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a b s t r a c t

Torsion tests at high temperatures and high strain rates were conducted on a high nitrogen steel (HNS).
Under these conditions, adiabatic heating influences its flow behavior. This work focus on a new algo-
rithm for conducting the adiabatic heating correction of stress–strain curves. The algorithm obtains the
ccepted 18 March 2009
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stress–strain curves at quasi-isothermal conditions from those at adiabatic conditions. The corrections in
stress obtained can be higher than 15% and increase with increasing strain rates and decreasing temper-
atures. On the other hand, an upper bound for the temperature rise was found using a dynamic material
behavior approach. Finally, the influence of adiabatic heating correction on the Garofalo equation param-
eters of HNS was analyzed. High values of activation energy and stress exponent were attributed to
reinforcement by dispersed particles and the high amount of alloying elements.
odelling

. Introduction

Torsion tests at high temperature and moderate and high strain
ate usually lead to a temperature rise of the specimen with defor-
ation, called adiabatic heating. In this situation, the stress–strain

urves obtained are not at constant temperature [1]. Under adia-
atic conditions, the stresses are lower than those under isothermal
onditions. Therefore the approximation of adiabatic stress–strain
urves (or torque–number of turns curves) by the isothermal ones
ould lead to some errors in various quantitative analysis of the
aterial creep behavior. For instance, the determination of the

tress from the torque is usually carried out by the Fields–Backofen
quation [2]:

=
√

3�

2�R3
(3 + n′ + m′′) (1)

here � is the stress, � is the torque, R is the radius of the torsion
ample, and n′ and m′ are the work hardening and rate sensitivity
f the torque respectively, which are defined as follow:
′ = ∂ ln �

∂ ln N

∣∣∣∣
Ṅ,T

(2)
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m′ = ∂ ln �

∂ ln Ṅ

∣∣∣∣
N,T

(3)

where N is the number of turns and Ṅ is the speed rotation.
The determination of the stress by Eq. (1) assumes isothermal

conditions for deformation through the Eqs. (2) and (3). How-
ever, these equations should be different under adiabatic conditions
which would lead to errors in the determination of the stress.

Similarly, the Garofalo equation as a function of strain is usually
employed for the fitting of the stress, strain rate and temperature
data, �, ε̇ and T, respectively [3–5]. This equation is especially ade-
quate for correlation of creep data in wide ranges of temperature
and strain rate [6]. The Garofalo equation is given by:

ε̇ = A exp
(

− Q

RT

)
sinhn(˛�) (4)

where Q is the activation energy for deformation, n is the
stress exponent, A is the pre-exponential factor, ˛ is the stress
co-factor and R is the gas constant. The Garofalo equation param-
eters are sensible to the values of stress and temperature which
are affected by adiabatic heating of the sample. Again, the
approximation of adiabatic stress–strain curves by the isother-

mal ones could lead to some errors in the determination of such
parameters.

Finally, to carry out dynamic recrystallization (DRX) studies
through the Avrami equation [7,8] without consideration of the
effects of adiabatic heating could lead to errors in the determina-

http://www.sciencedirect.com/science/journal/09215093
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ion of the softening behavior of DRX since part of this softening is
elated to adiabatic heating.

All the previous examples show the importance of obtaining
tress–strain curves at isothermal conditions from data obtained
t adiabatic conditions. Therefore, the aims of this work are (a) to
ropose a new iterative algorithm to carry out the adiabatic heating
orrection of stress–strain curves and (b) to study the influence of
he adiabatic heating correction on the Garofalo equation parame-
ers of a high nitrogen steel (HNS). Moreover, the adiabatic heating
orrection proposed is complemented by a determination of an
pper bound for the temperature rise of the bulk material follow-

ng the hypothesis of Prasad which considers the sample as a power
issipator [9].

. Theoretical approach

.1. Determination of the stress at isothermal conditions

A new iterative algorithm to carry out the adiabatic heating cor-
ection is presented. The algorithm is based on two equations. The
rst one is the usual equation for the temperature rise with strain
f the bulk material during deformation, �T [1,10,11]:

T = �

	C

∫ ε

0

�wc
0 (s) ds (5)

here � is the Taylor–Quinney factor, 	 is the density, C is the spe-
ific heat and �wc

0 is the stress without adiabatic heating correction
given by Eq. (1)).

The second equation allows the calculation of the stresses under
sothermal conditions �c

0, from the ones under adiabatic conditions
wc
0 . For a given test at constant ε̇ and initial temperature T, and for
given value of ε, the uncorrected stress �wc

0 (associated with adi-
batic conditions), can be expressed as a function of the corrected
tress, �c

0 (associated with isothermal conditions) as:

wc
0 (ε, ε̇, T − �T) = �c

0(ε, ε̇, T) (6)

Applying a first order Taylor expansion of the function �wc
0 in Eq.

6) about the point T it is obtained:

c
0(ε, ε̇, T) = �wc

0 (ε, ε̇, T) − ∂�wc
0 (T)

∂T

∣∣∣∣
ε,ε̇

�T (7)

An expression, similar to Eq. (7), was recently used by Kapoor et
l. [12]. It should be noted that the application of Eqs. (5) and (7) lead
o errors in the determination of �T and �c

0 because isothermal con-
itions are assumed for the calculation of the uncorrected stress in
qs. (1)–(3) whereas Eqs. (5) and (7) assumes adiabatic conditions
or the same stress. A new iterative algorithm is introduced in the
ext section to correct this problem.

.2. Description and justification of the iterative algorithm for the
diabatic heating correction

The application of Eq. (5) for the temperature rise of the bulk
aterial during torsion testing can lead to some errors since the

tress �wc
0 is obtained assuming isothermal conditions for defor-

ation (Eqs. (1)–(3)). In other words, the calculation of n′ and m′

s done assuming isothermal conditions which is not true since the
xperimental curves are obtained under adiabatic conditions.

On the other hand, the determination of the corrected stress

iven in Eq. (7) is strongly influenced by the partial derivative of
he uncorrected stress with respect to the temperature. In turn,
he values of this partial derivative are strongly influenced by adia-
atic heating. Fig. 1 shows, in fine lines, the isothermal stress–strain
urves for a given strain rate ε̇ and two initial temperatures T1

0

Fig. 1. Stress–strain curves for isothermal and adiabatic conditions, in fine and thick
lines, respectively.

and T2
0 , and in thick lines, the corresponding curves without adi-

abatic correction. The isothermal curves are contained in a two
dimensional space {ε, �} while the diabatic curves are in a three
dimensional space {ε, �, T}.

According to Fig. 1, for a given strain ε0 the partial derivative can
be calculated, in a first approximation, as:

∂�wc
0 (T)

∂T
= �(2) − �(1)

T2
0 − T1

0

(8)

This expression is subjected to errors because the partial deriva-
tive is affected by the different temperature increments at �o of the
two adiabatic curves �T(1) and �T(2). Considering the effect of the
temperature increase, Eq. (8) is transformed as follows:

∂�wc
0 (T)

∂T
= �(2) − �(1)

(T (2)
0 + �T (2)) − (T (1)

0 + �T (1))
(9)

This equation is more accurate than Eq. (8), but still has some
level of inaccuracy since the stress in Eq. (9) was calculated
assuming isothermal conditions. In addition, the two temperature
increments, �T(1) and �T(2), have errors since they were calculated
through Eq. (5).

In order to solve the problems mentioned previously an iterative
algorithm for the adiabatic heating correction has been developed.
This algorithm, fully described in Appendix A, starts with an ini-
tial estimation of the temperature rise and the corrected stress by
means of Eq. (7). The increment of temperature that is added in the
iteration k to the initial estimation is calculated from the difference
between the corrected and uncorrected stress in the iteration k − 1.
On the other hand, the corrected stress that is added in the iter-
ation k to the initial estimation is calculated applying Eq. (7) with
the temperature rise obtained in iteration k. The correction has been
carried out starting at the peak strain since previous to this value,
in the first part of deformation, adiabatic heating has not an impor-
tant effect on the stress [13,14] and therefore the adiabatic heating
correction may distort the values of stress close to the peak affect-
ing further studies such as determination of a constitutive relation
or analysis of DRX.

2.3. Upper bound for the temperature rise

An upper bound for the temperature rise is proposed in order to
validate the results given for the adiabatic heating correction stated
in the previous section.
For a given T and ε̇, the power P (per unit volume) absorbed by
the material during plastic flow is given by:

�ε̇ =
∫ ε̇

0

�dε̇ +
∫ �

0

ε̇d� (10)
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the temperature range and the density is varying with tempera-
ture according to the relation: 	(kg m−3) = −0.4*T(◦C)+7925.9 [15].
Finally, the Taylor–Quinney coefficient is taken equal to 0.8.

Table 1
Increment of stress, in MPa, at (a) ε = 1.5 and (b) ε = 3 for the corrected tests for all
initial temperatures and strain rates.

Strain rate (s−1) Temperature (◦C)

975 1050 1125 1200

(a)
0.005 5.9 4.1 1.5 1
0.05 10.4 10.9 2.8 1.8
0.5 – 11.1 7.3 3.1
5 – 16.9 6.8 3.7
ig. 2. Stress–strain curves for the high nitrogen steel (HNS) at various initial temp
sothermal curves (corrected for adiabatic heating) and the fine lines are the adiaba

= G + J (11)

here G and J are the dissipator content and co-content respec-
ively. The G term represents the power dissipated to plastic work,

ost of which is converted into heat [9].
On the other hand, the Garofalo equation can be expressed as

ollows:

(ε̇) = 1
˛

sinh−1[(ZA)1/n] (12)

here ZA is the Zener–Hollomon parameter compensated
ith A (pre-exponential constant of Garofalo equation): ZA =

˙ /A exp(Q/RT). Substituting Eq. (12) in the expression for G given by
qs. (10) and (11) and considering that sinh−1(x) ≤ x the following
xpression is obtained:

(ε̇) =
∫ ε̇

0

�dε̇ =
∫ ε̇

0

1
˛

sinh−1((ZA)1/n) ≤
∫ ε̇

0

1
˛

(ZA)1/n

= n

˛(n + 1)
ε̇ sinh(˛�p) = Ḡ(ε̇) (13)

here �p is the peak stress. Ḡ(ε̇) represents an upper bound for
he energy available to be converted into heat and in consequence
o increase the temperature of the bulk material. Using Eqs. (5)
nd (13), the following upper bound for the temperature rise is
btained:

T̄ = nε

˛(n + 1)
sinh(˛�p) (14)

here the Taylor–Quinney factor is taken as 1 for simplification. As
xpected, �T̄ increases with increasing strain and increasing peak
tress.

. Material and experimental method
The chemical composition of the HNS, Cronidur 30, is the
ollowing (wt.%): 0.34C–0.33N–0.45Mn–16.2Cr–1.1Mo. This is a

artensitic through-hardened steel that can also be induction case-
ardened. The steel is characterized by a homogeneous structure of
res and at (a) 0.005 s− , (b) 0.05 s−1, (c) 0.5 s−1 and (d) 5 s−1. The thick lines are the
es (uncorrected curves).

finely dispersed precipitates formed mainly by nitride and carbide
particles.

The torsion tests were carried out on the torsion machine
placed at the laboratory of the Department of Mechanics (Poly-
technic University of Marche), at temperatures varying in the range
900–1200 ◦C, and equivalent strain rates from 0.005 to 5 s−1, up
to rupture, in controlled Argon atmosphere to avoid oxidation and
minimize the effects of adiabatic heating.

The torsion samples were machined from billets with the axis
parallel to the cast direction. The gauge section of the samples was
a solid cylinder with a length of 15 mm, and a radius of 5 mm. The
samples were heated by a high frequency induction coil (1 ◦C/s)
up to 1200 ◦C, hold 10 min at temperature, cooled to the deforma-
tion temperature at 1 ◦C/s and hold at deformation temperature for
other 5 min before testing. The experimental method is described
in detail elsewhere [16].

The specific heat of the HNS is considered 800 J kg−1 k−1 for all
(b)
0.005 – 8.6 2.5 1.8
0.05 – 20.2 5.6 3.4
0.5 – 19.7 10.2 5.1
5 – 24.5 12.9 9.2
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Fig. 3. Calculated temperature rise with strain at (a)

. Results and discussion

.1. Analysis of adiabatic heating on the stress–strain curves

Fig. 2 shows stress–strain curves for all the strain rates and ini-
ial temperatures of the torsion tests. The thick lines represent the
urves at isothermal conditions (corrected stress), calculated by the
pplication of the algorithm previously presented, and the fine lines
re the ones for adiabatic conditions (uncorrected stress). As men-
ioned before, the correction was carried out from the peak to a
alue of the strain where it is considered that the effect of flow
ocalization is not important. At temperatures higher than 900 ◦C

he curves show a clearer steady state under isothermal conditions
han under adiabatic conditions. The adiabatic heating increases
ith increasing strain rate and strain and decreasing temperature.

his is because there is more mechanical energy available to be
onverted into heat under these conditions.

ig. 4. Upper bounds for the temperature rise, represented by thick lines, Eq. (14), and
orrection, represented by fine lines, as a function of strain at 0.5 s−1 and various initial te
1 and (b) 5 s−1 and various initial temperatures (T0).

Except for 900 ◦C, the flow behavior of the material under adi-
abatic and isothermal conditions is described by a continuous
increase of the stress to a peak value followed by a decrease to
a steady state previous to rupture. It is generally accepted that
this behavior is characterized by intense work hardening prior to
dynamic recovery which is followed by dynamic recrystallization
as the two main softening processes. On the other hand, dynamic
recrystallization is not present at 900 ◦C. The low ductility at this
temperature has been attributed to the large grain size of the pri-
mary austenite [16].

Table 1 shows the absolute increment of stress given by the
adiabatic heating correction at (a) ε = 1.5 and (b) ε = 3 and vari-

ous forming conditions. It can be seen that the stress difference
increases with increasing strain rate and strain and decreasing tem-
perature. At ε = 1.5 the increment of stress is about 7% while at ε = 3 it
can be higher than 15%. These results show that the adiabatic heat-
ing correction conducts to significant differences in stress between

temperature rise calculated by the iterative algorithm for the adiabatic heating
mperatures.
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Table 2
Garofalo equation parameters as a function of strain. The goodness of the fit is given
by the parameters R2 and F of Fisher–Snedecor.

Strain n Q (kJ/mol) ˛ (MPa−1) ln A, A in s−1 R2 F

0.5 6.43 622.01 0.0055 55.74 0.987 441.84
1 6.09 609.07 0.0068 53.19 0.984 345.77
1.5 6.03 620.89 0.007 54.26 0.979 216.95
2 5.97 610.77 0.0077 52.65 0.982 241.35

parameters of the Garofalo equation as a function of the strain

F
a

ig. 5. A comparison of two methods for the adiabatic heating correction at 5 s−1

nd 1200 ◦C.

he adiabatic and isothermal conditions. Therefore, the effects of
diabatic heating must be considered for its influence on the Garo-
alo equation parameters which are necessary for any constitutive

odelling.
Fig. 3 shows the calculated temperature rise at (a) 0.5 s−1 and (b)

s−1 and various initial temperatures given by the iterative algo-
ithm. A quasi-linear behavior for the temperature rise as a function
f strain is observed. Similar linear temperature rise has been previ-
usly reported at low and warm temperatures and very high strain
ates for other steels [17,18]. For ε = 3 the temperature rise varies
rom the minimum value of 12.5 ◦C at 0.005 s−1 and 1200 ◦C to the

aximum value of 65 ◦C at 5 s−1 and 1050 ◦C.
In addition, Fig. 4 shows the temperature rise and its upper
ound at 0.5 s−1 and different initial temperatures. The thick line
epresents the upper bound for the temperature rise given by
q. (14) and the fine line show the temperature rise obtained by
he application of the iterative algorithm for the adiabatic heat-

ig. 6. Evolution of the Garofalo equation parameters with strain. The open circles are the
re uncorrected data. Alpha is affected by a factor 10−3.
2.5 6.00 600.37 0.0074 52.12 0.981 228.59
3 5.73 583.24 0.0079 50.11 0.982 244.91

ing correction. As expected, the upper bound is always above the
calculated temperature rise.

A comparison of two methods for adiabatic heating correction
is given in Fig. 5. The first is the traditional method where the stress
is corrected through Eqs. (5) and (7). This corresponds in the figure
to the two lower curves. The other method is that proposed in this
work by means of the described iterative algorithm. It should be
noted that the uncorrected curves are not the same since in the tra-
ditional method the uncorrected stress was calculated assuming
n′ = 0 and m′ = 0.23, Eqs. (2) and (3), while the uncorrected stress
in the proposed method is determined using the same equations
but considering n′ and m′ as functions of strain rate, strain and
temperature. A plateau in the stress–strain curve under isothermal
conditions using the proposed method is observed. This suggests
that a steady state may be present in the torsion curves even when a
strong decrease in stress with strain is observed under uncorrected
conditions.

4.2. Influence of the adiabatic heating correction on the
Fig. 6 shows the evolution of the Garofalo parameters for the
HNS steel as a function of strain. The Garofalo equation parameters
were determined by means of an algorithm specifically designed

parameters obtained from data corrected for adiabatic heating and the filled circles
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or the fit of this equation [4]. The fits were carried out at strain val-
es of 0.5, 1, 1.5, 2, 2.5 and 3. The curves reveal that a steady state

s more clearly defined at strains higher than 2 in the case of adia-
atic heating correction. In addition, it is observed that the adiabatic
eating correction is not significant for strains lower than 1. Except

or the stress exponent, n, the values of Q, ˛ and ln (A) are signifi-
antly affected by the adiabatic heating correction at large strains in
his steel. On the other hand, the activation energy obtained at the
teady state is too high to be related to the self-diffusivity of iron
n the austenite, 270 kJ mol−1, but it is similar to that obtained for
ther previously reported steels [3,19]. It is attributed to dispersed
econd phase particles and the high amount of alloying elements
f the steel. Finally, the value of n is higher than that given by the
lip creep equation, 5, corresponding to a power law equation [20].
t should be noted that the n parameter of the Garofalo equation is
ifferent from that of the power law equation since it is affected by
he ˛ value [21]. Again, the high n value is attributed to the high
mount of particles that makes the steel to behave as a reinforced
aterial.
Table 2 shows the Garofalo equation parameters as a function of

train. The parameters are obtained from the isothermal curves.
olumns 6 and 7 indicate the goodness of the fittings obtained
hrough the R2 and F of Fisher–Snedecor parameters. The high val-
es of these parameters ensure that the Garofalo equation is capable
f correlating, at all strains, the stress data in the wide ranges of the
train rate and temperature considered.

. Conclusions

1. The new proposed algorithm for the adiabatic heating correc-
tion is an improvement over the traditional method since the
inaccuracies associated to the latter are minimized.

. The adiabatic heating correction leads to difference in stress
higher than 15% showing the relevance of adiabatic heating espe-
cially at high strains.

. The correction applied to the high nitrogen steel leads to a clear
steady state regime between 2 and 4 in the stress–strain curves.

. The Garofalo equation parameters are strongly affected by adia-
batic heating showing quite stable values for strains in the range
of 1–3. The high values of activation energy and stress exponent
are attributed to reinforcement by dispersed particles and the
high amount of alloying elements in this steel.
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ppendix A

The initial estimations for the temperature rise and the corrected

tress �T0 and �c

0 respectively are given by the equations:

T0(εi) = �

	C

∫ εi

εp

�wc
0 (εi, ε̇j, T) dε (A.1)

[
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�c
0(εi, ε̇j, T) = �wc

0 (εi, ε̇j, T)

− ∂�wc
0 (εi, ε̇j, T)

∂T

�

	C

∫ εi

εp

�wc
0 (εi, ε̇j, T) dε (A.2)

where εp is the peak strain.
The iterative algorithm is a modular process in three steps. In the

first, the value of �Tk(εi) which is added to the initial estimation of
the temperature rise in the iteration k (from k = 1 to the number of
iterations) is calculated according to the following expression:

�Tk(εi) = �

	C

∫ εi

εp

(�c
k−1 − �wc

k−1) dε (A.3)

where �c
k−1 and �wc

k−1 are the corrected and the uncorrected stress
in the k − 1 iteration respectively. In the second module, the partial
derivative with respect to T of the uncorrected stress in the iteration
k, is calculated by means of the expression:

∂�wc
k

(Ts, εi)

∂T
≈ �wc

k
(Ts+1, εi) − �wc

k
(Ts, εi)

Ts+1 − Ts
(A.4)

where s+1 refers to the test conducted at the same strain rate but at
temperature Tk+1, that is next in the ascendant sequence. Finally, in
the third module, the value of the corrected stress which is added
to the initial estimation in the iteration k is given as:

�c
k(εi, ε̇j, T) = �wc

k (εi, ε̇j, T) − ∂�wc
0 (εi, ε̇j, T)

∂T
�Tk(εi) (A.5)

The criterion adopted for stopping the algorithm, i.e. the termi-
nation tolerance, is �� ≤ 10−2 MPa for a given control strain.
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