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A B S T R A C T

A “bottom-up” representative volume element (RVE) for a dual phase steel was constructed based on measured
microstructural properties (“microproperties”). This differs from the common procedure of inferring hypothetical
microproperties by fitting to macroscopic behavior using an assumed micro-to-macrolaw. The bottom-up
approach allows the assessment of the law itself by comparing RVE-predicted mechanical behavior with
independent macroscopic measurements, thus revealing the nature of the controlling micromechanisms. An RVE
for DP980 steel was constructed using actual microproperties. Finite element (FE) simulations of elastic-plastic
transitions were compared with independent loading-unloading-loading and compression-tension experiments.
Constitutive models of three types were utilized: 1) a standard continuum model, 2) a standard Crystal Plasticity
(CP) model, and 3) a SuperDislocation (SD) model similar to CP but including the elastic interactions of discrete
dislocations. These comparisons led to following conclusions: 1) While a constitutive model that ignores elastic
interaction of defects can be fit to macroscopic or microscopic behavior, it cannot represent both accurately, 2)
Elastic interactions among dislocations are the predominant source of nonlinearity in the nominally-elastic
region (i.e. at stresses below the standard yield stress), and 3) Continuum stress inhomogeneity arising from the
hard martensite / soft ferrite microstructure has a minor role in the observed transitional nonlinearity in the
absence of discrete dislocation interactions.

1. Introduction

Hill [1] introduced the idea of a representative volume element
(“RVE”) as a material sub-domain or cell to represent the microstruc-
ture of an alloy in a periodic or average sense. This “original-RVE1”
concept was later transformed, effectively divorcing its properties from
those of real microstructures and real microproperties.2 As a well-
known example of this “new-RVE” approach, hypothetical void arrays
were constructed [2] that employed an assumed void volume fraction,

typically much larger than any observed one (e.g. [3–5]). The “void
fraction” thus morphed into an arbitrary internal variable in a
micro‐to‐macro law, i.e. a model parameter in a constitutive model to
allow micro-motivated FE simulation. Development of related new-RVE
models [6,7] led to the field of “damage mechanics” [8–10]. It
represents a fundamental shift away from the original-RVE concept.

When it is successful in application, the new-RVE procedure has
merit for analyzing macro-scale problems. However, there is no
assurance that an RVE constructed in such a reverse way has any
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1 The term “RVE” is used in this work for any element representing microstructural morphology and properties, whether the properties are determined from macroscopic mechanical
tests and simulation (“new-RVE”) or by directly-measured morphology and properties (“original-RVE”). The two RVE's may generally look the same, but as discussed may have widely
varying phase properties depending on how they are obtained. Both may be useful, but not unless their limitations are taken into account in reaching conclusions.

2 The term “microproperty” is used here to designate the various single-crystal properties of each microstructural phases that determine its mechanical behavior: volume fraction,
morphology, grain size, dislocation density, chemical composition, and strain hardening law. “Measured (or actual, or real) microproperties” denotes properties obtained from
measurements corresponding to the individual grain and/or phase; this is in the spirit of the original RVE approach. “Back-fit (or hypothetical) microproperties” denotes properties
obtained by assuming a law connecting micro- and macrobehavior, performing a macrotest, such as a tensile test, then performing a reverse analysis to obtain a set of hypothetical
microproperties that are consistent with the assumed law and the measured macrobehavior. As will be shown, the micro- and macroproperties obtained in these alternate ways differ
significantly, thus calling into question the accuracy of the connection law.
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connection to the real microstructure or microproperties. The proce-
dure instead convolutes two aspects: 1) hypothetical microproperties
and 2) assumed micro-to-macroconstitutive model. Only the combined
pair has validity: the two cannot be separated to obtain meaningful
independent components.3 Clearly the procedure cannot be used to
identify or confirm the microscopic mechanism controlling the macro-
scopic behavior, although many published results purport by inference
to do this.

1.1. Scale-free methods

The mechanical strength and stability of composite materials [11]
has been interpreted using the new-RVE approach. Examples have been
presented for elastic properties [12–14], elastic-plastic properties
[15,16], and cyclic behavior at room temperature [17] and at elevated
temperature [18]. A key assumption inherent in such approaches is that
the scale of the governing material structure is sufficiently coarse that
discrete defect interactions can be ignored without large errors.

When the assumption is valid, the methods can produce accurate
predictions without complex adjustments. For example, rule-of-mix-
tures models adequately predicted tensile strength and elongation of a
steel [29] and metallic composites [30]. Such methods rely on a
relationship of the following type [31]:

σ V σ V σ= + (1 − )composite f f f m (1)

where σComposite, σf and σm are the flow stress of a fiber composite, fiber,
and matrix, respectively and Vf is the volume fraction of fiber in the
composite. Matlock and Speer [32,33] concluded that such models
reproduced DP steel behavior properly, whereas Orowan models were
not considered to be of practical interest. The accuracy of this
conclusion is a major question to be addressed herein.

Scale-free RVE models take into account the morphology of the
microstructure, but not its scale. Recently, such models have been
applied to DP steels [26–28,43–51]. In most of these, the “new-RVE”
approach sets the microproperties from macroscopic data, either
directly (i.e. inferring constituent strength from composite strength)
[44] or indirectly (constructing and/or using a strength-vs.-chemical
composition map from macroscopic measurements) [26-28,43,45–47].

In order to reproduce known macroscopic properties of DP steels,
the martensite phases are typically assigned unrealistic ultimate tensile
strengths (UTS). For example, Ha et al. [43] set the martensite UTS at
2500 MPa in a DP590 steel, while 1400 MPa is expected based on direct
measurements for the reported carbon concentration [52]. Similarly,
Govik [44] applied a new-RVE scheme to “predict” nonlinear elastic-
plastic transitions in a DP600 steel. However, the results shows that the
assigned UTS of the martensite is even higher than that in Ha et al., at
2600 MPa. Such strengths are not consistent with any direct measure-
ment of martensite phases of a similar composition. In fact, Govik's
result tends to contradict his conclusion about identifying the proper
micro-mechanism governing the nonlinearity.

New-RVE modeling for DP steel has also been performed using CP
methods [53,54], rather than the purely continuum models [43,44].
However, the microproperties were again reverse-engineered from
macroscopic results and continue to ignore microstructural scales.

1.2. Well-established scale effects

Scale-free models ignore well-known scale effects, for example
Orowon's mechanism, or its so-called “hard pin” variation [34,35]

σ σ α μb L= + ′ /y (2)

where σy is the yield stress with no particle, α′ is a constant on the order
of unity, L is the spacing between particles, i.e. a measure of
microstructural scale, μ is the shear modulus and b is the burger's

Nomenclature

σComposite flow stress of a fiber composite
σf flow stress of fiber
σm flow stress of matrix
Vf volume fraction of fiber in the composite
σy yield stress with no particle
α′ constant on the order of unity in Orowan equation (Eq.

(2))
L particle spacing
σ0 frictional stress
ky material constant in Hall-Petch equation (Eq. (3))
M Taylor factor
k material constant related to dislocation character
τobs obstacle strength
μ shear modulus
b Burgers vector
d grain size
E Young's modulus
υ Poisson's ratio
K strength material constant
ε0 constant that may represent a pre-strain
n strain hardening exponent
τ α( ) resolved shear stress on the αth slip system

γ0̇ reference shear rate
m strain rate sensitivity
g α( ) slip resistance on the slip system α
g α

0 initial slip resistance on the slip system α
τb back-stress
ρ α( ) dislocation density in slip system α
hαβ interaction cosine
n α( ) slip plane normal of slip system α
ξ β( ) dislocation line vector of slip system β
A material constant in slip resistance equation (Eq. (7))
ka material constant related to dislocation generation
kb material constant related to dislocation annihilation
ρṗass

α( ) rate of dislocation density passing through the element
l α( ) length of the element parallel to the slip plane α
τ* maximum obstacle strength
N geometrical transmissivity factor
L1,Li intersection line vectors between grain boundary and slip

planes
s1,si slip direction vectors of incoming and transmitted disloca-

tions of incoming and transmitted dislocations
ET instant tangential modulus
Δε absolute value of strain change after load reversal
Δσ absolute value of stress change after load reversal

3 An easily-understood example of this distinction is the ubiquitous “texture analysis”
performed based on a single crystal plasticity constitutive model (e.g. the PAN model
[63,64,103]) taking into account a statistical distribution of slip system orientations
representing all of the grain orientations in an average and smoothed sense. The
microproperties are inferred from macroscopic tests, e.g. tensile tests. Such a model has
value in that it can predict texture-related plastic anisotropy, which relies on this scale-
free average orientation. However, the inferred micro-properties have little or no
connection with actual microproperties such as flow strength. That this is true can easily
be seen by noting that the strength of the polycrystal can vary by an order of magnitude
or more by changing the grain size alone via the Hall-Petch effect [36,37]. This change
occurs with no change of the real microproperties, but in the combined model that
difference of strength is attributed to spurious variation of strength of the single crystals
in the single crystal constitutive model. Therefore, the final model, no matter how useful,
represents neither a microstructurally-based RVE, nor a constitutive model for the
constituents, as has been shown recently [60–62].
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vector, another measure of the microstructure scale. Changing the
particle spacing by one or two orders of magnitude, holding other scales
constant, alters the alloy strength inversely by one or two orders of
magnitude. The only scale-independent regime is for large L in Eq. (2).

A second such effect is the variation of alloy strength with grain size
(d), i.e. the Hall-Petch effect [36–39]:

σ σ k d= + y0
−1/2 (3)

where σ0 is frictional stress, and ky is material constants. These
constants can be related to more-identifiable physical constants when
the dislocation pile-up length [40,41] is associated with the grain size
[42]:

⎛
⎝⎜

⎞
⎠⎟σ σ M μbτ

πk
d= + obs

0

1/2
−1/2

(4)

where M is the Taylor factor (~3), k=1 for screw dislocations and
k ν= 1 − (~0.7) for edge dislocations, and τobs is the critical value of the
stress acting on the lead dislocation that must be exceeded in order to
propel the lead dislocation through the obstacle.

1.3. Incorporating scale effects: SD model review

For finer structures, the assumption of scale independence inevi-
tably becomes inaccurate. A common ad-hoc attempt to correct for this
involves embedding a fictitious length scale in an otherwise scale-free
continuum constitutive model and then adjusting this parameter to
reproduce the measured macrobehavior. Strain-gradient theories
[19–22] are examples; the length parameter is often set in complex
and inconsistent ways [23–25], typically varying with every experiment
and material. New experimental methods can assist by allowing
measurement of properties in small volumes, for example by micro-
pillar compression [50,51], high-energy X-ray diffraction [49], and
nano-indentation [48].

In the current work, a novel constitutive approach contrary to that
of strain-gradient methods is utilized. A modification of a standard CP
procedure [55–59] is formulated in terms of a known microstructure
(with scale) having known microproperties. The elastic interactions
among dislocations and their equilibration are introduced. This result-
ing SuperDislocation (“SD”) method [60–62] introduces no arbitrary
parameters or length scales, but nonetheless is naturally sensitive to the
actual microstructural scales.

The SD model is implemented in Abaqus [60,61]. The governing
single crystal constitutive equation is based on dislocation density [62],
which has been shown to require fewer fit parameters and to be more
accurate in reproducing single crystal behavior than conventional PAN
(Peirce-Asaro-Needleman) models [63–65]. The SD model predicted the
Hall-Petch slopes for iron accurately: 1.3± 0.3 MN/m3/2 versus a
measured slope of 0.9± 0.3 MN/m3/2. It also predicted the reverse-
deformation Bauschinger behavior of iron correctly, with no changes in
the model.

The SD model was recently applied [66] to precipitation-hardened
aged Al alloys [67] with very fine precipitates (~10–20 nm diameter,
~100–200 nm spacing), i.e. a microstructure far removed from a
composite material or pure alloys in terms of scale. It predicted the
reverse-deformation Bauschinger behavior of this nano-scale alloy
realistically, with no adjustments needed.

1.4. The Bauschinger effect and nonlinear pre-plastic transition

The current work compares three constitutive models representing
old and new RVE approaches. The models are applied to predict the
transitional behavior immediately following a strain reversal or a strain
reversal. Corresponding, independent experiments are performed:
loading-unloading-loading (LUL) test [76] and compression-tension
(CT) test [78–80].

The LUL (strain reversal) test probes the nominally elastic behavior
during unloading that has a surprising nonlinear character [68–73] not
predicted by any standard elastic-plastic theory suitable for metals.
Recent work revealed that in this regime the strain is reversible but is
not energy-preserving.4 A continuum mechanical theory of the behavior
has been presented [74] and tested in several applications [68,75].
More recently, it was discovered that the nonlinearity is consistent and
reproducible [76] and follows a uniform pattern among a wide range of
metallic alloys [77].

The CT (stress reversal) test is conducted over larger incremental
strain ranges involving plastic deformation. Typically the transitional
nature of the deformation is evidenced by lower flow stresses than
expected from monotonic straining. The likely micro-mechanisms for
both kinds of transitional reverse-deformation effects are attributed to
dislocation pinning and bowing out [81–86] and dislocation pile-up
and release mechanism [69,82,87].

2. Constitutive models: formulation

Three constitutive models were developed: 1) a standard continuum
model, 2) a standard CP model based on slip system geometry
[23,55–58], and 3) a novel SD model essentially similar to the CP
model but accounting for the discrete dislocation-dislocation, disloca-
tion-obstacle elastic interactions [60]. The continuum and CP models
are scale-independent; the SD model relies on nonadjustable, known
length scales corresponding to the burgers vector and one or more
corresponding to the microstructure, such as grain size, precipitate size
or spacing, etc.

All of the constitutive models are applied to a geometrically-
identical FE mesh representing the same RVE; only the microproperties
differ as stated below.

2.1. Continuum model

The continuum treats both ferrite and martensite phases as elasti-
cally identical: they are isotropic with Young's modulus of E=208 GPa
and Poisson's ratio of ν=0.3. The only difference in the phases is the
assignment of stress-strain curves in the plastic region, each of which
was represented by a Swift hardening law:

σ K ε ε= ( + )n
0 (5)

where K is a strength material constant, ε0 is a constant that may
represent a pre-strain, and n is the strain hardening exponent. Because
of the identical elastic properties, grains and grain boundaries play no
role in the continuum simulation; only the flow strength of the phases is
accounted for.

2.2. CP and SD models

The development below is intended to provide sufficient back-
ground to understand the methods and their particular implementation
in the current work in brief sense. The interested reader is directed to
the detailed original SD papers [60–62].

The SD and CP models discretize a polycrystal with numerous FEs in
a grain. The equilibrium boundary value problem is solved in Abaqus/
Standard with the choice of constitutive models being implemented
through user subroutines. In both CP and SD implementations, a crystal
plasticity framework is employed [55,63,64,88]. The viscoplastic shear
rates of αth slip system γ ̇ α( ) is formulated as follows [55,63]:

⎛
⎝⎜

⎞
⎠⎟γ γ τ τ

g
sign τ̇ = ̇ − ( )α

α
b

α

m
α( )

0

( )

( )

1/
( )

(6)

4 This unusual behavior has been called “mechanically reversible, thermodynamically
irreversible” [84,85] or “quasi-plastic-elastic” [74].
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where τ α( ) is the resolved shear stress on the ath slip system, γ0̇ is a
reference shear rate, m may be thought of as a strain rate sensitivity,5

g α( ) is the slip resistance on the slip system, and τb is a back-stress that is
normally zero unless a backstress can be computed (SD model only).

Both CP and SD implementations rely on a dislocation density-based
single crystal constitutive equation [62]. The initial dislocation density
ρ0 is equally distributed in each element and each slip system. The slip
resistance, g α( ), has initial value of g0 and evolves with plastic shear
strain on all slip systems according to

∑ hg g Aμb ρ= +α

β

NS

αβ
β( )

0
=1

( )

(7)

where μ is the shear modulus (=80 GPa for iron), b is the Burgers
vector (=0.248 nm for iron), ρ α( ) is the dislocation density in slip
system α, h ξn=αβ

α β( ) ( ) represents interaction cosine, where n α( ) and ξ β( )

are the slip plane normal of slip system α and the dislocation line vector
of slip system β, respectively. The parameter A is a material constant
which has been measured or calculated, and ranges from 0.3 to 0.6
[89–92]. Here, a value of 0.4 is assumed for both CP and SD models.

The evolution of the dislocation density on each slip system is
calculated according to a widely used phenomenological dislocation
density evolution equation [93]:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ρ

b

ρ

k
k ρ γ= 1 ∑

−α β
NS β

a
b

α α( )
( )

( ) ( )

(8)

where ka and kb are material parameters related to dislocation genera-
tion and annihilation, respectively.

The foregoing completes the CP formulation. The remainder of this
section describes the additional steps in the SD formulation to account
for elastic dislocation-dislocation interactions and dislocation-obstacle
interactions.

In the SD treatment, the dislocation density for each slip system in
each element, as described in Eq. (8) is treated as a superdislocation at
the element centroid. Then, mobile dislocation contents are calculated
to accommodate the strain gradient computed from the CP subroutine
based on Orowan's equation [94]:

ρ
bl

γ̇ = 1 ̇pass
α

α
α( )

( )
( )

(9)

where ρṗass
α( ) is the rate of dislocation density passing through the

element, and l α( ) is the length of the element parallel to the slip plane
α. The redistributed dislocation densities (represented by a super-
dislocation on each slip system in each element) are used to calculate
the elastic interaction force between superdislocations in each element
analytically, which are equivalently represented by τb in Eq. (6) at each
superdislocation location.

The SD model enforces the dislocation obstacle character of grain
boundaries based on the SWC 2nd criterion (Shen et al. [95]):

τ N τ= (1 − ) *obs (10)

where τobs is the obstacle strength, τ* is the unknown maximum obstacle
strength estimated as 5 times of macroscopic yield stress for 304
stainless steel by Shen et al. [95], and N is geometrical transmissivity
factor determined as follows:

N L L s s= ( ⋅ ) × ( ⋅ )i i1 1 (11)

where L1 and Li are the intersection line vectors between grain
boundary and slip planes, and s1 and si are the slip direction vectors
of incoming and transmitted dislocations, respectively.

The obstacle strength was incorporated for grain boundary elements
using the following equations:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟τ τ γ γ

τ τ
g

sign τ τ> ̇ = ̇
−

( − )eff
α

obs
α α eff

α
obs

α

α

m

eff
α

obs
α( ) ( ) ( )

0

( ) ( )

( )

1/
( ) ( )

(12)

τ τ γ≤ ̇ = 0eff
α

obs
α α( ) ( ) ( ) (13)

3. Constitutive models: parameter identification

The intention of the bottom-up approach is identify the micropro-
perties of each phase, assemble them into an “original-RVE” FE model
and then simulate macroscopic behavior for comparison with macro-
scopic experiments. In the current method, the only macroscopic
information used in setting the parameters is a single point (one stress
strain pair from a tensile test) in order to establish the overall strength.
This is necessary because it is difficult to know precisely the minute
chemical composition and its role in solute solution strengthening,
lattice friction stress (Peierls stress), and so on. Most importantly, none
of the data for reverse tests (LUL or CT) is used in setting any
constitutive parameters.

3.1. SD model

The parameters needed to complete the SD consists of 3 common
elastic constants, C11, C12, and C44, plus 5 parameters for each of the
two phases (i representing ferrite or martensite): ka, kb, ρ i

0 (Eq. (8)), g i
0

(Eq. (7)) and τobs
i (Eq. (10)).6

The elastic constants for iron single crystals are well-known:
C11=242, C12=150 and C44=112 GPa [42,96]. The plastic strain
hardening of iron single crystals in various tensile orientations has
been presented [97]. The parameters ka and kb (in Eq. (8)) for both
ferrite and martensite were obtained by fitting to Keh's [97] multi-slip
(4 equal slip systems) data for [001] tension and then verified for
double slip [011] and single slip [−348] cases. The full procedure and
results appear in detail in [62]. Fig. 1, after Lee et al. [62], compares the
SD-predicted stress-strain curve for the double slip [011] case using the
obtained constitutive parameters by fitting to the [001] tension case of
Keh's experimental results.

The initial dislocation densities ρ i
0 for each slip system in each

phase were calculated from overall dislocation density reported in the
literature: 9×1013/m2 for ferrite [98] and 1.6×1015/m2 for martensite
[99]. This total value was partitioned equally onto all slip systems and
distributed equally in all elements. That is, for the 24 slip systems
considered here, the initial dislocation density on each slip system in
each element was 0.38×1013/m2 for ferrite and 0.67×1014/m2 for
martensite.

Uniaxial tension of 3D array of grain assemblies having 27 grains
with 13,824 total elements of C3D8 (8-node solid element) type shown
in Fig. 2(a) was simulated for each phase separately using the SD
model. Random crystallographic orientation was assigned to grains.
Considering the measured average grain size of DP980 steels, each
grain has dimensions of 1.43×1.43×1.43 µm3 for ferrite and
0.93×0.93×0.93 µm3 for martensite [100,101]. Symmetry boundary
conditions are applied to the x-, y-, and z- planes. A prescribed
displacement boundary condition is imposed to the positive x-plane.7

The bonding between the two phases is assumed to be perfect, i.e. no
interface separation or sliding is allowed.

The initial slip resistance g i
0 is the same for all slip systems (i.e. for

all values of i) in one phase. Its value is set using one stress-strain pair

5 The parameter m is not strictly a physical strain-rate sensitivity. It has no connection
to real time. Rather, it is a mathematical convenience to simplify the apportionment of
strain onto various competing slip systems. This is a characteristic of the standard visco-
plastic formulations for polycrystals in common use.

6 The local grain boundary property represented by τobs was characterized by following
early works [60], i.e. τ* to be 5 times the macroscopic yield stress.

7 Simulations with alternate boundary conditions such as periodic boundary conditions
were compared with symmetry conditions. The results differed insignificantly.
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(measured or determined from other single-phase data). For DP 980 in
the current work, estimated tensile curves were determined from results
in the literature based on the grain size for ferrite and the carbon
content for martensite, as described below.

The ferrite has an average grain size of 1.43 µm, as reported for 11
DP980 steels [100,101]. The yield stress can therefore be estimated as
500 MPa (τ* ferrite, =2500 MPa) based on Hall-Petch data for 38 ultra-
fine grained bcc steels [102]. The g ferrite

0 was set to reproduce this
estimated yield stress in the ferrite with a grain size of 1.43 µm.

The martensite has an carbon content of 0.025%, as determined a
the average alloy content for 11 DP980 steels [100,101] used in
conjunction with Thermo-Calc. For this carbon content, a UTS of
1650 MPa is obtained from data presented by Krauss [52].

To identify the τ* martensite, , the yield stress of martensite is calculated
by rule-of-mixture, Eq. (1), with known average yield stress of 11
DP980 steels [100,101] and yield stress of ferrite (=500 MPa).
τ* martensite, is calculated as 5315 MPa (yield stress of martensi-
te=1063 MPa). The SD simulation of this martensite is used to set
the g Martensite

0 such that the simulated UTS is 1650 MPa. The predicted
stress-strain responses of the two phases using the determined consti-
tutive parameters (listed later in Table 1) are shown in Fig. 2(b).

3.2. CP and continuum model

The constitutive parameters needed to complete standard CP and
continuum models use the basic polycrystal phase model shown in
Fig. 2(a). The procedure is similar to the SD determination.

The elastic constants in the CP model are the same as the SD model
above. The remaining parameters, for each phase, are as follows: ka, kb,
ρ i

0 (Eq. (8)), and g i
0 (Eq. (7)) (where i represents ferrite or martensite).

The same g i
0 's determined for the SD model are assumed in the CP

model. ρ i
0 's and ka and kb are fit to reproduce that phase's SD-simulated

stress-strain response shown in Fig. 2(b). In order to compare esoteric
predicted mechanical responses, such as Bauschinger effect and non-
linear pre-yield behavior, it is first necessary to calibrate CP and
continuum models to reproduce at least approximately a tensile test.
Since the SD model does reproduce that remarkably well as will be
shown later-see Fig. 4, we simply calibrate the CP and continuum
parameters to the SD tensile test, which is virtually identical to the
experimental one. Then, differences among the predictions of Bauschin-
ger effect and nonlinear pre-yield behavior can be attributed to model
differences, not to different tensile behavior. This procedure inevitably
produces an error of overall strength of the CP RVE simulation for the
DP980 steel as compared with the experiment and SD simulation
because the interaction of dislocations with the phase boundaries is
ignored. In order to calibrate the phase strengths, proportional to ρ i

0 's

from Eq. (7), the magnitudes of ρ ferrite
0 and ρ martensite

0 are multiplied
by a single constant such that the macroscopic strength of the DP980
steel is reproduced, while maintaining the ratio of ρ ρ/ferrite martensite

0 0
constant. Without such an adjustment, it is difficult to compare
simulations and predictions of LUL and CT tests, which involve a

Fig. 1. Comparison of the stress-strain curves from the SD model prediction and
experimental measurement from the literature for iron single crystal with tensile axis
aligned along [011]. (After Lee et al. [62]).

Fig. 2. (a) Configuration of 3D array of grain assembly for tension simulations (b)
predicted macroscopic properties of ferrite and martensite in the DP980.

Table 1
Constitutive parameters for the three constitutive models.

CP SD Continuum

Ferrite Martensite Ferrite Martensite Ferrite Martensite

ρ0 (/m2) 3.97×1015 1.52×1016 8.93×1013 1.63×1015 K (MPa) 1340 2285
ka 1 59 ε0 0.030 0.0001
kb 310b 4b n 0.207 0.076
τ* (MPa) – 2500 5315
g0 (MPa) 37 113 37 113

b Burgers vector (=0.248 nm).
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certain starting stress level before the reversal.8 The determined
constitutive parameters are listed in Table 1. Note that, the Hall-Petch
effect, absent in the CP model, is compensated for by a higher initial
dislocation density of each phase.

The continuum model utilizes the Swift strain hardening law (Eq.
(5)). The constants Ki, ε i

0 , and ni are fit for each phase to reproduce that
phase's SD-simulated stress-strain response shown in Fig. 2(b). Again,
this procedure inevitably produces an error of overall strength of the
continuum RVE simulation for the DP980 steel. Similar treatment used
for the CP model is adopted. Here, the ratio of Kferrite/Kmartensite is kept
constant and a single constant is multiplied to Kferrite and Kmartensite. The
determined constitutive parameters are listed in Table 1.

It should be noted that in the SD model only a single constant
representing overall strength is fit; all other constants are derived from
single crystal properties available in the literature.

4. RVE for DP980

RVE's for DP980 steel are shown in Fig. 3. A total of 9261 elements
of C3D8 type are modeled. The elements are divided into ferrite and
martensite phases as shown, with measured martensite volume fraction
of ~32% of the 11 DP980 steels [100,101]. Martensite islands of
various shapes (elongated and spherical) and sizes are randomly
embedded in the ferrite sea. The element size (3.02×3.02×3.02 µm3)
and the number of grains for each phase (6 for ferrite and 11 for
martensite) are modeled based on the measured average grain size of
each phase and martensite volume fraction of the 11 DP980 steels
[100,101]. Random crystallographic orientation is assigned to grains.
The same symmetry boundary condition used for the uniaxial tension in
Fig. 2(a) is applied. For τ* between the two phases, the value from the
phase being entered by the transmitted dislocations was adopted:
5315 MPa for martensite and 2500 MPa for ferrite.

The SD predicted tensile stress-strain behavior is shown in Fig. 4(a)
and compared with independent experimental results for 3 tested
DP980 steels provided by supplier 1,2, or 3.9 The RVE predicts the
basic stress-strain behavior reasonably well in approximately the
middle of the range. Note that none of the tensile data, from any
DP980 test, was used in constructing the SD model. Thus, Fig. 4(a)
represents a pure prediction of macro stress‐strain from microproperties

only. The prediction is closer to the observed behavior than the
experimental scatter among the single grade of 3 DP980 steels produced
by a range of steel makers. Only for CP and continuum models, it is
necessary to use a stress point to calibrate phase strength. The stress-
strain curve of the DP980-1 is closest to the SD prediction and is
therefore selected as a representative for further comparisons of other

Fig. 3. RVE for the DP980 steel.

Fig. 4. Stress-strain behavior (a) predicted by the SD model and measured data for 3
DP980 steels provided by supplier 1, 2, or 3. Contrary to SD prediction, the CP and
continuum models are adjusted to reproduce the flow stress at 4% of the SD prediction,
and (b) predicted by the SD model and average of measured data for 3 DP980 steels. The
CP and continuum models are not adjusted.

8 From purely LUL experimental data of 26 diverse alloys, the unloading stress was
found as the only controlling parameter of the nonlinear behavior.

9 The 3 DP steels refer to materials tested at OSU. They are different ones from the 11
DP 980 steels reported in [100,101].
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tests. To illuminate the importance of the calibration in the CP and
continuum, the predicted stress-strain curves without such a calibra-
tion, i.e., original-RVE (bottom-up) approach, are also shown in
Fig. 4(b). The results reveal that both models inevitably underestimate
overall strength due to the neglect of the dislocation interaction effect
between two phases. Therefore, new-RVE (top-down) approach shown
in Fig. 4(a) with the phase strength adjustment is applied to CP and
continuum models to ensure the similar strength at the commencement
of the load reversal.

5. Results

The foregoing completes the combined RVE/constitutive models for
the 3 cases. We turn now to new independent experiments and
predictions using the 3 models.

5.1. Loading-unloading-loading (LUL) tests

Results from loading-unloading-loading (LUL) tests from literature
[76,77] were used. Details of the testing appear in those references.
They are summarized briefly here. Following ASTM E-8 samples in the
rolling direction (RD) were tested at room temperature at a displace-
ment rate of 0.08 mm/s, corresponding to a nominal strain rate of
0.001/s. Strain was measured using an Epsilon Class A extensometer
(3452-0200-030-ST) of 2″ gage.

An experimental LUL stress-strain curve for a 4% prestrain test is
shown in Fig. 5(a). Nonlinear transition behavior is clearly observed,
resulting in a hysteresis loop. The data was transformed to a (Δε, Δσ)
basis defined relative to the first data point following reversal: (εr , σr).
More explicitly, Δε ε ε(= − )measrued r and Δσ σ σ(= − )measrued r . The in-

stantaneous tangential moduli E dΔσ dΔε(= / )T were calculated by taking
a least-squares lines passing through 10 adjacent strain, stress (Δε, Δσ)
data points. The interval for the next ET used 10 data points that
overlapped the previous interval by 6 Δσ Δε( ) data points. The ET vs. Δε
form of plot reveals more sensitively the nature of the nonlinear
response, as shown in Fig. 5(b). Fig. 5(c) and (d) are similar to
Fig. 5(b) except that the independent variable is Δσ rather than Δε.
The figures look similar, the former one causes plotting range problems
for the continuum and CP predictions. That is, (almost) no reduction of
ET during the unloading results in very narrow range of Δε until the
stress becomes zero at full unloading. The ET vs Δσ plots are used for
most subsequent analyses. The results in Fig. 5 show very clearly that
CP and continuum simulations, when based on real phase properties
and even when they reproduce a tensile test adequately, do not simulate
observed unloading behavior or reverse loading behavior. The devia-
tion is several times that of the SD predictions, which had no
parameters fit to match the tensile behavior. Numerically the standard
deviations of ET are 2.5–3 times greater for CP and continuum models.
Since the only difference between CP and SD simulations is the
inclusion of dislocation-dislocation elastic interactions in SD (and its
neglect in CP), it is concluded that these interactions are the basis for
these effects, i.e. nonlinear unloading and reloading in a nominally
elastic regime.

5.2. Compression-tension test

In order to observe transitional behavior following a significant
increment of plastic strain, special compression-tension (CT) tests were
conducted in the RD at a pre-strain of −3.85% (its absolute value in
true strain is equivalent to that of 4% prestrain in tension). The CT tests

Fig. 5. A hysteresis loop for a LUL test at 4% pre-strain (a) stress-strain, (b) tangent modulus ET vs. Δε, unloading leg, (c) tangent modulus ET vs. Δσ , unloading, and (d) tangent modulus
ET vs. Δσ , reloading.

H.J. Bong et al. Materials Science & Engineering A 695 (2017) 101–111

107



utilized an optimized sample design to suppress buckling and extend
the compressive range attainable [78–80]. Tests were conducted at
room temperature and s displacement rate of 0.037 mm/s, equivalent to
a nominal strain rate of ~0.001/s, identical to the LUL tests. The strain
was measured using a non-contact EIR™ laser extensometer, with data
collected at 100 Hz. Compensation for biaxiality and friction was done
using the procedure described in [79]; a friction coefficient of 0.08 was
determined by minimizing the standard deviation of tensile stresses
with and without side plate pressure over a strain range of 0.02 to εr
(strain at stress reversal).

The CT stress-strain behavior is shown in Fig. 6(a), compared with
monotonic tension data to make the transitional response clear. The
evolution of ET following the stress sign change was calculated by
averaging every 90 data points, with adjacent intervals overlapping by
60 Δσ Δε( ) data points. This procedure ensures that a strain interval
similar to that in the LUL data analyses is used to determine the slope.

The experimentally measured ET during the unloading in the LUL
test and during the unloading (i.e. reduced tension) leg of the CT test10

is compared as a function of Δσ in Fig. 6(b). The CT test result shows
familiar larger scatter as a result of stick-slip friction and the reduced
precision of laser extensometer. Nevertheless, there is no systematic
variation in the two tests, as would be expected. In view of the
improved consistency and precision of the LUL test, the final plotting
modulus values up to zero stress in the CT test are replaced by the
equivalent LUL experimental data and used for the further plotting.

The prediction of ET using the 3 RVE/constitutive models for CT
tests is compared with the experimental data in Fig. 6(c). The CP and
continuum models predict no significant reduction of ET until
Δσ~850 MPa and 1200 MPa, respectively, but predict abrupt reduction
of ET afterward, as expected for a standard linear elastic-plastic yielding
transition. Conversely, although the SD model slightly overestimates
the ET reduction (or lower value of ET ), it captures the form of the
gradual reduction of ET over the range observed in the experiment. The
SD model represents the experimental data 5 times more accurately (5
times smaller standard deviation of ET ) than the standard methods
without consideration of elastic interactions among dislocations. For
the extended range, including unloading and reloading, the entire
behavior is determined mechanistically by dislocation-dislocation inter-
action effects.

6. Discussions

The abovementioned results demonstrate the dominant importance
of including dislocation-dislocation interactions in any microproperties
to macrobehavior linkage for metallic materials. The results are
conclusive because the predicted behavior matches independent ex-
periments with remarkable fidelity. A sensitivity study for the SD
model, too extensive to be presented here, may be fairly summarized by
noting that the only parameter that has substantial uncertainty and
significance to the simulation is the rule for assigning obstacle stresses to
various grain and phase boundaries.

In order to assess whether altering the magnitude of the obstacle
stresses would affect the conclusion, predicted behavior using 3 values
of τ* (Eq. (10)) was compared: τ*=1, 3, and 5 times the macro yield
stress (5 times is the rule used throughout the current work, based on
TEM studies in the 1980's [95]). Change this rule involves re-calculat-
ing the various constitutive parameters (using the same procedures as
already presented), with the results shown in Table 2.

The SD predictions do not vary significantly depending on the value
of τ*, and are presented in Fig. 7. The results show that the best choice
among these is τ* equals to 3 times the macro yield stress. This choice
halves the standard deviation of ET from 16 GPa to 8 GPa. Note from
Fig. 6(c) that this is an order of magnitude better than standard RVE/FE

treatments at about 81–84 GPa.

6.1. Effect of stress inhomogeneity

The foregoing conclusions differ markedly from a report in the
literature [44] that modulus degradation in DP600 steel is a result of
stress/strain inhomogeneity, i.e., a continuum effect unrelated to
discrete dislocation interactions. Those results were based on a new-
RVE (top-down) approach where microproperties are inferred from
macro tests (tension) and a hypothesized constitutive model. Our
original-RVE approach found little agreement for a continuum model
using measured microproperties. The likely source of this discrepancy
for the continuum model is the different strength of the martensite
phase. The top-down value adopted in [44] is 2600 MPa, while our
value is ~1650 MPa based on measured martensite strength for the
chemical composition of the phase.

In order to clarify whether using unrealistic microproperties can
produce spurious conclusions, additional continuum simulations were
conducted with modified stress-strain behavior of the individual

Fig. 6. (a) CT test result, and CT and LUL tests: (b) comparison of coincident data range,
(c) comparison of combined data with predicts of 3 constitutive models.10 The test-to-test scatter of 2 CT tests is calculated as 36GPa.
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phases. The martensite strength was increased and the ferrite strength
was lowered by adjusting Ki 's in Eq. (5), while maintaining the same
overall stress-strain behavior as in Fig. 4(a). Two sets of stress-strain
curves of the two phases are shown in Fig. 8(a). Property A represents
the original-RVE (bottom-up) approach used for other simulations
while Property B represents new-RVE (top-down) fits. Property B is
similar to the microproperties used in [44], i.e., UTS of martensite
about 2600 MPa and yield stress of ferrite about 400 MPa.11

Fig. 8(b) compares the simulation results for LUL testing with the
two sets of properties. While the trend of the Property B simulations is
similar to those reported in [44], the same simulations using measured
microproperties show virtually no modulus degradation. This illustrates
the benefits of the original-RVE approach and the pitfalls of adopting
mechanistic conclusions on the basis of being able to reproduce macro
behavior without verifying whether the microstructural implications
are realistic.

7. Conclusions

Bottom-up RVE simulations based on measured microproperties of 3
types were conducted: 1) standard continuum model, 2) CP-FEMmodel,
and 3) SD model (CP-FEM plus the elastic interactions of discrete
dislocations). The predicted mechanical behavior of DP980 was com-
pared with independent high-precision experiments of LUL and CT
types. The following conclusions were reached:

1) The SD model predicts the strain hardening curve accurately for
DP980 steel from microproperties alone while CP and continuum do
not.

2) Non-linear unloading and reloading were predicted of the right form
by SD. CP and continuum simulations showed discrepancies with
the experiments several times larger than the SD model and with the
wrong form.

3) CT test and simulation results are similar to nonlinear loading/
unloading except the improvement by including discrete dislocation
interaction effects in SD, which reduces standard deviation by a
factor of 5.

4) Nonlinear transition below yield and the Bauschinger effect are
manifestations of the elastic interactions of large populations of
discrete dislocations.

5) The “original-RVE” approach, based on measured microproperties
offers an invaluable tool for revealing mechanistic linkages between
micro- and macroscales that is not offered by typical top-down
“new-RVE” approaches.
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