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A continuum dislocation model of formation of grains whose boundaries have a non-vanishing thickness
is proposed. For a single crystal deforming in simple shear the lamellar structure of grains with thin
layers containing dislocations as the geometrically necessary boundaries turn out to be energetically
preferable. The thickness and the energy of this type of grain boundary are computed as functions of the
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1. Introduction

One of the main guiding principles in seeking an appropriate
theory of formation of grains in metals and alloys during and after
cold working processes producing severe plastic deformations has
first been proposed by Hansen and Kuhlmann-Wilsdorf [1] in the
form of the so-called LEDS-hypothesis: the dislocation structures
in the final state of deformation minimize the energy of crystals
(see also [2-4]). The main reason why the formation of grains
becomes energetically preferable at severe plastic deformations
lies in the non-convexity of the energy of crystal in this range [5-
8]. Within the conventional crystal plasticity considered in [5-7]
the minimization of such non-convex energy leads immediately to
the infinitely fine lamellar structure with grain boundaries as
sharp interfaces. However, as mentioned by Kuhlmann-Wilsdorf
and Hansen [4], typical grain boundaries, termed geometrically
necessary boundaries, have as a rule a non-vanishing thickness
and may contain a large number of dislocations and thus contra-
dict the conventional crystal plasticity. The question then arises in
this connection: what kind of continuum model may resolve this
conflict? The present paper proposes a dislocation model of for-
mation of grains within the continuum dislocation theory [9,10]
which predicts the existence of such geometrically necessary
boundaries. By including the energy of dislocation network con-
taining the gradient of the plastic slip into the energy functional
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we regularize the non-convex energy minimization problem. It
should be mentioned that the idea of adding the gradient term as
the interfacial energy into the non-convex energy functional was
proposed already in the 50s by Cahn and Hilliard [11] (see also the
review of the recent phase-field approach in [12]). However, to the
best of our knowledge, such gradient term having the clear
meaning of the energy of dislocation network regularizing the
non-convex energy in the context of crystal plasticity is proposed
in this paper for the first time. We illustrate the application of the
theory on the example of single crystal having one slip system and
deforming in simple shear. We show that the geometrically ne-
cessary boundaries, in which the transition from one grain to the
next occurs smoothly, have a small but finite thickness and contain
a large number of dislocations. Although the resultant Burgers
vector of dislocations in such grain boundary is non-zero, they do
not produce long range stresses, and the lamellar structure of
grains is in fact the low energy dislocations structure. We also
compute the thickness of geometrically necessary boundaries and
their energies as functions of the misorientation angles. Based on
these results we estimate also the number of grains in terms of the
specimen sizes. We show that the proposed theory agrees well
with the experimental observations during ECAP experiment [13].

2. Continuum theory of formation of grains

We consider for simplicity an initially dislocation-free single
crystal having only one active slip system. In this case the


www.elsevier.com/locate/msea
http://dx.doi.org/10.1016/j.msea.2015.07.027
http://dx.doi.org/10.1016/j.msea.2015.07.027
http://dx.doi.org/10.1016/j.msea.2015.07.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.msea.2015.07.027&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.msea.2015.07.027&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.msea.2015.07.027&domain=pdf
mailto:chau.le@rub.de
http://dx.doi.org/10.1016/j.msea.2015.07.027
http://dx.doi.org/10.1016/j.msea.2015.07.027

M. Koster, K.C. Le / Materials Science & Engineering A 643 (2015) 12-16 13

kinematic quantities characterizing its observable deformations
are the placement field y(x) and the plastic slip field g(x). The
incompatible plastic deformation is given by

FPxX) =1+ g(X)s ® m,

with the pair of constant and mutually orthogonal unit lattice vectors
s and m denoting the slip direction and the normal to the slip planes
respectively. Using the multiplicative resolution of the total compa-
tible deformation gradient F = dy/ox into the plastic and elastic parts
[10], we find the incompatible elastic deformation in the form

Fe=FF-1= Y (1 _ s @m).

X I-ps@m
The tensor of dislocation density measuring the incompatibility of
F? reads (see [5,10])

T=-FPxV=s® (V8 xm).

If, in addition, all dislocation lines are straight lines parallel to the
unit vector 1, then the scalar dislocation density (or the number of
excess dislocations per unit area perpendicular to 1) can be de-
termined as
T 1
=— = I(Vgxm)l,
b b (Vp )
with b being the magnitude of Burgers vector.
For crystals having as a rule small elastic strains we propose the free
energy per unit volume of the undeformed configuration in the form

2

w (Ee, p) = L rEep + 4 tr(EC-E®) + lﬂkp—.
2 20 p? 1

s 1

Here E¢ = %(FET-FE —I) corresponds to the elastic strain tensor, 4
and p are the Lamé constants, k a material constant, and ps can be
interpreted as the saturated dislocation density. The first two
terms in (1) represent energy of crystal due to the macroscopic
elastic deformation. The last term describes energy of the disloca-
tion network for moderate dislocation densities. Note that for
small or extremely large dislocation densities close to the satu-
rated density the logarithmic energy proposed in [14] is more
appropriate. We deform this crystal occupying in the initial
configuration some region V of three-dimensional space by
placing it in a displacement-controlled device such that, at the
boundary oV, the conditions

yx) =Fx, px =0 forxeoV @)

are specified, with F being a given overall deformation. If the de-
formation process is isothermal, no body force acts on this crystal,
and the resistance to the dislocation motion can be neglected, then
the following variational principle turns out to be valid: the true
placement vector y(x) and the true plastic slip #(x) in the final
equilibrium state of deformation minimize the energy functional

Iy®), poo1 = [ w(E, p, vp) dx )
among all continuously differentiable fields y(x) and g (x) satisfying
constraints (2), where w(F, g, V) = v (E¢, p). We will see that, due
to the non-convexity of the free energy density (1) and the
presence of Vg in the energy functional via the energy of the
dislocation network, the formation of grains with regular grain
boundaries having a finite thickness is energetically preferable.

3. Energy minimizer in plane strain simple shear

Consider now the special case of plane strain simple shear of
the specimen in the form of a cuboid of height H, width L, and
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Fig. 1. Condensed energy e(y) and the dimensionless shear stress e'(y) for
@ =—45°

depth D such that y; = x3, while y,(x), y,(X) and (x) depend only
on two cartesian coordinates x; and X, and satisfy at the side
boundary the conditions

Yi=X1+71X2, Y =X, p=0,

with y being the overall shear strain. We assume that
sT = (cos ¢, sin ¢, 0), m! = ( — sin ¢, cos ¢, 0) and all dislocation
lines are parallel to the xs-axis, so p = IVg-sl/b. If the deformations
are uniform such that

F=F=1+ye1®e;, FP=I1+ps®m,

with y and f# being the constants, then the energy (3) normalized
by VI and minimized with respect to £ turns out to be non-
convex for ¢ € (- #/2, 0) as shown in Fig. 1 (see [8]).

In view of this non-convexity, we proposed in [8] the energy
minimizing sequence consisting of layers having the uniform
states A and B according to

ya=0, yg=-—2cote,

Ba=0, pg=2cote,

such that the volume fraction of the layer B is given by
s = — y/(2 cot ¢). It has been shown in [8] that such candidates for
the minimizer satisfy the equations of equilibrium in each layer as
well as the outer boundary conditions except at the side bound-
aries x1 = 0, L of the specimen. Besides, the energy of such lamellar
structure is equal to zero which is the minimal possible value.
However, if the boundaries between layers are sharp interfaces,
these candidates do not belong to the set of admissible fields of
our original variational problem (2) and (3) due to the jumps of F
and f on those interfaces, so they fail to be the energy minimizers
of (2) and (3).

To correct the behavior of those candidates for minimizers we
assume now that the layers corresponding to the states A and B
are separated by a thin layer of small thickness h in which the
placement and plastic slip change smoothly from state A to state B
(see Fig. 2). Since this boundary layer is thin (h is much smaller
than sH, (1 — s)H, and the sizes of the specimen), it is reasonable to
assume that the displacement in the x,-direction is zero, while the
displacement in the x;-direction and the plastic slip depend only
on x:

N=X1+uR2), X=X pf=pX).
With this Ansatz it is easy to show that the determination of
functions u(xy) and B (x2) as well as the unknown boundary layer

reduces to minimizing the following functional:
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Fig. 2. Enhanced grain boundary model.

Ib[u(xz). ﬁ(Xz)] = fhlz [f(u,z. ﬂ) + g(ﬁ,z)]dxz @

among functions u(x2), #(x2) and unknown lengths [y, > such that
uz(l) =yp=—2cotg,
pl2) = pg =2 cot g. 5)

u(h)=y4=0,
p)=p,=0,

Although the analytical solution can be found in the most general
case with 4 # 0, we choose 1=0 for the shortness of presentation.
In this special case f(u>, #) and g(8,) are given by

2
f[u,z, /}] = %{[ﬂz sin4 g + (/}u,z sin2 ¢ + f sin g cos ¢ + 1)2 - 1]

2
. 2 .
+[(ﬁu,2 sin ¢ cos ¢ + ff cos2 ¢ — u,z) + (fsing cosp — 1)2 - l]

+2[(—/iu,2 sing cos ¢ — f cos2 g + u,z)(/iu,z sin2 ¢ + f sin ¢ cos ¢ + 1)

2 ¢in2
. . 2 1, A5sincg
2 - = —k—=
+8 sin q)(] /ismq;cow)] } g[ﬂ,z] 2k 02,2 .

Functional (4) can be reduced to the functional depending only on
p. Indeed, the variation of (4) with respect to u(xz) leads to the
equation and boundary conditions that imply

a
ouy

so the stresses inside the boundary layer are zero. Since it was
already established in [8] that the stresses in layers A and B are
also zero, the whole specimen is stress-free. Solving the above
equation with respect to u, we express it in terms of 3:

B (P sin 2¢ — 2 cos 2¢)
us|pl= - .
p?(cos2p — 1) + 2 sin 2 — 2

Substituting this back into the functional (4) we reduce the latter
to the functional depending only on g(x2) and I, l:

2
Ib[ﬁ(Xz)] -/ [p (8) + g(ﬁ,z)]dxz. ©
where
pB) =fwz(B), p) = p>sin® ¢ (B sin ¢ — 2 cos p)?

3p4 — 843 sin 29 + 44 sin 4¢ — 4(p? + 2)/32 os 2¢

S[ﬂz(l — cos 2go) +p% - 2psin2¢p + 2]2

(5% — 4)p? cos 4p + 12> — 16f sin 29 + 16

8[42(1 — cos29) + 2 - 2 sin2¢ + 2]2

Varying functional (6) with respect to g(x2), 1, I, and taking into
account the constraints (5) we obtain the Euler equation

T
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Fig. 3. Phase portrait and the separatrix connecting the states A and B. (For in-
terpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

d . Ry —
d—ng(ﬁ,z) pp =0

@)
which is subjected to the boundary conditions
) =0, p()=2cotey,
pol)=0, p,y)=0. ®)

The last two boundary conditions mean that the dislocation
density must vanish at the boundaries x, = Iy and x; = . Eq. (7)
possesses the first integral:

gy —pP) =c. 9

Using the boundary conditions (8) as well as the identities
P(Ba) = p(Bp) = 0, we find that c=0. The phase portrait computed
for b=25x%x10"%m, p, =10%/m? k=10° and ¢ =-=z/4 is
shown in Fig. 3. We see that the phase curve connecting the states
A and B and satisfying the boundary conditions (8) is the
separatrix in the lower half of the phase plane (3, §,) represented
by the red curve with an arrow denoting the direction of change of
J as x, changes from [; to L. It is also easy to show that the phase
curve connecting B and A is the separatrix in the upper half of the
phase plane, so the dislocations in the boundary layer between B
and A have another sign than those connecting A and B.

The first integral (9) with c=0 enables one to find # implicitly
in terms of x, according to

_ Jkisin gl /ﬂ dt
cot ¢

X2 = .
V2 bp; Jp(®)
The plot of f versus the dimensionless coordinate

¢ = 2x2bp,[(Jk1 sin gl) for the above chosen parameters is shown
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Fig. 4. Plot of s versus the dimensionless coordinate ¢ = ﬁxszslﬁl sin gl.

in Fig. 4. It is seen that, for large I¢l, the plastic slip remains in the
very close neighborhood of the state A with f=0 or the state B
with g =2 coty, while the strong change of f leading to the
transition from A to B occurs in a finite interval of {.

It turns out that if we compute the thickness of the boundary
layer according to the formula

bl _l:ﬂlsingolfo dt
2T T by, ety o0

then this thickness becomes infinite, so the result contradicts our
assumption about the smallness of h as compared with sH,
(1 — s)H, and with the sizes of the specimen. The resolution of this
conflict should be found in the discreteness of crystals that may
accommodate only a large but finite natural number of disloca-
tions. Since the dislocation density is p =18, sin ¢l/b, the total
number of dislocations in the boundary layer equals

2 L
N:th p 2 = Bl sin gl

As the smallest number of dislocation is 1, the smallest quantum of
plastic slip leading to the recognizable change of N must be
fy = b/(Ll sin gl). Now, if we take b/L as a small positive number and
compute the thickness of the boundary layer according to

hel - = Jkisin gl /—ﬂq de
V2bp,  Jacotospg D)’ (10)

then the thickness becomes finite (except for ¢ = —z/2). Since the
pre-factor, the integrand, and both limits of integration depend on
the orientation of slip system ¢, the thickness is also a function of
@. Fig. 5 shows the dependence of the thickness of geometrically
necessary boundary (measured in nanometer) on the misorienta-
tion angle 0 = 2¢ + = (measured in degrees, see [8]) for the above
chosen parameters and b/L = 10~ (the result turns out to be not
strongly sensitive to the choice of b/L). It is seen that the thickness
changes from 50 to 6 nm for misorientation angles larger than 10°.
For misorientation angles close to zero formula (10) is not well-
defined. In this case the dislocation model of small-angle tilt
boundary considered in [15] is more appropriate.

The minimum of the functional (6) can easily be computed
based on the analytical solution found above. Using the first in-
tegral we obtain

Lk _ 2Jkisingl [0
Iy = 2/1; p(B) dxy = W/Z‘cotq) Jp(p) dp. an

Since this minimum value has the meaning of the energy (nor-
malized by ) per unit area of the geometrically necessary
boundary, the energy density of such boundary must be y; = ulp.
Similar to (10), the pre-factor, the integrand, and the lower limit of
integration in (11) depend on the orientation of slip system ¢, so
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Fig. 5. Thickness of geometrically necessary boundary h (in nanometer) versus the
misorientation angle 6 = 2¢ + z (in degrees).
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7.
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Fig. 6. Energy density of geometrically necessary boundary y¢ (in N/m) versus the
misorientation angle 6 = 2¢ + z (in degrees).

¥c must also be a function of ¢. Fig. 6 shows the dependence of y¢
(measured in N/m) on the misorientation angle 8 = 2¢ + = (mea-
sured in degrees) for the above chosen parameters and y = 26 GPa
(for aluminum). In contrast to h, the energy density of geome-
trically necessary boundary is well-defined for all misorientation
angles. For small misorientation angles up to 50° the energy
density of the geometrically necessary boundary changes from
zero to approximately 1 N/m that agrees quite well with the value
0.625 N/m given in [16].

In [8] we gave the estimation of the number of grains based on
the following deliberations. The energy of the boundary layers
near the side boundaries required to satisfy the side boundary
conditions turns out to be of the order uHDe, where € is the
thickness of one pair of layers A and B. Taking into account the
energy of the geometrically necessary boundaries which is of the
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Fig. 7. Grain boundaries in Ni before processing and after four passes of ECAP [13].

order y;DLH[e, we can estimate &€ by minimizing these two con-
tributions to the energy yielding

e~ JrcLlp ~ JIL.

This relation exhibits clearly the size effect. To compare the results
obtained in this section with experiments we show in Fig. 7 the
formation of the lamellar structure in Ni after four passes through
a die in an equal channel angular pressing (ECAP) experiment (see,
e.g., [13]). It is seen that the grains become elongated and aligned
along the direction of shearing that agrees well with our devel-
oped theory.

4. Conclusion

We have shown in this paper that the presence of the gradient
of plastic slip in the energy of the dislocation network enables one
to regularize the non-convex energy minimization in the class of
smooth displacements and plastic slips. This leads to the formation
of grains with geometrically necessary boundaries having a finite
thickness. The generalization of our model to capture the motion
of geometrically necessary boundaries and the grain growth will
be addressed elsewhere.
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