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The substructure of near-alpha Ti-Al-Sn-Zr-Mo-Si alloys containing up to 12.5 at% aluminum was
studied by transmission electron microscopy (TEM). It was shown that long-range order sections are
formed at aging temperatures up to 500 °C in alloys, high in aluminum, and the ordered phase is
formed by the nucleation and growth mechanism at 700 °C aging temperatures. Causes of changing the
phase transformation mechanism have been discussed, and the relationship between the structure and
properties of alloys, depending on modes of heat treatment has been analyzed. Also the influence of
aluminides and silicides precipitation on the mechanical alloy properties after aging was examined.
It was shown that the aluminide formation led to a slight hardening and a significant viscosity decrease.
The silicide particles formation reduced the heat resistance properties, due to the depletion of the solid

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The structural investigation of heat-resistant titanium alloys is
usually focused on the morphology and behavior of the main
phases—a and . However, in these alloys, both different silicide
particles can be released [1,2], and formation of TisAl particles in o
phase can happen [3,4]. All these precipitates can significantly have
an effect on the properties of the alloys. For example, the selection of
(Ti,Zr)sSi3 silicides on the interface o/B boundaries decreases the
technological plasticity of the alloys [1], and the formation of
(Ti,Zr)eSi3 particles in the body of a-phase decreases the character-
istics of heat resistance [2]. The technological plasticity reduction is
due to the stress raisers appearance at the interfaces, and heat
resistance decrease is due to the depletion of solid solution by silicon
and zirconium. In cases when the ordering processes occur in the
o-phase and TisAl particles (o-phase) are formed, heat resistance
characteristics increase, but plastic properties degrade dramati-
cally [3]. Mutual influence of a-phase and silicides [2,5] determines
the complexity of formed properties. However, the formation of
ox-phase may occur not as isolated particles, the formation of which
is carried out by the mechanism of nucleation and growth, but may
result from the second kind of phase transformation as a consequence
of the ordering processes. In this case, the complex properties of heat-
resistant titanium alloys on the basis of a-solid solution will be
largely determined by the mechanism leading to the formation
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of (ot+aip)-structure. In this context, the aim of this paper is to study
the mechanisms of o,-phase domains formation depending on the
temperature -time parameters of heat treatment.

2. Materials and experimental procedure

Experimental Ti-Al-Sn-Zr-Mo-Si alloys, containing up to
12.5 at% aluminum were used. Aluminum alloy equivalent ranged
from 8 to 10.5, with the B-stability conditional factor of 0.7. The
deformation of 20 kg ingots was performed using standard technol-
ogy, which involves a combination of forging in B-region and then
rolling in B-region at Br+ 100 °C. Final deformation of the alloys was
carried out by rolling in a two-phase region at temperatures B
—(20-30) °C. The heat treatment of alloy was performed using an
electro-contact technique up to t 1150 °C with 30s time delay
followed by air cooling. Aging was carried out at t 500-700 °C with
soaking for 1-100 h in a laboratory muffle furnace.

The structure was studied in samples cut perpendicular to the
rolling direction. The main investigation methods were diffraction
and scanning electron microscopy, performed on JEM-2100C and
JSM6490 with energy analyzers, respectively. X-ray diffraction
analysis was performed using a diffractometer “Bruker D8
Advance” with the Cu Ko radiation.

3. Results and discussion

Electron microprobe analysis of alloys following electric heating
showed that such rapid heating and short exposure time led to
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insufficient time for homogenization of the composition in formed 3
grains and material with heterogeneous composition is subjected to
cooling. For example, in the alloy containing 12.5 at% aluminum, the
difference in the concentrations of aluminum reached 2 at% in
different regions, formed during o plates cooling. However, a
lamellar structure was formed in all cases.

During the TEM observation, heterogeneous lamellar (ot+f3)-
structure was also observed.

The plates of o and 3 phases with a low density of defects and
with perfect interfaces within them are visible in separate micro-
volumes (Fig. 1a, b), while in others, there is an increased density
of imperfections in the crystal structure (Fig. 1c); o,-phase
reflections are visible on the electron images; however, individual
particles were not detected (Fig. 1d). These reflections can be seen
more brightly for alloys having a higher aluminum equivalent.

In the alloy having a low content of aluminum (aluminum
equivalent of 8), the reflections from a,-phase are not observed.

The results of mechanical tests of alloys after electric heating and
aging at various temperatures are presented in Table 1. As the
presented results show, in all alloys, aging at 500 °C is not accom-
panied by noticeable hardening and decrease in viscosity and plastic
properties. At higher aging temperatures, the hardening of alloys is
also quite low, and it is manifested mainly at 600 °C and at 100 h
delay. As compared to the initial state, the strength increases by
about 50-100 MPa; depending on the alloy composition, plasticity is
slightly reduced, while the viscosity decreases significantly (and
after aging at 700 °C fracture energy reduced almost to zero).

A lamellar (o+ f3)-structure is also observed in the aged state
in all alloys. In addition, during aging there is a precipitation of
silicide particles, which are mainly located at the interface o/
boundaries on the part of f-phase and have the structural formula
of (Ti,Zr)sSis with hexagonal lattice (Fig. 2).

In the literature, these silicides are denoted as S;. Sometimes
silicide particles are located inside separate o phase globules. Then
their structural formula corresponds to (TiZr)eSis, due to the
increased zirconium content in these particles. These silicides are
denoted as S,. Allocation of silicides is observed in the alloys aged at
600-700 °C. The amount of silicide particles in the alloys aged for
100 h both at 600, and at 700 °C is approximately the same. As shown
in [2,6], the selection of silicide particles on the interface boundaries
(S1) causes a decrease in the work required for crack extension.

In alloys, where the aluminum equivalent is more than 9,
reflections from the o,-phase are always clearly observed. Their
intensity increases with the aging time but poorly depends on aging
temperature (500-700 °C). In the structure of alloys with aluminum
equivalent of 8.0-9.2, aged at t 500 °C, there are crystal structure
defects, similar to the dislocation (Fig. 3a), and in an alloy with
aluminum equivalent of 10.5, antiphase boundaries are visible in
separate micro-volumes (Fig. 3b) which clearly indicate the pro-
cesses of ordering. In our opinion, the defects observed in Fig. 3 are
also fragments of antiphase boundaries. Microstructure data indi-
cate improvements of ordered structure, the formation of which is
the result of a homogeneous transformation, the particles being
formed without the nucleation and growth mechanism.

Fig. 1. Bright-field TEM images of quenched alloys and (d) the corresponding SAD pattern generated from the area (c).

Table 1
Mechanical properties of alloys.

Heat treatment [Al]eq

Tensile strength o, /yield

Tensile strain J/contraction Toughness KCU/fracture

strength ¢, (MPa) V(%) energy KCT (MJ/m?)

8 9 10.5 8 9 10 8 9 10
1150 °C -30 s -air 924/835 940/859 994/882 13.4/31.4 17.2/31.5 15.6/28.6 0.59/0.51 0.67/0.41 0.49/0.22
1150 °C -30 s. —air+500 °C -100 h-air 952/875 935/857 1020/941 17.1/27.8 18.6/30.1 13.2/20.0 0.56/0.35 0.62/0.3 0.38/0.1
1150 °C —30s —air+600 °C —10 h —air 950/875 947/878 1036/961 14.8/29.7 17.3/28.6 11.3/23.5 0.54/0.34 0.55/0.27 0.32/0.07
1150°C —30s —air+600 °C —100 h—air 968/907 980/909 1066/995 15.5/26.1 10.2/17.1 5.1/8.8 0.43/0.21 0.47/0.18 0.22/0.06
1150 °C —30 s—air+700 °C —100 h—air 925/883 939/866 1065/949 12.5/21.2 14.2/27.8 7.1/10.9 0.40/0.23 0.41/0.20 0.14/0.05
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Fig. 3. TEM bright-field images: microstructures of alloys after aging (a), (b) at 500 °C, (c) at 600 °C and (d) dark-field image of alloys microstructure after aging at 700 °C.

The formation of such structures does not cause any significant
reduction of alloys viscosity.

In the case of aging at 600 °C we failed to observe the antiphase
boundaries, but in separate micro-volumes pair the dislocation is
observed (Fig. 3c). Reflections from the a-phase are also observed for
all investigated alloys, but their intensity is lower than that after
aging at 500 °C. Separate dispersed particles were not found.

For the alloys aged at 700 °C, the precipitation of separate a/,-
phase particles was clearly observed. These particles were evenly
distributed throughout the body of the grain (Fig. 3d). They were
formed by the mechanism of nucleation and growth, i.e. in a
heterogeneous way. As a result of the particles precipitation there
is a disastrous decrease in the toughness characteristics.

Thus, electron-microscopic study of the alloys structure has
shown that as a result of micro-diffraction analysis the o, phase is
present in the alloys after all the treatments studied. However,
the relative intensity of the reflections from the oy-phase
increases in the alloys in the aged condition compared with
alloys air cooled from the B-region, while the intensity of the
reflections in the alloys with the aluminum equivalent of more
than 9.0 after aging, both after 500°C and after 700 °C, is
practically identical. At the same time, isolated o,-phase particles
are observed in the alloys only after aging at 700 °C, and after
aging at 500 °C there are areas where antiphase boundaries are
visible. The number of these areas increases with the aging time
and a higher aluminum equivalent, i.e. ordering proceeding by the
mechanism of homogeneous transformations takes place.

The results are consistent with the results of [7], where the
mechanism of ordering in binary titanium-aluminum alloys is
theoretically considered. Based on the analysis of the change in
free energy, depending on the degree of long-range order and
temperature, the authors showed that there were two tempera-
tures T and Ts, which characterized the possible mechanisms of
transformation. The temperature Ty corresponds to the critical
temperature and characterizes the equality of free energies of
phases o and a,. But unlike the usual representations of Tp, when
the curves of the free energies intersect, in this case there is a
“detachment” from the curve of free energy of a disordered alloy,
characterizing the ordered phase. Temperature Ts corresponds to
the point of inflection in the dependence of the free energy on the
degree of order and, therefore, defines the region of instability of
the ordered phase. The calculations showed that the temperature
Ts < Ty. For example, Fig. 4 shows the effect of concentration on
the position of the temperatures Ts and Ty [7].

Fig. 4 shows that when the alloy is in region 1, then for the
nucleation of o,-phase, the composition fluctuations are required,
since T> Ty and the ordered phase has higher energy. At T<Ts
(Region III), any order degree fluctuation is energetically favorable
and the formation of a,-phase should occur by homogeneous
mechanism, which is representative for second kind phase transi-
tions. In the (Tp-Ts) interval (Region II) two mechanisms of
transformation can occur.

Using the results of [7], temperatures T, and Ts were estimated
for the experimental alloys. Alloys were considered as binary
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Fig. 4. Influence of aluminum concentration on To and Ts temperatures [7].
To—the critical temperature of the o- and o,-phases free energies equality and
Ts—the temperature of loss of solid solution absolute stability.

titanium-aluminum systems. The temperature Ty is in the 550-620
°C range depending on the composition, and the temperature Ts in
620-680 °C, which agrees with the experimental data presented
above. Consequently, the results of [7] confirm that at 500 °C the
formation of oy structure is the result of ordering by the homo-
geneous transformation, and at 700 °C—the process occurs by the
mechanism of nucleation and growth with the formation of dis-
persed particles of a-phase. When the aging temperature is 600 °C,
both mechanisms of transformation are possible.

4. Conclusions

1. It was found that at low aging temperatures (500 °C) the
formation of a,-phase occurs due to separate micro-volumes
ordering by the homogeneous mechanism due to the inhomo-
geneity of the initial state with the characteristic formation of
antiphase boundaries. The increase of the aging temperature
to 700 °C helps to activate the diffusion processes and con-
tributes to the formation of o,-phase by the mechanism of
nucleation and growth.

2. It was confirmed that the structural type S; silicides were
formed at the interface o/ boundaries on the part of § phase,
and silicides such as S, and S3 were formed in the o phase.

3. The influences of the aluminides and silicides precipitation on
alloys mechanical properties during aging were investigated.
It was shown that their formation leads to a slight hardening
and a significant decrease in viscosity properties. Plastic
characteristics are only moderately changed.
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