealed
sufficient formability at the test temperature (200 °C). This was
illustrated by a 0.5 limit major strain in the uniaxial state and a
0.3 limit strain in the equi-biaxial state of deformation. Moreover,
and consistent with the large amount of nonuniform deformation
recorded during the uniaxial tensile test, a large difference between
the failure strain and the forming limit strain was observed in the
domain of negative minor strain of the FLD.

Although the uniaxial tensile tests used for the calibration of
the material model and the Nakazima tests were carried out at the
same temperature, significant differences in the case of geometry I
in the resulting limit strains and fracture strains were recorded.
Such differences require some attention because the experimental
information of uniaxial testing determines the simulated mechan-
ical response. In the case of uniaxial tensile testing, homogeneous
stresses and strains in the test section at the beginning of the test
allow a direct estimation of the material characteristics. At the
onset of strain localization, this condition is not valid any more
and the test results are usually not considered after this point.
Unlike this, the nature of the Nakazima tests is that stresses and
strains vary on the tested sample with respect to the position, and
are thus not homogeneous. These local strains are therefore not
representative for the whole sample. These local strains are
significantly higher compared to the tensile response, which is a
consequence of a changing (increasing) measurement volume and
varying contact conditions during the Nakazima tests. Other effects
may also contribute, but the variation in the local strain rate during
the Nakazima tests of one order of magnitude (1072 s~1—10"! s~1)
as well as in the temperature (typically 10 °C) cannot exclusively
explain the deviation between the simulated and experimental
results shown in this work.

The calibrated model was employed in the numerical analyses
of sheet forming processes. One of the objectives in these
numerical analyses was the investigation of parameters affecting
the outcome of the Nakazima-type forming test such as friction
and material anisotropy. On one hand, it was demonstrated that an
increasing friction between the punch and the work-piece offsets
the position of localization from the center of the work-piece (not
shown here). The added constraint due to the increase in friction
was also accommodated by an increase in the force response. On
the other hand, the change in the normal anisotropy was shown to
result in a shift in the strain path mainly for work-piece geome-
tries having negative minor strain. By way of contrast, the work-
piece geometries having positive minor strain accommodate the
change in the normal anisotropy only through their force
response. For the sake of comparison, an isotropic von Mises yield
function was additionally used in the simulations. The respective
numerical results clearly showed that the adopted distortional
hardening model leads to significantly better predictions.
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Another reason why distortional hardening should be consid-
ered is evidenced in Fig. 6b: As already mentioned, the strain path
significantly changes in the case of AZ31 for geometry VII. As this
happens prior to localization, this effect may be explained by a
change of plastic flow direction, resulting from a variation of the
yield surface tangent at that position.

The Marciniak and Kuczynski localization criterion, which
analyzes plastic instability triggered by geometrical imperfection,
was used to predict the forming limits. Apart from the ongoing
discussion whether this criterion is suited for positive and nega-
tive minor strains, two major influences have been confirmed
here. The criterion is sensitive to the underlying plastic potential
and the hardening law used. The latter is commonly based on an
extrapolation of uniaxial tensile tests beyond the onset of diffuse
necking and thus not directly measured. Although the planar
anisotropy evidenced by the test has been captured very well by
the distortional hardening model used here, the extrapolation of
the r-value to strains beyond the localization strain remains
arguable. The implicitly assumed increase of the r-value causes
an overprediction of the localization. This can successfully be
circumvented by fitting the plastic potential to constant r-values,
and it remains the choice of the user as to which strain level (and
thus r-value) will be considered.

It has been shown by Stutz et al. [34] that microstructure
changes occur due to dynamic recrystallization during testing.
Thus, differences in the fractions of recrystallized microstructure
have been observed for varied strain paths. Qualitatively compar-
able results have also been presented for uniaxial tensile tests of
the same material [35]. However, the onset of recrystallization
may be different for tensile tests compared to Nakazima tests,
resulting in varying effects on the flow stress of the mechanical
tests. As the material model used in this work is triggered by the
tensile tests, the flow behavior in the Nakazima tests resulting
from dynamic recrystallization is naturally not captured by the
model. Hence, it remains a challenge to calibrate model para-
meters and to use the respective model for predictions - it will,
however, be possible once the physical mechanisms in verification
simulations and predictions are identical.

Appendix A. A yield function describing magnesium alloys

Considering perfect plasticity (no hardening), the yield function
CaBa2004 reads in tensor notation

f=¢pE-73 with &) =3P +J3E).

Here and henceforth, 7, is the (for now constant) yield stress and
J5(Z) and J§(X) are the modified second and third invariants of the
Mandel stresses X. They are defined as

(A1)

55=1 tr(fl ‘f1> and ]§=%tr(f2~f2~f2), (A.2)
where stress tensors %; and X; follow from the linear transfor-
mations

f] =MH : Y and fz =Hy: > (A3)

Here, H; are fourth-order tensors. According to Egs. (A.1)-(A.3) by
setting H, =0 and H; = 1-11 ® 1, a von Mises-type yield function
is obtained.

Although the presented constitutive model is conceptually
relatively simple, the number of the respective material para-
meters is very large. To be more precise, with 7,eR and
H; e R3*3%3%3 163 material parameters have to be calibrated. That
is clearly numerically and physically not practical. However, it
turns out that this large number of material parameters can be

significantly reduced by enforcing some physical constraints.
These constraints are:

® Major symmetry: Similar to the fourth-order elasticity tensor,
H; and H, are assumed to show major symmetry. That is
equivalent to the existence of a potential defining H; and H as
its Hessian.

® Minor symmetry: Since the Mandel stresses are symmetric
(isotropic elastic Neo-Hookean model is used), H; and H, show
minor symmetry, i.e.

Hitmn = Higmn = Hinm = Himnw for Hq and Hy. (A-4)

® Pressure invariance: Since the yield function should be inde-
pendent with respect to hydrostatic stress states

Hykmn =0 for Hq and Ho
holds.
® Orthotropic material symmetry: Magnesium sheets have an

orthotropic mechanical response. In this case, the number of
material parameters can be further reduced.

(A.5)

Combining the aforementioned physical constraints, the num-
ber of material parameters defining H; can be reduced to six. Thus,
using Voigt notation (matrix notation) indicated by calligraphic
letters (H;), H; can be written as six by six matrices of the type

(c2+¢3)/3 —c3/3 —C2/3 0 0 O
—c3/3 (c3+c¢1)/3 —c1/3 0 0 O
—C2/3 —c1/3 (ci1+c)/3 0 0 O
Hi= 0 0 0 o 0 ol =12
0 0 0 0 ¢cs O
0 0 0 0 0 ¢
(A.6)

where ¢; with j=1...6 are the reduced six components of the
transformation tensors H; and H,. For plane stress conditions,
which is a reasonable assumption in most sheet forming pro-
cesses, the six components of the transformation tensor can be
further reduced to four. As a result, the definition of the yield
function (A.1) requires the identification of nine parameters in this
case (dim Hy +dim Hy +dim 79 =9).

A.1. The evolution of the yield function - hardening models

Suitable hardening models are required to capture the stress—
strain responses of the magnesium alloys ZE10 and AZ31. Most
frequently, isotropic and kinematic hardening models are applied
for that purpose. However, such models do not account for the
distortion of the yield function which can also be observed for
magnesium. This distortion is due to texture evolution. For
incorporating this effect as well, the two transformation tensors
H; are considered as evolving internal variables. With this assump-
tion, a yield function of the type

f=¢dE Hy, W)~ [r(@)

is considered in the present paper. Here, ¢ is defined by Eq. (A.1)y,
T, is the initial yield stress and 7 is a stress-like internal variable
associated with isotropic hardening.

The internal variables Q = {z; H1; H,} follow implicitly from the
definition of the Helmholtz energy ¥. Assuming that isotropic and
the two distortional hardening mechanisms are uncoupled yields
the energy ¥"':

PP = W@+ Pl (ED + Pl (E2)

with [E; being dual internal variables conjugate to H; and «

(A7)

(A.8)
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denoting the dual to 7. Concerning isotropic hardening, an expo-
nential saturation is assumed. More precisely,

(@) = —0a¥ = Ato[1—expla)] = PP

1S0
= / Ta da
a=0

where a is the strain-like internal variable conjugate to 7, Az, and
¢ denote two material parameters defining the saturation value
and the saturation rate of 7. The isotropic hardening model is
completed by considering an associative evolution equation of the
type

a=0.f. (A.10)

For the sake of simplicity, quadratic functions are assumed to
describe distortional hardening. Accordingly,

(A.9)

Whii(E) = SHIE = (A11)

where H; denotes the hardening modulus. In line with isotropic
hardening, evolution equations for the internal variables H; or F;
are required. However, due to the tensorial nature of H; and F; the
development of such evolution equations is not straightforward,
since they have to fulfill certain physical principles. While the
proposed framework automatically fulfills the principle of material
frame indifference, that is not the case for the second law of
thermodynamics. In order to derive a physically sound model
which also fulfills the second law of thermodynamics, the reduced
dissipation inequality is considered. After a straightforward calcu-
lation it reads

D=X:L"t7a+H; :: E1+Hy :: 5 >0. (A.12)

Here, the elastic response X =2Ce-dce¥ has already been
inserted. Since the function ¢—73 is positively homogeneous of
degree three with respect to (X, 7), Eq. (A.12) can be rewritten as

D=3j.‘[g+ﬂ‘ﬂ1 o E]-I—Hz o sz >0. (A.13)

The first term is evidently greater than zero. A sufficient condition
for guaranteeing the dissipation inequality is consequently given
by

Daistis=H; = E,’ >0. (A.14)

Now assuming that distortional hardening is only driven by the
internal variable, Eq. (A.14) simplifies to
JE; .

Daisti = Hj == a—ala >0.

The viscoplastic rate effect observed within the experiments is
captured by replacing the rate-independent isotropic hardening
variable 7 (see Eq. (A.7)) in the yield function by its rate-
dependent counterpart

B

Here, f# and n are model parameters. According to this choice, a
rate effect is only accounted for the isotropic hardening part. The
shape of the yield function (distortional hardening) is thus rate-
independent.

(A.15)

(A.16)

The assumption F; = F;(@) is a good approximation for radial
loading paths and thus complies with the experimental setup.
Since H; = —H;[;, H; = H;(@) represents an equivalent assumption.
Within the material parameter calibration exponential functions

cj(a) :Aj-i—Bj(l—eXp(—Cja)) (A17)

were adopted where A;, B; and G with j={1...6} are the model
parameters (for each H;). In line with Eq. (A.6), the coefficients ¢; in
Eq. (A.17) denote the components defining the tensors Hj.
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