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a b s t r a c t

In complex forming processes, sheet metal undergoes large plastic deformations involving significant
induced flow anisotropy resulting from the development of persistent oriented (planar) dislocation
structures. The aim of the present work is the formulation and identification of a phenomenological
model which accounts for the effect of the evolution of this oriented dislocation microstructure on the
anisotropic hardening behavior. The model accounts for changes in the size, center, and shape, of the
eywords:
aterial modeling

ross hardening
nduced flow anisotropy

etal forming
arameter identification

yield surface associated with isotropic, kinematic, and cross hardening, respectively. Identification of the
model for the ferritic sheet metal steel LH800 is carried out with the help of shear, reverse shear, and
tension–shear tests. The identified model has been validated using it to predict the stress–strain behavior
of the material along different tension–shear loading paths and comparison with analogous experimental
results. The results and in particular the comparison of theoretical predictions with experimental results
clearly demonstrate the need of including cross hardening effects in the modeling of sheet metals like

LH800.

. Introduction

The experimental and theoretical characterization of sheet
etal forming continues to present a number of challenges for the-

rist and experimentalist alike. Among the foremost issues in this
egard is a realistic model for the material behavior. Metal form-
ng processes generally involve large strain resulting in significant

icrostructural development and the development of different
ypes of hardening. The influence of a developing microstructure
n the hardening behavior in sheet metals has been the subject
f many investigations (e.g., [1–15]). The nature and strength of
his influence is strongly dependent on the type and complexity
f the loading paths under consideration. As discussed for exam-
le by Barlat et al. [9], in the case of monotonic loading, the grain
icrostructure (i.e., texture) influences strongly the dependence of

ardening on loading direction. In contrast, for loading paths with
hanges in direction, this behavior is dominated by the dislocation
icrostructure. Experimentally observed effects in this context
nclude hardening stagnation after load reversal, and cross harden-
ng after orthogonal loading. Experimental results exhibiting these
ffects exist for a number of different materials. Systematic studies
f interstitial free (IF), high-strength low alloyed (HSLA), dual-
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phase (DP) and transformation-induced plasticity (TRIP), steels, as
well as 5000 and 6000 series aluminum alloys, conducted by Bou-
vier et al. [11,13] found significant kinematic hardening, hardening
stagnation, as well as cross hardening, especially for IF steels. In
their investigations, the blank material was subjected to monotonic
shear, reverse shear, as well as orthogonal tension–shear, loading.
van Riel and van den Boogaard [16] have documented these effects
in IF ferritic steels with the help of monotonic tension, reverse
shear, and orthogonal tension–shear, tests, all under plane-strain
conditions.

Perhaps the most well-known micromechanically based
phenomenological model for anisotropic hardening on (non-
proportional) loading paths characterized by directional changes
is that of Teodosiu and Hu [1,2]. Besides accounting for isotropic
and kinematic hardening, their model accounts for cross harden-
ing via an evolving fourth-order tensor S influencing the effective
yield stress in a loading-direction-dependent fashion. In the cur-
rent back-rotated framework relevant to metals, the yield function
for this model takes the form

�Teo =
√

(M − X) · ATeo (M − X) − �Teo. (1)
Here, M represents the Mandel stress, X the back stress, ATeo the
Teodosiu flow anisotropy tensor, and �Teo the Teodosiu yield stress.
In particular, ATeo ≡ AHill is modeled by the constant [17] initial
flow anisotropy tensor AHill determined by grain microstructure
(i.e., texture). Further, �Teo ≡ �Y0 + r + f |S| is determined by (i) the

http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:muhammad.noman@tu-dortmund.de
dx.doi.org/10.1016/j.msea.2009.12.013
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nitial yield stress �Y0, (ii) the increase r in this stress due to standard
sotropic hardening, and (iii) the increase f |S| in this stress due
o cross hardening. f represents the fraction of dislocation walls
ontributing to isotropic hardening whose strength in this sense is
iven by the magnitude |S| := √S · S =

√
Sijkl Sijkl ofS. Since M andS

re decoupled in �Teo, note that the evolution ofSdoes not influence
he form of the yield surface as represented by the dependence
f �Teo on M. For more details on this class of models as well as
pplications, the reader is referred to [15,18].

An alternative class of models for cross and more generally dis-
ortional hardening can be based on the approach of Baltov and
awczuk [19]. In the current framework, this involves in particular
yield condition of the form

Bal =
√

(M − X) · ABal (M − X) − �Bal, (2)

ith �Bal ≡ �Y0 + r. Besides the additional dependence of �Teo on S,
hen, the basic difference between �Teo and �Bal lies in the fact that
Bal is not assumed constant. Its evolution is governed by a con-

titutive relation, and its initial value is given by AHill. A number
f models for this evolution have been proposed in the literature,
ncluding the current one. For example, Voyiadjis and Foroozesh
20] proposed an evolution relation for ABal based on three mate-
ial parameters which mediate an assumed coupling between its
rincipal directions and the effective stress M − X , resulting in
symmetric distortion of the yield surface. The model of Schick [21],
hich is based on the approach of Dafalias et al. [22], assumes mul-

iple kinematic hardening mechanisms and a dependence of the
volution of ABal on kinematic hardening in order to model yield
urface development during tension–torsion loading [23]. Evolu-
ion of the yield surface has also been modeled by Yeganeh [24] in a
igid-plastic framework as based on the Hencky logarithmic strain.
ore recently, the model of Feigenbaum and Dafalias [25] involves

n evolution relation forABal coupled to the magnitude of the effec-
ive stress and the projection of the direction of the effective stress
nto the back stress. This leads to an asymmetric distortion of the
ield surface with increasing curvature in the direction of distor-
ion in stress space. In Feigenbaum and Dafalias [26], a simplified
ersion of such a model is developed in which there is no coupling
o the evolution of the back stress. Development of these types
f models has been motivated by tension–torsion experiments on
luminum and steel tubes (e.g., Phillips et al. [27], Boucher and
ordebois [28], Ishikawa [23]). In Phillips et al. [27], Boucher and
ordebois [28], a distortion of the yield surface in the direction of
pplied stress was determined. This involved an increase in cur-
ature of the yield surface in this direction and a corresponding
ecrease in curvature in the opposite direction.

The purpose of the current work is to introduce and validate
new model for cross hardening and hardening stagnation dur-

ng orthogonal loading in the context of the approach of [19].
his is based on an evolution relation for ABal accounting for the
ffects of an evolving dislocation microstructure on the harden-
ng behavior. Like many of the models discussed above, the initial
alue of ABal is determined in the current model by the grain
icrostructure (i.e., texture). In contrast to these models, how-

ver, the current form of the evolution relation for ABal is directly
otivated by the evolution of the cell-wall dislocation microstruc-

ure (e.g., Nesterova et al. [29]) during loading-path changes and
ts effect on hardening. An analogous form was formulated for S
n the model of Wang et al. [15]. On the one hand, this results in
model which is simpler than either that of Teodosiu and Hu [2]

r Wang et al. [15] and contains fewer material parameters. On
he other hand, the current model is not capable of representing
ardening stagnation after reverse loading. Micromechanical sup-
ort for working with a model based on (2) rather than on (1),

.e., with a model in which cross hardening is associated with a
gineering A 527 (2010) 2515–2526

change in the shape of the yield surface, i.e., distortional harden-
ing, comes for example from the very interesting work of Peeters
et al. [8]. They worked with a polycrystal model based on fully
constraint Taylor-based homogenization which takes the evolu-
tion of the dislocation microstructure into account at the grain
level in an effective fashion. Using this approach, they were able
to simulate the cross effect in orthogonal tension–shear tests and
a corresponding change in shape of the yield surface. In particular,
the development of dislocation walls at the grain level during pro-
portional loading corresponds to the expansion of the yield surface
into directions orthogonal to the loading direction. On the other
hand, the development of localization bands and the breakdown
of existing dislocation structures after orthogonal change of direc-
tion leads to yield surface shrinkage in the new direction of loading.
Besides the stress–strain- and loading-path-based data which will
be presented in this work, that of Ishikawa [23] for yield surface
development in the stainless steel SUS304 during tension–torsion
exhibits (some of) these effects and in particular a change in shape
of the yield surface.

The current work begins in Section 2 with a formulation of the
current model in the framework of the multiplicative decomposi-
tion of the deformation gradient and the assumption of small elastic
strain relevant to metal inelasticity. In order to identify and vali-
date the model, tension–shear and cyclic shear tests on the ferritic
steel LH800 Tekkaya et al. [30] have been carried out. The experi-
mental setup and details of these tests together with the basic data
are presented in Section 3. The strategy developed for the model
identification together with the results of this identification are dis-
cussed in Section 4. The model is also validated in this section with
the help of additional test results for other strain paths not used in
the model identification. Lastly, in Section 5, the identified model
is used to investigate the evolution of the yield surface and that
of inelastic state with respect to loading-path history. Finally, the
work ends in Section 6 with a discussion and conclusions.

2. Model formulation

The phenomenological representation of evolving hardening
behavior in terms of changes in the size, center and shape of
the yield surface offers the means to characterize the behavior
of the steels of interest during complex, non-proportional loading
processes present in many technological processes (e.g., deep-
drawing). The challenge lies in the connection of such changes
in the yield surface geometry with the underlying microscopic
and physical mechanisms of grain and dislocation microstructural
development in polycrystalline metals. One basic expectation in
this regard is that the grain microstructure in sheet metals is deter-
mined almost solely by the rolling process. Forming processes like
cup drawing are expected to result in little or no change in this
microstructure. Consequently, during forming processes, yield sur-
face evolution is generally expected to be due almost solely to an
evolving dislocation microstructure at the grain- or grain-cluster
level. This is the focus of the current model.

The formulation of the current model is carried out in the
framework of the standard inelastic multiplicative decomposition
F = FEFP of the deformation gradient F (e.g., Simo and Hughes [31]).
Such a decomposition arises naturally, e.g., in the context of the
modeling of FP as a change of local reference configuration [32]. In
this context, one obtains in particular the result
RT
ELERE = RT

ELRE − UE LP U−1
E = RT

EṘE + U̇EU−1
E (3)

via the right polar decomposition FE = REUE of FE for the back-
rotated form of LE := ḞEF−1

E in terms of L := ḞF−1 and LP := ḞPF−1
P .

For the current case of polycrystalline metals and small elastic



and En

s

S
s

f
s
i
s
c
t
u
s
c
i
m
b
a
i
p
i

e
a

M

i
E
E
a

K

C
i

s
p
t
s
c
a
h
i
S
f

�

i
u

r

f
l
t
y
c
c
h
f

X

M. Noman et al. / Materials Science

train, we have

UE ≈ I + ln UE,

U̇E U−1
E ≈ ˙ln UE.

(4)

ubstituting these into (3), and taking the symmetric and skew-
ymmetric parts of the result, one obtains the evolution relations

˙ln UE = RT
EDRE − DP,

ṘE = WRE − REWP,
(5)

or ln UE and RE, respectively, in the incremental context. D :=
ym(L) is the continuum rate of deformation, DP := sym(LP) its
nelastic counterpart, W := skw(L) the continuum spin, and WP :=
kw(LP) the plastic spin. Restricting the current formulation to the
ase of sheet metal forming, it is reasonable to assume that the
exture in these materials achieved during rolling remains largely
nchanged during forming processes like tension, compression,
imple shear, cyclic simple shear, and combinations of these. In this
ase, WP is negligible, and the evolution of RE depends only on W ,
n which case it reduces to a purely kinematic quantity (i.e., the Jau-

ann rotation). In addition, focusing in this work on the material
ehavior of sheet metal during forming below the forming limit, we
ssume for simplicity that damage or any other process resulting in
nelastic volume changes are negligible. In this case, plastic incom-
ressibility det(FP) = 1 pertains, implying tr(DP) = 0 and D′

P = DP
n the incremental context.

Since the elastic range and elastic strain are small, any texture
ffects from rolling leading to an anisotropic elastic behavior are
ssumed negligible. In this case, the isotropic form

= � tr(EE) I + 2�E′
E (6)

s assumed for the Mandel stress M in terms of the elastic strain
E := ln UE, bulk modulus �, shear modulus �, and deviatoric part
′
E of EE. Lastly, again in the framework of small elastic strain, M
nd RE determine the Kirchhoff stress K via

= REMRT
E. (7)

onsequently, in contrast to K ′ = REM ′RT
E, tr(K) = tr(M) of K is

ndependent of RE.
In this framework, then, the material behavior of polycrystalline

heet metal during forming processes below the forming limit is
redominantly determined by a changing dislocation microstruc-
ure and attendant evolving anisotropic yield behavior. Besides a
hift of the yield surface and its proportional expansion as in the
ase of conventional combined hardening, the current model also
ccounts for an evolving yield surface shape and so distortional
ardening. As discussed in the introduction, this model is based

n particular on a yield function of the form (2) from Baltov and
awczuk [19]. In the current notation, this is written simply in the
orm

=
√

(M − X) · A (M − X) − �Y0 − r (8)

n terms of the initial yield stress �Y0. For the class of materials
nder consideration, the saturation (i.e., Voce) form

˙ = cr (sr − r) ˙̨ P (9)

or the evolution of r is appropriate, driven by that of the equiva-
ent inelastic deformation ˛P. Here, cr represents the rate, and sr

he value, for saturation associated with r. Since �Y0 is the initial
ield stress (i.e., for ˛P = 0), the initial value r0 of r is zero. In the
urrent rate-independent context, ˛P is determined as usual by the

onsistency condition. Analogous to isotropic hardening, kinematic
ardening is modeled via the saturation (i.e., Armstrong–Frederick)

orm

˙ = cx (sx NP − X) ˙̨ P (10)
gineering A 527 (2010) 2515–2526 2517

for the evolution of X depending on corresponding (constant) sat-
uration rate cx, (constant) saturation magnitude sx, as well as the
(variable) direction NP := DP/|DP| of the rate of inelastic deforma-
tion

DP = ˙̨ P∂M−X �, (11)

which is modeled here in associated form. The initial value of X is
assumed to be zero.

The constitutive model formulation is completed by an evolu-
tion relation forA in order to represent the effect of cross hardening
on the material behavior. The form of this relation introduced
in what follows is based on the idea that active or “dynamic”
dislocation microstructures oriented with respect to the current
loading direction (idealized in the model context by NP) persist
and become inactive or “latent” after a loading-path change and
strengthen existing obstacles to glide-system activation in the new
loading direction. In addition, both dynamic and latent dislocation
structures are assumed to saturate with increasing accumulated
inelastic deformation. These assumptions are built into the consti-
tutive relation

Ȧ = cd(sdNP ⊗ NP − Ad) ˙̨ P + cl{sl (Idev − NP ⊗ NP) − Al} ˙̨ P (12)

for the evolution of A. Here, Idev is the deviatoric part of the fourth-
order identity tensor, and

Ad := (NP · ANP) NP ⊗ NP,
Al := A − Ad,

(13)

represent the “dynamic” and “latent” parts of A, respectively. More
precisely, these are the projections of A parallel and orthogonal,
respectively, to the current (instantaneous) inelastic flow direction
NP. The first term in (12) is of the saturation type with respect to
Ad, with cd the rate of saturation, and sdNP ⊗ NP the saturation
value, respectively, of Ad. Likewise, cl is the saturation rate, and
sl (Idev − NP ⊗ NP) the saturation value, of Al . The initial value A0
of A is determined by any Hill initial flow orthotropy due to any
texture from rolling. In contrast to some of the models discussed
in the introduction, e.g., Teodosiu and Hu [2], Wang et al. [15] or
Dafalias et al. [22], Feigenbaum and Dafalias [25] note that there is
no direct coupling between kinematic and distortional hardening
in the current model. This is also the case in the recent model of
Feigenbaum and Dafalias [26], which focuses on the asymmetric
development of the yield surface rather than on the effect of cross
hardening as is done in the current work.

The current material model was implemented in the commer-
cial FE codes Abaqus and LS-Dyna via the user material interfaces
provided. Besides the two elasticity parameters �, � and the 6
parameters (e.g., in the sense of Hill: F, G, H, L, M, N) for the ini-
tial flow orthotropy, this model contains 8 hardening parameters
cr , sr , cx, sx, cd, sd, cl , sl to be identified using the tests to be described
next.

3. Material testing

The experimental work has been carried out on a biaxial testing
device capable of loading a sheet metal specimen in both simple
shear and in plane-strain tension. Using this device, one can carry
out single- or multi-stage loading programs consisting of mono-

tonic (e.g., forward simple-shear), reverse (e.g., forward-reverse
simple-shear), and/or orthogonal (e.g., tension–shear), changes of
loading direction. In particular, the latter can be carried out with or
without unloading of the specimen upon change of loading direc-
tion.
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Fig. 2. Scanning electron micrograph showing microstructure of LH800 (Experi-
ment IW Hannover).

Fig. 3. Tension test results for LH800 at strain rates of 10−1 s−1 (upper curve), 10−2

Consider first the monotonic plane-strain tension tests. As
stated above, these have been performed at different strain rates.
Fig. 3 displays the corresponding results.
ig. 1. Biaxial test setup. Geometry of the tension–shear specimen and the mea-
urement region of height b and width c. The checkered region indicates the actual
pecimen and the black area marks the actual deformation zone. The tension direc-
ion is direction 2 and the shear direction is direction 1.

.1. Test setup

The biaxial testing equipment had been developed at the Uni-
ersity of Twente. It consists of a regular uniaxial testing device
hich via an actuator is used to achieve plane-strain tension in the

ample. A subframe mounted between the cross bars accommo-
ates the actuator for simple shear deformation. The deformation

s applied to the sample as indicated in Fig. 1.
The ratio of the height (b) of the measurement region to the sam-

le thickness is chosen in order to minimize the chance of buckling
uring simple shear. In addition, to achieve homogeneous defor-
ation in the measurement area c/b is large as shown in Fig. 1. The

eformation is measured in an area within the deformation zone.
he notched boundary then constrains the specimen in the trans-
erse direction during tension or shear, resulting in plane-strain
onditions.

The deformation field is determined by optical measurement (in
procedure comparable to the commercially available ARAMIS sys-

em). To this end, the motion of an array of sixteen black silicon dots
ainted on the surface of the measurement area are tracked and
ecorded with a camera. The relative motion of these dots is used
o calculate the deformation gradient via a least-squares method.
uring a test, two sensors on the actuators record the force achieved

n shear and in tension. Using the known geometry of the specimen,
hese force measurements are used to calculate the Cauchy tensile
nd shear stress, T22 and T12, respectively. The plane-strain tension
nd simple shear tests represent the boundaries of the range of
tress states achievable in the specimen with the help of the biaxial
esting device (Fig. 1). By applying different combinations of simple
hear and plane-strain tension, different stress states on the yield
urface are achieved. The exact position of the yield state in prin-
ipal stress space, however, is unknown since the transverse stress
annot be measured. Further details of the experimental setup can
e found in van Riel and van den Boogaard [16].

.2. Test results
For the current work, tests performed on specimens of the
erritic steel LH800 include (i) monotonic plane-strain tension
t different strain-rates, (ii) reverse simple-shear for different
mounts of forward pre-shear, and (iii) orthogonal tension–shear
s−1 (middle curve), 10−3 s−1 (lowest curve). K22 represents the relevant component
of the Kirchhoff stress and F22 represents the relevant component of the deformation
gradient.

with and without unloading. This sheet steel is characterized by
an initial texture consisting of fine-grained ferrite, grain size of
approximately 8 �m in diameter, see Fig. 2 Tekkaya et al. [30].
The thickness of the sheet metal specimens used in all the tests
was 0.7 mm. All tests were preformed with the tension direction
oriented in the rolling direction.
Fig. 4. Reverse shear test results for LH800 for two different levels (i.e., 0.1 and 0.65)
of pre-shear. All stress results are shown in absolute value form.
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Fig. 7. Discontinuous and continuous orthogonal loading-path changes from ten-
sion to shear in LH800. Normal stress component K22 (symbols) and shear stress
component K12 (lines) as a function of F22 + F12. The vertical dashed line indicates
deformation states of equal F22 + F12.
ig. 5. Experimental strain paths in LH800 resulting from continuous change of
oading direction from tension to shear.

As observed in many metals, the flow stress in LH800 increases
s a function of increasing strain-rate. The remaining tests have
een performed under quasi-static conditions (i.e., 10−3 s−1).
ig. 4 shows the results of 2 reverse simple-shear tests. The
lastic–inelastic transition for this material upon load reversal is
ery diffuse. The Bauschinger effect is clearly present. It would
ppear that the amount of pre-shear does not influence the mag-
itude of the Bauschinger effect significantly. On the other hand,
he test with the larger pre-shear is clearly closer to the hardening
aturation level. Hardening stagnation after load reversal is clearly
isible in both cases, but less pronounced at lower pre-shear.

Lastly, consider the results from the orthogonal tests. As stated
bove, these consist of plane-strain tension followed by simple
hear loading. The transition from tension to simple shear is either
iscontinuous via intermediate unloading, or continuous without
nloading. The data so obtained include the 5 different continuous

oading paths (numbered 1 to 5) shown in Figs. 5 and 6.
Consistent with existing interpretations of such data in the

iterature, the presence or absence of cross hardening in such
rthogonal tests is judged solely by comparison with the monotonic
imple shear results. In particular, any overshoot of the yield stress
bove the monotonic level upon transition from tension to shear
s an indicator of such hardening. Using this “definition,” curves 1,

and 3 in Fig. 5 clearly exhibit cross hardening as can be seen in

ig. 6, curve 4 might exhibit a little, and curve 5 clearly none at all.
n the one extreme (path 1), the orthogonal change is realized via
n “abrupt” reduction in tension and coincident increase in shear
t yield. This is closest to the case of a discontinuous orthogonal
oading-path change as shown in Fig. 7.

ig. 6. Stress response of LH800 for monotonic forward simple shear (curve starting
t F22 = 1) and for the 5 different orthogonal tension–shear paths shown in Fig. 5.
Fig. 8. Experimental paths in (K22, K12) stress space corresponding to selected paths
shown in Figs. 5 and 7. Points A, B and C mark the state of deformation corresponding
to the intersection of the vertical dashed line in Fig. 7 with the respective stress
curves.

In the other extreme (path 5), the level of tension is maintained
(and further tensile deformation occurs) as shear loading increases.
As indicated, the other three paths (2, 3, and 4) in Fig. 5 represent
intermediate cases between these extremes.

In Fig. 8, the paths in the (K12, K22) stress plane are shown which
correspond to (i) discontinuous orthogonal loading (curve “dis” in
Fig. 7) as well as, from Fig. 5, (ii) continuous orthogonal loading
path 3, and (iii) continuous orthogonal loading path 5.

The stress states A, B and C correspond to deformation states
of equal F22 + F12 which intersect continuous path 5, continuous
path 3, and the discontinuous path, respectively. The intersections
of the vertical dashed line in Fig. 7 with the stress curves mark
the same points, but in stress-deformation space. As implied by
these results, the nature of the transition from tension to shear is

crucial in determining whether or not cross hardening occurs, e.g.,
the increase in the yield stress above the monotonic shear level
after an orthogonal change in loading path from tension to shear.
Beyond being associated with stress states on the yield surface
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Table 1
Identified hardening model parameter values for LH800.

Value Units

(a) Isotropic hardening parameter values determined from monotonic
simple-shear test data alone

sr 341.50 MPa
cr 5.82

(b) Isotropic–kinematic hardening parameters determined from
monotonic and cyclic simple-shear test data alone

sr 245.684 MPa
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Fig. 9. Comparison of the experimental monotonic simple-shear data with the
corresponding identified model prediction. K12 represents the relevant shear com-
ponent of the Kirchhoff stress.

these parameterizations are not equivalent. This can also be seen
from the fact that one obtains different model parameter values
than those in Table 1 when using ˛P in this way. For example,
in the combined isotropic–kinematic hardening case, one obtains
cr 4.295
sx 97.464 MPa
cx 33.642

hich are not influenced by cross hardening, cases 4 and 5 exhibit
asically no cross hardening and are characterized by the fact that
ignificant further tension loading takes place after the start of the
hear loading phase. Assuming that the dislocation microstructure
eveloped during the common pre-tension phase was the same in
ach case, these results imply that continued tension loading dur-
ng simultaneous shear loading at yield facilitates a breakdown of
ension-based dislocation microstructure which would otherwise
esult in cross hardening upon transition to shear. Besides this, note
hat the paths with continued tension loading do not return to the

onotonic simple-shear reference curve, i.e., at least not within
he range of the experimental data. These and other aspects will be
xamined in more detail after we carry out the model identification,
o which we now turn.

. Model identification

To demonstrate the capability of the presented model to
escribe the complex hardening behavior of LH800 during
on-proportional loading just discussed, we now turn to its iden-
ification. As shown by the experimental data in the last section,
his behavior involves in particular isotropic, kinematic, and cross
ardening. The material parameter determination is carried out
sing the program LS-OPT in conjunction with LS-DYNA. Given
he homogeneous nature of the tests, one-element calculations
uffice. The optimization technique used relies on response sur-
ace methodology (RSM) Stander et al. [33]. Other methods have
een used by previous workers (e.g., Haddadi et al. [34], Flo-
es et al. [35]) to identify related models like the Teodosiu
odel.
All fits to follow are based on the fixed values � = 167.05 GPa

nd � = 77.09 GPa for the elastic properties, as well as that �Y0 =
30.79 MPa for the initial yield stress, of LH800, all at room temper-
ture. Tensile tests performed on LH800 at 0◦, 45◦, 90◦ with respect
o the rolling direction yielded no distinct initial orthotropy and
o Hill parameter values of F = G = H = 0.5 and L = M = N = 1.5.
trictly speaking, only N, F, G and H can be determined by in-plane
ensile tests. Isotropy is also in essence tacitly assumed for the
ase of through-thickness shear. The fit procedure for the hard-
ning model begins by using monotonic simple-shear test data to
dentify the Voce isotropic hardening model alone, i.e., assuming
o kinematic or cross hardening. The results of this fit are shown in
able 1(a). The quality of the fit can be judged via the comparison
f the fitted model with the data in Fig. 9.

The isotropic hardening parameters so determined are then
sed as starting values to identify the isotropic–kinematic
ardening model parameters using both monotonic and cyclic

imple-shear test data. The results of this are shown in Table 1(b).
he quality of the model identification can be judged via com-
arison with the fit data as shown for the current combined
isotropic–kinematic) case in Fig. 10.
Fig. 10. Comparison of the experimental cyclic simple-shear data with the corre-
sponding identified combined isotropic–kinematic model prediction.

As can be seen in Fig. 9, we use the experimentally determined
components of the deformation gradient F to parameterize the
experimental data for the model identification procedure. This is in
contrast to the standard practice of using the accumulated equiv-
alent inelastic deformation ˛P for this purpose, which is a model
quantity and therefore not experimentally determined. Note that
Fig. 11. Comparison of the predictions of the identified standard combined (i.e.,
isotropic–kinematic) hardening model for forward simple shear and orthogonal
tension–shear with corresponding experimental results from path 1 in Fig. 5.
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Table 2
Identified hardening model parameter values for LH800 for
isotropic–kinematic–cross hardening model parameter val-
ues determined from monotonic shear, cyclic shear, and
orthogonal tension–shear, test data.

Value Units

sr 254.519 MPa
cr 4.481
sx 90.896 MPa
cx 32.695
sd 0.0
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Fig. 13. Comparison of the experimental results for strain paths 5 and 4 in
Fig. 5 with corresponding simulation results as based on the identified model for
isotropic–kinematic–cross hardening. Top: path 5. Bottom: path 4.
cd 19.712
sl −0.863
cl 5.0

r = 2.96, sr = 219.37, cx = 15.19, sx = 139.63 instead of the values
hown in Table 1(b), as well as a poorer fit.

Before we proceed to the identification of the complete hard-
ning model, it is instructive to compare the predictions of the
dentified standard combined (i.e., isotropic–kinematic) hardening

odel for orthogonal tension–shear loading with the correspond-
ng test data as represented by path 1 in Fig. 5. This is done in
ig. 11.

Not surprisingly, the model predicts no cross hardening. Opti-
ally, one might be tempted to identify the prediction of the
dentified combined isotropic–kinematic model with case 4 or 5
n Fig. 5. Since these represent different paths in either strain or
tress space, however, they are not directly comparable.

Consider lastly the identification of the isotropic–kinematic–
ross (i.e., complete) hardening model. Again, this is done with the
elp of the identified parameter values for the isotropic–kinematic
ase as starting values. In this way, the complete model is fit to
onotonic shear, cyclic shear, and orthogonal tension–shear, test

ata. In particular, the test data of path 1 in Fig. 5 is added to the
revious monotonic shear and cyclic shear data sets. As with cr and
x, the saturation rates cd and cl associated with cross hardening are
onstrained to be greater than zero in the fit. On the other hand, as
ith sr and sx, sd and sl may be positive or negative. Since the val-
es for sd determined in this way were on the order of 10−3, this
arameter was set to zero in the final fits, resulting in the parame-
er values for the complete model shown in Table 2. A comparison
f the corresponding experimental data and model fit is shown in
ig. 12.

As a first validation of the identified hardening model, this is

sed to simulate the behavior of LH800 along the experimental
train paths 2 to 5 in Fig. 5 not used in the identification procedure.
he results of this are shown in Figs. 13 and 14.

ig. 12. Comparison of identified isotropic–kinematic–cross hardening model
ehavior with experimental data for monotonic simple-shear and orthogonal
ension–shear test data corresponding to strain path 1 in Fig. 5.

Fig. 14. Comparison of the experimental results for strain paths 3 and 2 in
Fig. 5 with corresponding simulation results as based on the identified model for
isotropic–kinematic–cross hardening. Top: path 3. Bottom: path 2.
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Fig. 16. Predicted yield surface evolution for LH800 during orthogonal loading from
plane-strain tension to simple-shear depicted in normalized stress space (K̄12, K̄22)
for the discontinuous transition. Ini represents the initial yield surface. TenFin is the
ig. 15. Yield surface evolution for LH800 during uniaxial tension (top) and simple
hear (bottom). Shown here are the initial surface (Ini), an intermediate tension
tate (Ten1), the final tension state at F22 = 1.2 (Ten2), the final forward shear state
t F12 = 0.4 (She1), and the final reverse shear state at F12 = 0.0 (She2).

Clearly, the agreement between experimental and simulation
esults is good. Beyond a realistic representation of complete
sotropic–kinematic–cross hardening behavior, then, the current

odel is also capable of accounting for the dependence of cross
ardening on the nature and details of the orthogonal transition

rom tension to shear. To investigate this further, we turn next to
xamine the implications of the model for yield surface and inter-
al state development during monotonic shear, cyclic shear and
rthogonal tension–shear loading processes.

. Yield surface evolution

Having established the ability of the current model to represent
he development of combined isotropic–kinematic–cross harden-
ng in LH800 during non-proportional loading, we now turn to a

iscussion of the evolution of the yield surface. To begin, consider
he yield surface evolution for LH800 predicted by the identified

odel from the previous section. To this end, we look at the cases
f (i) uniaxial tension, (ii) simple shear, (iii) plane-strain tension
ollowed by simple shear and, (iv) a continuous transition from
final tensile state. TenShe1 to TenShe3 represent subsequent yield surfaces during
subsequent loading for the loading path also shown in Figs. 5 and 7. The point C
indicates the stress state obtained during the experiment and is the same point C as
shown in Fig. 8.

plane-strain tension to simple shear. For representation purposes,
we work with the normalized shear K̄12 :=

√
3 K12/�Y0 and normal

K̄22 := K22/�Y0 stress components. For example, an isotropic yield
surface in (K̄12, K̄22)-space takes the form of the unit circle. The
resulting yield surface evolution is shown in Fig. 15.

In addition to an increase in its size, and a translation of its
center, the current model clearly predicts a symmetric distortion
of the yield surface. In particular, this latter takes the form of an
elongation in the direction perpendicular to the current loading
direction.

Consider next the case of an orthogonal loading path change
from plane-strain tension to simple shear via intermediate unload-
ing corresponding to the discontinuous path shown in Fig. 7. The
corresponding evolution of the yield surface is shown in Fig. 16.

During the tension phase (curve TenFin), the yield surface cross
hardens as expected in the shear direction. After the shift from ten-
sion to shear, the yield surface shrinks continuously in the shear
direction (curves TenShe1 to TenShe3) and elongates in the ten-
sion direction. This corresponds to cross hardening in the tension
direction. Note that the shape of the yield surface at the end of the
shear phase approachs that one attained in the monotonic shear
test. This is in agreement with the observed experimental behavior
for the discontinuous test. The stress state C attained in this case
represents the point of maximum possible cross hardening, also in
agreement with the experimental discontinuous and path 1 con-
tinuous (Figs. 5 and 7) cases. On the other hand, the yield surface
development for the continuous loading path 5 predicted by the
current model (Fig. 17) shows that the state A reached on this path
results in little or no cross hardening. In both cases, the curves Ten-
She1 represent the yield surfaces predicted by the current model
for equal F22 + F12. Note also the nearly isotropic shape of the yield
surface (curve TenShe2) obtained during the transition from shear
to tension cross hardening. Since a change in shape of the yield

surface is clearly associated with cross hardening here, it is rea-
sonable to regard cross hardening as a special type of distortional
hardening, at least in the context of the current model.

Having now examined the model yield surface evolution for
LH800, we can take a closer look at the meaning of the values
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Fig. 17. Predicted yield surface evolution for LH800 during orthogonal loading from
plane-strain tension to simple-shear depicted in normalized stress space (K̄12, K̄22)
for the continuous path 5. Ini represents the initial yield surface. TenFin is the final
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Fig. 18. Yield surfaces development for LH800 during monotonic uniaxial tension
(top) and simple shear (bottom) for pure cross hardening. Ini represents the initial
ensile state. TenShe1 to TenShe3 represent subsequent yield surfaces during sub-
equent loading for the loading path also shown in Fig. 5. The point A indicates the
tress state obtained during the experiment and is the same point A as shown in
ig. 8.

btained for the saturation magnitudes sd and sl from Section 4
ssociated with cross hardening. Since isotropic, kinematic and
ross hardening are decoupled in the current model, the special
ase of pure distortional hardening can be obtained by simply set-
ing sr and sx to zero in the identified model. The resulting yield
urface development for unixial tension to F22 = 1.2 and for sim-
le shear to F12 = 0.4 in the case of pure distortional hardening are
hown in Fig. 18.

These are the same deformation paths as in Fig. 15. As expected,
ure distortional hardening leads to a pure shape change in the
ield surface. This is due in particular to the fact sd = 0 in the fit. In
ddition, an increase in the yield level in directions orthogonal to
he current direction follows for sl < 0. These observations can be
sed in general with the current model as reasonable constraints
n the model identification in order to make this more efficient.

For comparison, consider the yield surfaces obtained by
shikawa [23] for the steel SUS304 subject to tension and torsion
oading as depicted in Fig. 19. For his tests, he used tubes milled
rom bulk SUS304. After milling, the tubes were annealed, and an
verage initial yield stress of 194 MPa was obtained using a 50
m/m definition. The initial yield surface depicted in Fig. 19 was
etermined with the help of a least-square fit for 12 experimentally
etermined points on the yield surface. Subsequent yield surfaces
ere determined by applying a pre-stress. For the tension case
epicted in Fig. 19, the experimentally determined Cauchy nor-
al stress � is 253 MPa, and the corresponding normalized shear

tress �Nor =
√

3 � and the result is −4 MPa. With the help of a
odel described in earlier work, Ishikawa [23] then determined

he centers of subsequent yield surfaces. In the case of torsion to
n accumulated inelastic deformation of approximately 10−3, for
xample, values of 1 MPa for � and of 284 MPa for �Nor at the center
f the yield surface were obtained in this way. Starting from these,
e determined subsequent yield surfaces via radial probing in stress

pace. As shown in Fig. 19, subsequent yield surfaces determined
n this fashion for SUS304 subject to tension and torsion loading
re symmetrically distorted. For SUS304, this takes the form of a
attening of the yield surface in the direction of the applied stress.
ote that there is neither noticeable isotropic hardening nor cross
yield surface. Ten1 is an intermediate tension stage. Ten2 represents the final tension
stage for F22 = 1.2. She1 is an intermediate shear stage. She2 indicates the yield
surface for F12 = 0.4.

hardening in the sense of an increase in the yield stress in the
orthogonal direction for SUS304 at the very small level of pre-strain
involved (10−3). This is understandable from the point of view
that, at this level of pre-strain, oriented dislocation microstruc-
tures responsible for cross hardening have not yet developed.
In the case of the IF steel DC06, for example, noticeable cross-
hardening occurs only after pre-straining up to approximately
10−2. As the experimental data presented in Section 3 and the above
results shows, this is similar for the currently investigated steel
LH800.

6. Inelastic state evolution

The previous Section 5 focused on the predictions of the model

for stress–strain behavior and yield surface evolution. In this sec-
tion, attention is directed to the evolution of the internal variables.
In contrast to stress–strain relations and the yield surface, internal
variables can not be measured experimentally. The interpretation
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Fig. 19. Yield surfaces after tension (top) and torsion (bottom) obtained by Ishikawa
[23] for SUS304. Ini represents the initial isotropic yield surface, Ten1 is the yield
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Fig. 20. Evolution of ad on paths 1, 3 and 5 in Fig. 5. Note that |Ad| = |ad|.

ening is inversely correlated with the saturation level for |A|. This
correlation can also be established with respect to the development
of kinematic hardening. Recall that the form

√
(M − X) · A (M − X)

of the equivalent stress measure appearing in the yield condition (8)
urface translated to the origin after tension, Ten2 is the yield surface after tension,
he1 and She2 represent the translated and measured yield surfaces, respectively,
fter torsion. Cen marks the computed center of the subsequent yield surfaces. �
nd � represent the relevant Cauchy shear and normal stresses, respectively.

f the evolution of these in the model context, however, is of inter-
st here.

To begin, consider the development of A. Again, recall that this
uantity embodies the effect of oriented dislocation microstruc-
ure development on the effective flow anisotropy and yield surface
orm. Now, as discussed above, along the experimental paths in
ig. 5, the material is subject to first tension in the 2 direction
ollowed by shear in the 1 direction. Since sd is constrained to be
ero, the dominant evolution of A is in the orthogonal (i.e., shear)
irection during the tension phase. Indeed, with sd = 0, (12) can be
ewritten in the reduced form

˙ = cl sl (Idev − NP ⊗ NP) ˙̨ P

−{cl A + (cd − cl) (NP · ANP) NP ⊗ NP} ˙̨ P (14)
n which growth is in the direction Idev − NP ⊗ NP “perpendicular”
o NP ⊗ NP. As such, ad = NP · ANP remains zero during the tension
hase, as shown in Fig. 20.

Consequently, Ad does not influence the yield behavior of the
aterial in the tension phase, but rather only after the orthogonal
Fig. 21. Development of |A| on paths 1, 3 and 5 in Fig. 5.

loading direction change into the shear phase. Indeed, as shown in
Fig. 20, upon change of loading direction from tension to shear, the
projection of A in the current (i.e., shear) loading direction, i.e., ad,
is now non-zero and negative. Since sl < 0, its magnitude decreases
to zero with further loading in the shear direction (Fig. 20). In turn,
this results in a contraction of the yield surface in the shear direc-
tion. On the other hand, as shown in Fig. 21,A, and soAl , continue to
evolve, resulting in an expansion of the yield surface in the tension
direction during the shear loading phase. The amount of cross hard-
Fig. 22. Evolution of |X| along paths 1, 3 and 5 in Fig. 5.



M. Noman et al. / Materials Science and En

d
t

3

a
p
p
d
l
o
T
r
c
e

o
A
t
T
t
s
o
t
z
i
a
v

s

Fig. 23. Development of X22 along paths 1, 3 and 5 in Fig. 5.

epends on both A and X . In this sense, these quantities are related
o each other, since they both influence the equivalent stress.

Consider next the evolution of the back stress along the paths 1,
and 5 in Fig. 5 as displayed in Fig. 22.

As can be seen, |X| increases during the tension stage, decreases
t the start of shear stage, and then saturates. Note the nearly
erfect correlation of the amount of decrease in |X| with loading
ath upon change from tension to shear. In particular, the largest
ecrease occurs along strain path 1, representing the path with the

east amount of tension loading. Analogously, the smallest decrease
ccurs along path 5 having the greatest amount of tension loading.
o examine this result in more detail, consider the evolution of the
elevant components of X . For the tension phase, this is the X22-
omponent, and for the shear phase, the X12 component, of X . The
volution of the former is shown in Fig. 23.

During the common part of the tension stage, X22 devel-
ps in basically the same way for all experiments as expected.
s exhibited by the results, this changes at the start of the

ransition from tension to shear. In all cases, X22 decreases.
he largest decrease occurs in the case of path 1, for which
he amount of tension is the smallest. On the other hand, the
mallest decrease occurs for path 5 having the largest amount
f tension. In all cases, X22 decreases basically to zero since
he effective saturation value for this component of X goes to
ero as NP 22 does. As shown by the results in Fig. 24, dur-
ng the shear phase, the development of X is the same for
12
ll paths, saturating in each case in essence to the monotonic
alue.

From the point of view of the effective stress and so of the yield
urface, then, we see that the decrease of X22 during the transition

Fig. 24. Evolution of X12 along paths 1, 3 and 5 in Fig. 5.
gineering A 527 (2010) 2515–2526 2525

from tension to shear in combination with the development of A
determines to what extent (if at all) a change in form of the yield
surface occurs resulting in cross hardening, as shown in Figs. 16–18.
In the case of the sharpest drop, i.e., path 1, having the “shortest”
tension phase, this change is the largest. On the other hand, for the
strain paths 4 and 5, having the longest tension phase, this change
is the smallest. As already discussed above in the context of Fig. 11,
the superposition of the contributions of r, X and A is decisive for
the modeling of the anisotropic behavior.

7. Summary and conclusions

Motivated by experimental results, a material model for
isotropic, kinematic and cross hardening has been formulated,
identified and validated for the ferritic steel LH800. The novel
aspect of the current approach is the form of the evolution relation
for cross hardening, which represents a special type of distortional
hardening. This process is modeled with the help of an evolution
relation for the fourth-order anisotropic flow tensor A of the sat-
uration type. As such, this model is a special case of the class of
models tacitly introduced by Baltov and Sawczuk [19]. Differences
between the current and previous models (e.g., Dafalias et al. [22],
Schick [21], Feigenbaum and Dafalias [25]) for the evolution of this
tensor include (i) no coupling between kinematic and distortional
hardening, and (ii) the form of the evolution relation. As in the cur-
rent case, the approach of Feigenbaum and Dafalias [26] involves
no coupling of the evolution of the back stress and ABal. The focus
in their case is on the asymmetric development of the yield surface
rather than on the effect of cross hardening as in the current work.
In contrast to all previous models, the form of the evolution relation
for A is determined by the split of A into parts parallel Ad and per-
pendicular Al to the current loading direction in stress space. This
split is physically motivated with the help of TEM investigations
of the development of oriented dislocation microstructures (e.g.,
Nesterova et al. [29]) directly related to the history of the loading
path direction and its changes. The form of the evolution relation
for A is formally analogous to that introduced by Wang et al. [15]
as based on the earlier work of Teodosiu and Hu [2] for the fourth-
order hardening tensor S whose evolution accounts for the effect
of cross hardening on the flow behavior. In contrast to the class
of models based on the approach of Baltov and Sawczuk [19], this
tensor affects the current yield stress level rather than the effective
stress level. As such, there is no change of shape of the yield surface
associated with cross hardening in the class of models based on
Teodosiu and Hu [2], Wang et al. [15]. Unlike the Teodosiu and Hu
[2] model, the current model does not account for additional effects
like hardening stagnation after load reversal. In work in progress, a
more detailed comparison of the two classes of models is being car-
ried out. In addition, a thermodynamically consistent framework
for the current model analogous to that of Schick [21], Feigenbaum
and Dafalias [25] represents on-going research and will be reported
on in future work.
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