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In  this  paper,  an  experimental  mechanical  characterization  of  the  magnesium  alloys  ZE10  and  AZ31  is
performed  and  a suitable  constitutive  model  is  established.  The  mechanical  characterization  is based  on
uniaxial tensile  tests.  In  order  to  avoid  poor  formability  at room  temperature,  the  tests  were  conducted  at
elevated  temperature  (200 ◦C).  The  uniaxial  tensile  tests  reveal  sufficient  ductility  allowing  sheet  forming
processes  at  this  temperature.  The  differences  in  yield  stresses  and  plastic  strain  ratios  (r-values)  confirm
the anisotropic  response  of  the  materials  under  study.  The  constitutive  model  is  established  so  that  the
characteristic  mechanical  features  observed  in  magnesium  alloys  such  as  anisotropy  and  compression-
agnesium alloys
onstitutive model

tension  asymmetry  can  be  accommodated.  This  model  is  thermodynamically  consistent,  incorporates
rate  effect,  is  formulated  based  on finite  strain  plasticity  theory  and  is  applicable  in  sheet  forming  simu-
lations  of  magnesium  alloys.  More  precisely,  a  model  originally  proposed  by  Cazacu  and  Barlat  in  2004
and  later  modified  to  account  for the  evolution  of the  material  anisotropy  is  rewritten  in  a  thermody-
namically  consistent  framework.  The  calibrated  constitutive  model  is  shown  to  capture  the  characteristic
mechanical  features  observed  in  magnesium  alloy  sheets.
. Introduction

Motivated by the growing demand for light weight materials,
esearch on magnesium and its alloys has been getting more atten-
ion. This is attributed to the fact that magnesium is the lightest

etal in use for the production of structural components with
 promising application in the automotive and aircraft industry.
xisting applications are mainly based on cast products, whereas
he utilization of semi-finished products such as sheets is to be
xpanded for the fabrication and application of components and
tructures. Despite the high strength-to-weight ratio, the appli-
ation of wrought magnesium such as sheets to light weight
tructures is limited. However, sheets are a fundamental form of
aterial for use in numerous industrial applications and almost

very metal is also available as a sheet product which allows the
roduction of formed components. The limitation for the structural
pplication of magnesium sheets is correlated with its pronounced
nisotropy, the compression-tension asymmetry as well as with

ts comparably poor formability, especially at room temperature,
f. [1–3]. A reason for this behavior is the appearance of magnesium
nd its alloys with a hexagonal close-packed lattice structure which

∗ Corresponding author at: Helmholtz-Zentrum Geesthacht, Institute of Materials
esearch, D-21502 Geesthacht, Germany. Tel.: +49 4152872679;
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oi:10.1016/j.msea.2012.01.122
© 2012 Elsevier B.V. All rights reserved.

limits the number of active deformation mechanisms in compari-
son to cubic metals. Therefore the ductility as well as the formability
of magnesium sheets is limited which establishes restrictions for
processing steps along the whole process chain, i.e., the rolling
procedures for magnesium sheets, the forming procedures of struc-
tural components and the mechanical properties of the resulting
parts.

Pursuing the objective of resolving the aforementioned lim-
itations, recent research on magnesium focuses on two main
topics. The first is the development of new magnesium alloys
with improved mechanical properties and especially improved
formability, see [4,5]. It was recently discovered that alloys which
contain a certain amount of rare earth elements such as cerium,
neodymium or yttrium, tend to develop different microstructures
and especially textures during conventional rolling procedures in
comparison to established standard alloys such as AZ31. It has been
shown that these different microstructures and textures have a dis-
tinct impact on the sheet formability as well as on the anisotropy of
mechanical properties cf. [5].  The second topic deals with the inves-
tigation of the mechanical behavior of magnesium sheet alloys as a
function of the applied processing parameters in the course of com-
ponent forming. In the present study, the effect of the temperature
on the mechanical behavior will be addressed. The choice of test-

ing temperatures above room temperature for the investigation is
attributed to the fact that only then a reasonable formability can
be achieved. A comprehensive account on this topic can be found
in [6–9].

dx.doi.org/10.1016/j.msea.2012.01.122
http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:Joern.Mosler@HZG.de
dx.doi.org/10.1016/j.msea.2012.01.122
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these small differences are unlikely to cause significant variations
of the mechanical behavior if only the grain structure is considered.
Fig. 2 shows the re-calculated (0 0 0 2) basal pole figures represent-
ing the texture of the sheets which was  assessed on pole figure
ig. 1. Micrographs of longitudinal sections of ZE10- and AZ31-sheets in O-tempe
izes.  (a) ZE10. (b) AZ31.

The improvement in the formability at elevated temperatures
esults from the easier activation of deformation mechanisms such
s prismatic slip and 〈c + a〉 pyramidal slip, cf. [10,7].  For commer-
ial magnesium alloys, such as AZ31, the aforementioned studies
ndicate that sufficient formability is observed for temperatures
arying between 150 ◦C and 250 ◦C. Despite the encouraging efforts
ade to understand the mechanical behavior of magnesium alloys

t elevated temperatures, the available data on this topic are still
imited. In order to supplement these limited data as well as to
btain further insight into the mechanical behavior, an experimen-
al mechanical characterization of Mg  alloy sheets is performed.
he assessment of the sheet performance is often based on uni-axial
echanical testing in which strength properties, ductility, in-plane

nisotropy (r-value) and strain hardening behavior are charac-
erized. Empirical approaches for the determination of optimum
orming conditions based on these data alone are not sufficient.
orming procedures such as stretch forming and deep drawing gen-
rally involve more complex loading conditions. Accordingly, there
s a need for accurate simulation techniques for metal forming using
he finite element (FE) analyses, which represent the current state-
f-the-art in virtual prototyping, cf. [11]. For realistic finite element
redictions, it is vital to use accurate plasticity models. As the qual-

ty of the prediction strongly depends on the constitutive model
sed, the calibration of the constitutive model parameters becomes

 key issue.
Evidently, a suitable material model for numerical simula-

ions of complex processes, such as sheet forming, should be
omputationally efficient. For that purpose, the so-called phe-
omenological constitutive models are commonly used. Over the
ears, several authors have proposed a number of such models
escribing the yielding behavior in terms of macroscopic yield func-
ions. For instance, von Mises proposed the first yield function for
nisotropic materials in the form of a quadratic function, cf. [12,11].
ater, Hill introduced a modification of this model for application
o orthotropic materials with reduced parameters of anisotropy,
f. [13]. A number of alternative and versatile anisotropic mod-
ls can be found in [14–16].  However, they do not capture an
mportant feature in magnesium alloy sheets, namely the stress-
ifferential effect. Cazacu and Barlat introduced a yield function
CaBa2004) as a modification of the Drucker model, having the
apability to account for the material anisotropy as well as for the
tress-differential effect, cf. [17,18]. The yield function presented
n this work is based on CaBa2004. It is rewritten in tensor form

mploying 4th-order transformation tensors associated with the
istortion of the yield locus. Even more important and different to
aBa2004, such tensors are not constant here, but evolve accord-

ng to suitable evolution equations, see [19,20]. By doing so, the
ition: both alloys show well recrystallized microstructures with comparable grain

distortional hardening effect (change in shape of the yield locus)
can be taken into account. Furthermore, in order to insure a
physically sound relation, the constitutive model is recast into a
thermodynamically consistent form, cf. [21–23].

2. Material characterization

2.1. Materials under investigation

Two different commercial magnesium rolled sheets have
been selected for investigation: A relatively new alloy, ZE10
(Mg  + 1%Zn + 0.3%Ce based mischmetal) and the well known and
widely used alloy AZ31 (Mg  + 3%Al + 1%Zn) in a heat treated con-
dition (O-temper) (for detailed assessment of sheet conditions
the reader is referred to [24]). Both sheets have a thickness of
1.3 mm.  The differences in the mechanical behavior and the forma-
bility of the two magnesium sheet alloys have been described
in earlier works, see [4,25,8]. ZE10 shows improved ductility at
room temperature compared to AZ31 which is associated with
an effect of the included rare earth elements and the result of
deformation and recrystallization during sheet rolling. In Fig. 1
micrographs of the two sheets are presented. The grain structure
is comparable between both sheets basically revealing a recrystal-
lized microstructure corresponding to the heat treated condition
of the sheets. The differences in the alloy composition lead to
precipitates which can be distributed differently, e.g. in form of
horizontal “stringers” in Fig. 1(a) whereas only a small number of
precipitates are found for AZ31 in Fig. 1(b). It is considered that
Fig. 2. Basal (0 0 0 2) pole figures of ZE10- and AZ31-sheets in O-temper condition;
AZ31 shows strong basal texture, while a relatively weak texture is observed in ZE10.
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Table 1
Yield stresses (YS) and ultimate tensile stresses (UTS) together with uniform (Us)
and  total (Ts) strain to fracture measured for ZE10 and AZ31 at RT.

Mat. Ori. YS (MPa) UTS (MPa) Us (%) Ts (%)

ZE10 RD 144 229 11.3 16.3
45◦ 121 221 15.2 22.6
TD 111 220 15.7 18.9

AZ31 RD 163 266 18.3 21.5
◦

76 M.N. Mekonen et al. / Materials Scien

easurements using a standard x-ray diffraction setup with a
oniometer. The AZ31 sheet has a strong basal texture with a prefer-
ntial alignment of basal planes in the sheet plane. It is understood
hat this preferential alignment inhibits a good ductility and forma-
ility of this sheet because basal slip as the preferred deformation
echanism is not easily activated in such orientations [4,25].  Fur-

hermore, the angular distribution of basal planes between the
ormal direction (ND) of the sheet and the rolling direction (RD)

s broader compared to the one between the ND and the transverse
irection (TD). This favors the activation of basal slip, e.g. if stress is
ni-axially applied along the RD rather than along the TD and there-
ore imposes a pronounced mechanical anisotropy. The ZE10 sheet
xhibits a significantly weaker texture which does not exhibit the
asal character which the AZ31 sheet shows. Basal planes are typi-
ally tilted away from the sheet plane, i.e., the pole figure intensity
n ND is low. If it is again considered that basal slip is the pre-
erred deformation mechanism, such orientations make it easier
o activate this glide system, establishing an improved ductility
nd formability [6, 20]. There is still a broader distribution of basal
lanes toward the TD rather than toward the RD which results in
n even more pronounced mechanical anisotropy in uniaxial test-
ng. For a comprehensive description of textures in relation to the

echanical properties of materials, the reader is referred to [26].

.2. Mechanical tests

To characterize the mechanical behavior of the magnesium
heets, uni-axial tensile tests were conducted. Specimens were pre-
ared according to the DIN 50125-H standard. Each specimen had

 gauge length of 60 mm and a width of 12.5 mm.  Specimens were
riented in RD, 45◦ and 90◦ (TD) from RD, see Fig. 3(a). The tests
ere conducted by a universal testing machine (Zwick Z050). In

rder to check the reproducibility of the experimental results, at
east two specimens were tested at room temperature (RT) and
t an elevated temperature of 200 ◦C. The elevated temperature
uring the tests was achieved by attaching a furnace to the test
achine. The choice of the test temperature 200 ◦C follows from the

tudies in [6,27].  These studies indicate that for commercial mag-
esium alloys such as AZ31, the forming temperature that yields
ufficient formability ranges between 150 ◦C and 250 ◦C. The tests at
oom temperature are considered to be references based on which
he tests at 200 ◦C are evaluated and described. For the tests con-
ucted at RT the strain rate was set constant to 0.001/s. In order to
uantify the strain rate effects at 200 ◦C, tests were performed at the
hree strain rates 0.001/s, 0.02/s and 0.1/s. For deformation mea-
urement, mechanical extensometers in length and width direction
nd an optical field deformation measuring system (ARAMIS® sys-
em) were used. For the tests at RT, both systems could be used,
llowing for benchmarking the optical (indirect) strain signals.
egarding the elevated temperature tests, mechanical extensome-
ers could no longer be used due to limitations in the setup with
he attached furnace. Thus, the deformation information has been
olely acquired by the optical system. The use of an ARAMIS® sys-
em requires special surface treatment of the test specimens. This is
ecessary for establishing a stochastic pattern that can be analyzed
ith image processing tools. This was achieved by applying a white
eveloper spray on the background followed by a graphite spray to
reate a stochastic pattern with a good contrast, see Fig. 3(b).

The mechanical responses obtained from the tensile tests
re presented in terms of direction-dependent flow curves and
-values. The flow curves relate the true stresses with the log-
rithmic plastic strains. The true stress is computed from the

orce–displacement signal assuming material incompressibility
uring plastic deformation. Following the common practice, the
rue stresses are calculated for each test up to specimen frac-
ure. After the onset of necking the stress state turns to be
45 175 269 16.7 20.3
TD 187 275 16.0 17.4

multiaxial, thus the significance of the calculated stress is limited.
This is attributed in the figures by adding a shaded area to the strain
interval in which strain localization (diffuse and localized necking)
occurs.

The anisotropy of sheet metals can be characterized by the r-
value defined as

r  = εpl
w

εpl
t

, (1)

where εpl
w and εpl

t are the logarithmic plastic strains in the width
and thickness direction, respectively. By assuming material incom-
pressibility the strain εpl

t is calculated from the longitudinal and
transverse plastic strains, i.e.,

εpl
t = −(εpl

l
+ εpl

w ) ⇒ r = − εpl
w

εpl
l

+ εpl
w

, (2)

where εpl
l

is plastic strain in the longitudinal direction. Eq. (2) is only
valid for small plastic deformation or for deformation paths with
a constant strain direction. Such conditions are reasonably well
met  for the considered experiments. The r-values are computed
at all levels of the deformation taking advantage of the continuous
measurements of the ARAMIS® system.

2.3. Results and discussion

2.3.1. Mechanical response at room temperature
The results of the tensile tests at RT are shown in Table 1 and

Figs. 4 and 5. The flow curves obtained for the alloy ZE10 show
higher yield stresses in RD than in TD and 45◦, see Fig. 4(a). This
manifests the anisotropic behavior of the material. The yield stress
difference is less pronounced between TD and 45◦. Represented
by the shaded area, Fig. 4(a) also reveals an observable amount
of localized deformation. Similar tests on AZ31 show higher yield
stresses in TD than in 45◦, which in turn is greater than the response
in RD, see Fig. 4(b). Thus, the trend with respect to the stress level
is reversed in AZ31 compared to ZE10: Whereas TD is strongest
among the three orientations tested in AZ31 it is the weakest in case
of ZE10. More generally, AZ31 shows a higher stress level, compare
also Table 1. Although ZE10 undergoes a larger interval of localized
deformation, the level of ductility for both alloys is similar.

A comparison of the r-values is also carried out for the two
alloys. These r-values shown here are evaluated based on the strain
measurements obtained from the ARAMIS® system. According to
Fig. 5(a), the r-values for ZE10 at RT are below or around one. The
different orientations reveal only a slight difference in r-values. The
curves describing the r-values as a function of the strain show a
small dependency at small strains – at strains above 0.05 the r-value
appears to be constant.
The r-values for AZ31 are plotted in Fig. 5(b). From the figure, it
can be seen that they are found to be strain-dependent. Although
such behavior is not in line with the conventional approach of
adopting a constant r-value, often taken within a strain range of
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Fig. 3. Tensile test specimen configuration, experimental setup and surface treatment for ARAMIS® measurement. (a) Tensile test specimen geometry. (b) ARAMIS® setup
and  surface treatment.

 the sh
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Fig. 4. Flow curves measured for ZE10 and AZ31 at room temperature;

–20%, cf. [11,28],  it is consistent with results reported in [9].  Over-
ll, it is observed that the r-values of AZ31 are much higher than

hose of ZE10. Thus, AZ31 reveals a stronger anisotropy than ZE10
ased on the r-values. This does not hold for the yield stresses,
here ZE10 exposes a more pronounced anisotropy compared to
Z31.
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Fig. 5. r-values measured for ZE10 and AZ31 at room temperature; the sha
aded section corresponds to localized deformation. (a) ZE10. (b) AZ31.

2.3.2. Mechanical responses at 200 ◦C
The effect of temperature on the mechanical response is quan-
tified based on equivalent uniaxial tensile tests as described above
conducted at 200 ◦C at a constant strain rate of 0.02/s. Concerning
ZE10, the first observation is a significant increase in total strain,
which implies an increase in ductility, see Table 2. However, as
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ded section corresponds to localized deformation. (a) ZE10. (b) AZ31.
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Fig. 6. Flow curves measured for ZE10 and AZ31 at 200 ◦C and strain rate of 0

ndicated by the shaded area in Fig. 6(a), a significant increase in
ocalized deformation is also recorded. Another observation is a sig-
ificant drop in the yield stress. It can also be seen that the yield
nisotropy becomes less compared to that measured at RT. Similar
bservations regarding the stress–strain responses for AZ31 have
lso been made. A large increase in the total strain indicates an
mproved ductility, see Table 2. However, the uniform deforma-
ion range decreases along with the yield stress, which diminishes
y more than 50% of the stress at RT. Fig. 6(b) also shows a less
ronounced yield anisotropy.

From the strain measurements the r-values have been computed
or both ZE10 and AZ31. In Fig. 7, it is shown that the r-values of
he two alloys are influenced differently by the test temperature.
he r-values for ZE10 show a slight increase compared to those
easured at RT. Similar measurements for AZ31, however, show

 decrease in r-values within the same strain range, see Fig. 7(b).
hese values show no saturation within the uniform deformation
ange. This suggests that the r-values have a stronger dependence
n strain at 200 ◦C than at RT.

In order to quantify the strain rate effect of the analyzed alloys,
dditional uniaxial tensile tests at strain rates of 0.001/s and 0.1/s
ere conducted. The resulting effects are discussed in terms of the

representative) stress response for a specimen orientation of 45◦,
ee Fig. 8. The figures indicate a positive strain rate dependency,
.e., the stress increases with increasing strain rate. The logarithmi-
ally scaled relation between the yield and ultimate stresses and
he strain rates is depicted in Fig. 9. The effect of strain rate on duc-
ility is quantified in Table 3. Accordingly, in the case of AZ31, the
atter effect is small, whereas in the case of ZE10 the fracture strain
ecreases with increasing strain rate.
Fig. 10(a) for ZE10 and Fig. 10(b) for AZ31 demonstrate the effect
f strain rates on the r-values. It is observed that, in the case of AZ31,
he increase in strain rate increases the r-values. This also implies

able 2
ield (YS) and ultimate (UTS) tensile stresses together with uniform (Us) and total
Ts)  strains measured for ZE10 and AZ31 at 200 ◦C.

Mat. Ori. YS (MPa) UTS (MPa) Us (%) Ts (%)

ZE10 RD 86 112 17.1 50.7
45◦ 78 104 19.5 73.7
TD 80 105 19.3 64.4

AZ31 RD 80 119 12.1 53.8
45◦ 81 118 10.9 53.7
TD 86 122 10.3 52.5
(b) AZ31

 the shaded section corresponds to localized deformation. (a) ZE10. (b) AZ31.

a considerable effect on the material anisotropy. According to the
report in [9] and contrary to the above observation, the r-value at
room temperature for AZ31 is shown to decrease with an increase
in strain rate. For ZE10, although not as considerable as the increase
in the case of AZ31, the increase in strain rate reduces the r-values.

A comparison of the stress response of differently oriented spec-
imens under different strain rates (not shown here) revealed that
the strain rate has a small effect on the material anisotropy in
terms of the stress response. Thus, the rate effect on the material
anisotropy can be neglected.

3. Constitutive model

Within the previous section, the magnesium alloys AZ31 and
ZE10 were characterized by analyzing the mechanical response
during uniaxial tension tests. According to such tests, both alloys
show an anisotropic yielding behavior. Furthermore, a strain rate
dependency could also be observed. However, the aforementioned
findings are strictly speaking restricted to uniaxial tension tests. A
convenient way of extending them to more complex stress states,
e.g. those characteristic of metal forming applications, is provided
by physically sound constitutive models. This is discussed in the
present section. Since the focus is on the mechanical behavior prior
to macroscopic damage initiation, the framework of finite strain
plasticity theory is adopted.

3.1. Fundamentals of elastoplasticity at finite strains

The fundamentals of plasticity theory at finite strains as well as

the used notations are briefly introduced here. A summary of the
most important equations is given in Table 4. According to Table 4,
the yield function, the flow rule and the evolution equations are
defined with respect to the intermediate configuration. By doing

Table 3
Strain rate effect on yield stress (YS), ultimate stress (UTS), uniform strain (Us) and
total strain (Ts) measured for ZE10 and AZ31 at 200 ◦C; orientation 45◦ .

Mat. Rate YS (MPa) UTS (MPa) Us (%) Ts (%)

ZE10 0.001/s 73 91 19.4 87.6
0.02/s 78 104 19.5 73.7
0.1/s 81 109 18.6 61.8

AZ31 0.001/s 72 94 10.0 59.7
0.02/s 81 118 10.9 53.7
0.1/s 85 137 12.1 51.8
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Fig. 7. r-values measured for ZE10 and AZ31 at 200 ◦C and strain rate of 0.02/s; the shaded section corresponds to localized deformation. (a) ZE10. (b) AZ31.
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o, the principle of material frame indifference is automatically
ulfilled, cf. [29].

Most equations shown in Table 4 can be applied to a broad range
f different materials. A typical example is given by the multiplica-
ive decomposition of the deformation gradient (see Eq. (30)). By
ay of contrast, some functions depend strongly on the material to

e modeled. Those are the Helmholtz energy �, the flow rule char-
cterized by the function M (see Eq. (33)1), the evolution equations
efined by g (see Eq. (33)2) as well as the yield function f.

Since the elastic response of magnesium is not strongly
nisotropic, it can be reasonably approximated by an isotropic con-
titutive model. For this reason, the Neo-Hookean energy

e(Ce) = �

4

(
Je2 − 1

)
−
(

�

2
+ �
)

ln Je + �

2

(
trCe − 3

)
(3)

s adopted in the present paper. Here, � and � represent the Lamè
arameters, Je = det Fe and tr is the trace operation, cf. [30,31].
oncerning the flow rule, the normality assumption is a frequent
hoice. It is also adopted in the present paper implying

 = ∂�f ⇒ Lpl = �̇  ∂�f. (4)

n order to complete the constitutive model, the functions f, g and
pl remain to be defined. To guarantee thermodynamical consis-

ency, they have to fulfill the reduced dissipation inequality
 = � : Lpl − �̇pl ≥ 0. (5)

volution equations complying with Eq. (5) will be elaborated in
he following section.

able 4
undamental equations defining rate-independent plasticity theory at finite strains. The y
he  intermediate configuration.

• Multiplicative decomposition of the deformation gradient F into the elastic part Fe an
F  = Fe · Fpl, with det(Fe) > 0 and det(Fpl) > 0 

•  Additive decomposition of the Helmholtz energy

� = �e(Ce) + �pl(�), with Ce := FeT · Fe

Here,  ˛ ∈ R
n is a set of internal strain-like variables associated with hardening.

•  Space of admissible stresses S� based on a convex yield function f

S� =
{

(�, Q ) ∈ R
9+n
∣∣ f (�, Q ) ≤ 0

}
, with Q = −∂��pl

�  = 2 Ce · ∂Ce � denotes the Mandel stresses and Q is a stress-like variable conjugate 

•  Flow rule and evolution equations defined by the functions M and g

Lpl = Ḟ
pl · Fpl−1 = �̇ M(�, �), �̇ = �̇ g(�, �) 

Here, �̇ denotes the plastic multiplier and the superposed dot represents the materia
•  Karush–Kuhn–Tucker optimality conditions

�̇  ≥ 0, f ≤ 0, �̇ f = 0 
(b) AZ31

s and 0.001/s at 200 ◦C; the shaded section corresponds to localized deformation;

3.2. A yield function describing magnesium alloys

According to Section 2, a yield function suitable for the model-
ing of magnesium alloys has to capture the stress differential effect.
Furthermore, and in line with the underlying atomic lattice struc-
ture of the material, the yield function should only depend on the
stress deviator, i.e., it should not be affected by hydrostatic stresses.
A function complying with such requirements was presented in
a series of papers by Cazacu and Barlat, cf. [18]. It is referred to
as CaBa2004 in what follows. This function is also adopted in the
present paper. However, and in sharp contrast to the cited work, the
model is re-formulated in terms of Mandel stresses automatically
fulfilling the principle of material frame indifference. Furthermore,
it is rewritten in tensor notation here. This new notation has several
advantages – particularly, for incorporating distortional hardening
(distortion of the yield function). Considering perfect plasticity (no
hardening), the yield function CaBa2004 reads in tensor notation

f = �(�) − �3
o , with �(�) =

[
Jo
2(�)

] 3
2 + Jo

3(�). (6)

Here and henceforth, �o is the (for now constant) yield stress and
Jo
2(�) and Jo

3(�) are the modified second and third invariants of �.

They are defined as

Jo
2 = 1

2
tr(�1 · �1) and Jo

3 = 1
3

tr(�2 · �2 · �2), (7)

ield function, the flow rule and the evolution equations are defined with respect to

d the plastic part Fpl, cf. [38]
(30)

(31)

(32)

to ˛.

(33)
l time derivative.

(34)
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here stress tensors �1 and �2 follow from the linear transforma-
ions

1 = H1 : � and �2 = H2 : �. (8)

ere, Hi are fourth-order tensors. According to Eqs. (6)–(8) by set-
ing H2 = 0 and H1 = I − 1

3 1 ⊗ 1, a von Mises-type yield function
s obtained.

Although the presented constitutive model is conceptually rel-
tively simple, the number of the respective material parameters
s very large. More precisely, with �o ∈ R  and Hi ∈ R

3×3×3×3, 163
aterial parameters have to be calibrated. Clearly, that is numer-

cally and physically not practical. However, it turns out that this
arge number of material parameters can be significantly reduced
y enforcing some physical constraints. These constraints are:

Major symmetry: Similarly to the fourth-order elasticity tensor,
H1 and H2 are assumed to show major symmetry. That is equiv-
alent to the existence of a potential defining H1 and H2 as its
Hessian.
Minor symmetry: Since the Mandel stresses are symmetric
(isotropic elastic Neo-Hookean model is used, cf. Eq. (3)), H1 and
H2 show minor symmetry, i.e.,

Hklmn = Hlkmn = Hklnm = Hmnkl for H1 and H2. (9)

Pressure invariance: Since the yield function should be indepen-
dent with respect to hydrostatic stress states

Hkkmn = 0 for H1 and H2 (10)

holds.
Orthotropic material symmetry: Magnesium sheets have an
orthotropic mechanical response. In this case, the number of
material parameters can be further reduced.

Combining the aforementioned physical constraints, the num-
er of material parameters defining Hi can be reduced to six. Thus,
sing Voigt notation (matrix notation) indicated by calligraphic

etters (Hi), Hi can be written as six by six matrices of the type

i =

⎡
⎢⎢⎢⎢⎢⎢⎣

(c2 + c3)/3 −c3/3 −c2/3 0 0 0
−c3/3 (c3 + c1)/3 −c1/3 0 0 0
−c2/3 −c1/3 (c1 + c2)/3 0 0 0

0 0 0 c4 0 0
0 0 0 0 c5 0
0 0 0 0 0 c6

⎤
⎥⎥⎥⎥⎥⎥⎦

i = 1, 2,

(11)

here cj with j = 1 . . . 6 are the reduced six components of the
ransformation tensors H1 and H2. For plane stress conditions,
hich is a reasonable assumption in most sheet forming pro-

esses, the six components of the transformation tensor can be
urther reduced to four. As a result, the definition of the yield func-
ion (6) requires the identification of nine parameters in this case
dimH1 + dimH2 + dim�0 = 9).

.3. The evolution of the yield function – hardening models

For capturing the stress–strain responses of the magnesium
lloys ZE10 and AZ31, as discussed in Section 2, suitable harden-
ng models are required. Most frequently, isotropic and kinematic

ardening models are applied for that purpose. However, such
odels do not account for the distortion of the yield function
hich can also be observed for magnesium. This distortion is due

o texture evolution. For incorporating this effect as well, the two
 Engineering A 540 (2012) 174– 186 181

transformation tensors Hi are considered as evolving internal vari-
ables. With this assumption, a yield function of the type

f = �(�, H1, H2) − �3
o − [�(˛)]3 (12)

is considered in the present paper. Here, � is defined by Eq. (6)2,
�o is the initial yield stress and � is a stress-like internal variable
associated with isotropic hardening.

According to Eq. (32)2, the internal variables Q = {�; H1; H2}
follow implicitly from the definition of the Helmholtz energy �.
Assuming that isotropic and the two distortional hardening mech-
anisms are uncoupled, yields the energy �pl

�pl = �pl
iso(˛) + �pl

dist1(E1) + �pl
dist2(E2) (13)

with Ei being dual internal variables conjugate to Hi and  ̨ denot-
ing the dual to �. Concerning isotropic hardening, an exponential
saturation is assumed. More precisely,

�(˛) = −∂˛� = 	�∞ [1 − exp(
 ˛)] ⇒ �pl
iso =

∫ ˛

˛=0

�  ̨ d˛.

(14)

where  ̨ is the strain-like internal variable conjugate to �, 	�∞ and

 denote two material parameters defining the saturation value and
the saturation rate of �. The isotropic hardening model is completed
by considering an associative evolution equation of the type

˙̨  = �̇ ∂� f. (15)

For the sake of simplicity, quadratic functions are assumed to
describe distortional hardening. Accordingly,

�pl
disti(Ei) = 1

2
Hi Ei :: Ei = 1

2
1
Hi
Hi :: Hi, with

Hi := −∂Ei
�pl

disti (16)

where Hi denotes the hardening modulus. Assuming further that
distortional hardening is only driven by the internal variable  ̨ (this
implies Ei = Ei(˛) or equivalently Hi = Hi(˛)), Eq. (16) simplifies to

�pl
disti(Ei) = �pl

disti(˛) (17)

Assumption (17) is a good approximation for radial loading paths
and thus complies with the experimental setup. For defining Hi, the
exponential functions

cj(˛) = Aj + Bj(1 − exp(−Cj ˛)) (18)

are adopted where Aj, Bj and Cj with j = {1 . . . 6} are the model
parameters (for each Hi). In line with Eq. (11), the coefficients cj
in Eq. (18) denote the components defining the tensors Hi.

While the proposed framework automatically fulfills the princi-
ple of material frame indifference, the model parameters Aj, Bj and
Cj have to be chosen in line with the second law of thermodynamics.
After a straightforward calculation this law reads

D  = � : Lpl + � ˙̨  − �̇pl
dist1(˛) − �̇pl

dist2(˛) ≥ 0. (19)

Here, the elastic response � = 2 Ce · ∂Ce � has already been
inserted. Since the function � − �3 is positively homogeneous of
degree three with respect to (�, �), Eq. (19) can be rewritten as

D = 3 �̇ �3
0 − �̇pl

dist1(˛) − �̇pl
dist2(˛) ≥ 0. (20)

Evidently, the first term is greater than zero. Consequently, a suffi-

cient condition for guaranteeing the dissipation inequality is given
by

Ddisti := −�̇pl
disti(˛) ≥ 0. (21)
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Table 5
Parameters obtained based on minimization of Eq. (25).

	�∞(MPa) 
 �o(MPa) ˇ(1/s) n
82 M.N. Mekonen et al. / Materials Scien

ondition (21) which implies some restrictions on the choice of
odel parameters Aj, Bj and Cj is enforced within the model param-

ter identification described in the next section. Consequently, the
esulting model fulfills the second law of thermodynamics.

emark 1. Within the implementation, the internal variable ˛
efined by the evolution equation

˙  = −3 �̇ �2 (22)

s replaced by the alternative choice

˙  =
√

Lpl : Lpl. (23)

his choice is related to a previous implementation based on the
lassical von Mises yield function. It needs to be emphasized here
hat the rescaling of  ̨ implied by Eq. (23) does not essentially

odify the resulting constitutive model.

emark 2. The viscoplastic rate effect observed within the exper-
ments is captured by replacing the rate-independent isotropic
ardening variable � (see Eq. (12)) in the yield function by its rate-
ependent counterpart

rate = �
(

˙̨
ˇ

)n

. (24)

ere,  ̌ and n are model parameters. According to this choice, a
ate effect is only accounted for the isotropic hardening part. The
hape of the yield function (distortional hardening) is thus rate-
ndependent.

emark 3. The implementation of the proposed constitutive
odel is based on the return-mapping scheme, cf. [29,32].  More

recisely and following [29], the flow rule is approximated by an
mplicit exponential mapping and the evolution equations are inte-
rated by employing a classical backward Euler scheme. If loading
s signaled by the trial step, the root of the nonlinear set of equations
yield function, integrated evolution equations and integrated flow
ule) is computed by using a Newton-Raphson scheme. Within this
cheme, the plastic multiplier as well as flow direction are chosen
s independent variables. Once convergence is obtained, the algo-
ithm is linearized leading to the consistent algorithmic tangent
oduli necessary for an asymptotically quadratic convergence also

t the finite element level.

.4. Summary of the constitutive model

According to the previous subsections, strain hardening in the
urrent model consists of two parts: The distortional part expressed
y transformation tensors Hi depending on the accumulated plastic
train  ̨ (see Eq. (18) and Eq. (11)) and an isotropic part depending
n the accumulated plastic strain  ̨ and the current strain rate ˙̨  (see
qs. (24) and (14)). The isotropic part naturally does not depend on
he loading direction. In contrast, the distortional part allows for a
train-dependent change of the yield surfaces shape. A dependency
n the strain rate in this part is not included, as experimental results
ndicate that material anisotropy is not significantly affected by the
train rate of the loading, see Section 2. This suggests the following
equence for the determination of the numerous model parame-
ers. First, a reference orientation is selected and the parameters
elated to the isotropic rate-dependent hardening model are cal-
brated by tensile tests along the chosen reference direction. The
tress-elongation signals are used up to their respective maximum
oad, thus the resulting stress states can be regarded as being uni-
xial and any possible confusion with the choice of the proper

quivalent measure can be avoided. Second, the parameters related
o the orientation-dependent hardening tensors Hi are calibrated
sing tensile tests along different orientations while maintaining
he isotropic hardening from the reference orientation. For this,
ZE10 59.212 −8.752 87.385 2.384E−2 0.0454
AZ31 42.069 −21.147 52.140 2.185E−4 0.0841

the stress-elongation signal and the r-value are used. Depending
on the orientation considered, the different stress levels during
deformation are accounted for by the elements of the transforma-
tion tensors. This, in turn, implies that the prescribed hardening
and strain rate characteristics are set by the choice of the reference
orientation and will be the same for all orientations considered.

4. Model parameter identification

The calibration of the parameters included in the constitutive
model developed in Section 3 is achieved by minimizing the differ-
ences between the experimentally observed mechanical responses
(see Section 2) and those predicted by the model (see Section
3). Although any experimental result can be used in general, in
the following the identification procedure is limited to those data
acquired for AZ31 and ZE10 at 200 ◦C, as the intended application
of the model is the simulation of sheet metal forming operations at
elevated temperatures.

4.1. Isotropic hardening including strain rate effects

The parameters related to strain hardening (	�∞, 
, �o) and
those corresponding to rate effect (ˇ, n) are computed by minimiz-
ing the target function

R�y =
∑

k

∑
p

[
�Exp

y
kp

− �Mod
y
kp

]2

= 0 , (25)

with

�Mod
y = (� + �o)

(
˙̨
ˇ

)n

. (26)

The target function constitutes the differences between the exper-

imentally measured stress responses and the respective

model predictions �Mod
y . These differences are summed over the

number of strain rate measures k (namely 0.001/s, 0.02/s and 0.1/s)
and summed over a number of strain increments p (at every 0.01)
along a reference orientation, the RD.

The identified parameters are presented in Table 5 for both
ZE10 and AZ31. Based on the described computations at the
material point level (Eq. (26) with Table 5), the uniaxial tensile
test has been reanalyzed as a coupon-like structure. Thus, geo-
metrical effects such as necking are consistently included within
the resulting force–displacement. The corresponding engineering
stress responses (force over undeformed cross sectional area) and
those of the experiments are compared in Fig. 11.

4.2. Material anisotropy and distortional hardening

The model parameters related to distortional hardening are
components of the transformation tensors H1 and H2. Each of these
transformation tensors constitute the parameters Aj, Bj and Cj with
j = {1 . . . 6}. In total, this mathematical setup requires the identi-
fication of 2 × 6 × 3 = 36 constants in the case of a 3D-problem.
For a plane stress state, it reduces to 2 × 4 × 3 = 24 constants. The

identification of these parameters does not include the strain
rate dependence, as experimental results indicate that material
anisotropy is not significantly affected by the strain rate of the load-
ing, see Section 2. Subsequently, the experimental results utilized
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experiment, see Fig. 13.  The comparison shows a good agreement
between the experiment and the prediction. It should also be noted
that the model is capable of capturing the strain-dependency of the
computed r-values. The convexity constraint imposed during the

Table 6
Parameter sets corresponding to the novel anisotropic material model.

H1 H2

A B C A B C

(a) ZE10
c1 −4.5 2.7 0 1.0 −5.9 6.5
c2 −4.1 −6.5 0.1 1.2 −2.2 3.2
c3 −3.5 −3.1 8.8 5.8 0.0 3.1
c4 4.1 1.9 10.4 −5.4 3.4 3.9
c5 1 0 0 0 0 0
c6 1 0 0 0 0 0

(b)  AZ31
c1 1.7 −1.9 0.3 2.1 −0.8 4.4
c 1.6 2.5 0.0 −1.5 0.6 0.8
ig. 11. Comparison between experimental and numerically predicted engineering
E10  and AZ31 at strain rates of 0.1/s, 0.02/s and 0.001/s for specimens oriented in 

n the identification are only those obtained at 200 ◦C and at a strain
ate of 0.02/s.

The identification of these parameters is performed through an
ptimization procedure. More precisely, a constrained genetic algo-
ithm is adopted. A detailed description of such methods can be
ound in [33] (Section 2). The optimization method employs an
bjective function of the least square-type

 =
∑

q

∑
p

⎡
⎣��

qp

(
�Mod

qp

�Exp
qp

− 1

)2

+ �r′
qp

(
r′Mod

qp

r′Exp
qp

− 1

)2
⎤
⎦ . (27)

his function incorporates sums accounting for stresses �()
qp as well

s r-values. The sums run over the number of specimen orientations
 considered during the uniaxial tensile tests and over the selected
iscrete points of the equivalent plastic strain p accounting for the
volution of the yield loci. ��

qp and �r′
qp are weighting factors to

ontrol the contribution from the stress and r-value, respectively.
he superscripts Exp and Mod  refer to the reference values obtained
rom the experiment and those related to the predictions of the

odel, respectively. In Eq. (27), r′ is a modified r-value obtained
rom the ratio of the plastic strain rates. This can be approximated
y the derivatives of the yield function as

′ = ε̇pl
w

ε̇pl
t

≈ −
sin2
 ∂�xx f − sin 2
 ∂�xy f + cos2
 ∂�yy f

∂�xx f + ∂�yy f
,  (28)

here ε̇pl
w and ε̇pl

t are the rates of the plastic strains in width and
hickness direction of the tensile test specimens. The angle 
 is the
rientation of the tensile test specimens with respect to the rolling
irection. Evidently, in the case of a constant r-value, Eq. (28) leads
o the conventional r-value computed from the ratio of strains.

The optimization of the objective function in Eq. (27) is com-
lemented by constraints imposed to ensure the validity of the

dentified model constants. These constraints include the convex-
ty of the yield function, the dissipation inequality required for the
hermodynamic consistency, as mentioned in Section 3.2,  and non-

ntersecting yield loci. The different constraining conditions within
he optimization scheme are implemented as follows.

First, the convexity constraint is imposed by evaluating the
igenvalues (�) of the Hessian matrix (represented by the
 responses (force over undeformed cross sectional area) for uniaxial tensile tests of
) ZE10. (b) AZ31.

second-order derivative of the yield function with respect to the
stress tensor)

det

(
∂2

f

∂�∂�
− �I

)
= 0, (29)

for the two  in-plane principal stresses at prescribed discrete strain
levels and loading cases. Then the computed eigenvalues are
ensured to be greater or equal to zero.

Second, the non-negative dissipation is ensured by evaluating
Eq. (21) for all discrete strain and loading cases corresponding to
the yield surfaces.

Finally, intersections of the yield surfaces are prevented by
ensuring non-softening stress responses for all loading cases. This
is achieved by computing the stress components at a given loading
direction for discrete but monotonically increasing strains.

The parameters of the model are identified for both ZE10
and AZ31, see Table 6. Fig. 12 demonstrates the predicted stress
responses as a function of the specimen orientations in compari-
son to those measured experimentally. From the figure, it can be
seen that the model captures the stress response in all orientations
for the specified strain range very well. Moreover, the modified r-
values (r′) are calculated and compared to those obtained from the
2

c3 −3.2 −2.4 3.1 0.5 2.5 1.0
c4 1.6 1.7 2.8 −0.9 −1.2 3.3
c5 1 0 0 0 0 0
c6 1 0 0 0 0 0
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Fig. 12. Stress responses predicted by the novel anisotropic material model (see Table 6 for the material parameters) as a function of specimen orientation for strain levels
ranging from 0 to 0.3 at a strain rate of 0.02/s. (a) ZE10. (b) AZ31.
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Fig. 13. r′-values predicted by the novel anisotropic material model (see Table 6 for the material parameters) as a function of the plastic strain at a strain rate of 0.02/s. (a)
ZE10.  (b) AZ31.

Fig. 14. Convex iso-strain contour surfaces of the stress response predicted by the novel anisotropic material model (see Table 6 for the material parameters) at a strain rate
of  0.02/s. (a) ZE10. (b) AZ31.
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ptimization procedure was indeed satisfied as shown in Fig. 14.
he figure shows convex three-dimensional plots of the evolving
so-strain contours at plastic strain levels of 0.0, 0.02 and 0.1.

The feature of the model to predict a variation of the anisotropy
atio with increasing deformation directly evidences the distor-
ional character of the calculated deformation. The change of the
irection of the plastic strain increment requires a change in the
ield surface shape. As mentioned previously, this is modulated
y the first term in Eq. (12), which refers to the shape change. Its
ffect on the biaxial deformation can be illustrated by considering a
wo-dimensional principal stress state (plane stress, in-plane shear
tresses assumed to be zero). The evolution of the yield condition,
q. (12), with increasing plastic accumulated strain is plotted in
ig. 15(a) for ZE10 and in Fig. 15(b) for AZ31 using the identified
odel parameters, see Table 6. The stresses are normalized by the

espective yield stress in rolling direction, �0i, making all contours
o meet at 1 on the abscissa. The respective inner contour can be
egarded as an initial yield locus. While the inner contour in the
ase of ZE10 has a lower equi-biaxial yield stress than a uniaxial
ne (�TD/�RD < 1), the situation is different in the case of AZ31,
here the ratio of �TD/�RD equals one. The subsequent contours

how that hardening in the case of biaxial loading is more pro-
ounced compared to that of uniaxial loading, which holds true for
oth materials. However, the effect seems to be stronger in the case
f AZ31. At least for the case of AZ31 this is regarded to be in good
greement with recent findings, which quantified similar effects
y either performing crystal-plasticity based FE-analysis of repre-
entative volume elements see [34] or by performing mechanical
iaxial tests see [35].

. Summary and conclusion

This paper presented the mechanical characterization of two dif-
erent magnesium sheet products, together with the development
f a constitutive model for numerical analyses of sheet forming pro-
esses. A calibration of the model parameters was conducted based
n standard tensile tests.

The mechanical characterization was achieved through stan-

ardized uniaxial tensile tests of AZ31 and ZE10 at two test
emperatures (room temperature and 200 ◦C), three material ori-
ntations and three loading rates. From the resulting mechanical
esponses an increase in ductility for higher test temperatures
could be confirmed. This effect is accompanied by the expected
reduction in yield stress. Furthermore, the yield stresses increased
for higher strain rates showing a positive strain rate effect. The
stresses depended on the loading direction: they complied with the
material anisotropy as observed in tensile tests conducted at room
temperature. The anisotropy was less pronounced in the case of
elevated temperatures compared to room temperature. In order to
analyze the anisotropy in a more detailed manner, r-values were
computed. It was  observed that they showed a strain-dependence.
Based on this finding it was concluded that the materials exhib-
ited distortional hardening. The strain-dependency of r-values was
higher at elevated temperatures than at room temperature. Com-
pared to ZE10, this effect is more pronounced for AZ31 due to its
strong material anisotropy. The authors wish to emphasize that this
has an important consequence for modeling the plastic response of
the material: at elevated temperatures (where forming operations
have to be performed) the distortional hardening effect has to be
accounted for. It has also been observed that in the case of AZ31 the
r-values increased with increasing strain rate, while ZE10 showed
a less pronounced but opposite effect.

The large number of process parameters involved in sheet
forming make experimental investigations of the process very
expensive. Therefore, numerical analyses are efficient and promis-
ing substitutes. For that purpose, a novel model was  developed
and calibrated. This constitutive model adopts the structure of the
Cazacu and Barlat 2004 model to account for the complex yield-
ing behavior of magnesium alloys. In contrast to the Cazacu and
Barlat 2004 yield function, the proposed model is frame indiffer-
ent due to the tensorial reformulation in terms of Mandel stresses.
The evolution of the shape of the yield locus was accommodated
by expressing the model parameters as a function of the equivalent
plastic strain. Furthermore, the constitutive model was recast into
a thermodynamically consistent form by imposing a non-negative
dissipation.

The calibration of the model was  achieved by fully utilizing the
mechanical responses at 200 ◦C in terms of the strain-dependent
r-values and stress responses. The reason for limiting the matrix
of mechanical tests to this basic setup is obvious: reducing

experimental cost and efforts. More complex experiments (e.g.
hydraulic bulge and shear tests) will certainly add more physics
to the model, but on the other hand make a calibration process
more extensive. It was  shown that the present model predicts a
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ronounced increase in the equi-biaxial stress with increasing plas-
ic strain observed by other authors. Although the generated sets of

odel parameters cannot be regarded as unique, the consideration
f strain-dependent r-values provided an important information
egarding the distortional hardening behavior of the investigated
aterials. The model has now to be assessed considering more

omplex loading conditions, e.g. by cup forming analyses as demon-
trated in [36,37].
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