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Abstract 

Refractory to most types of treatment, neuropathic pain (NP) is a major problem for 

people living with spinal cord injury (SCI). Among problems related to treatment, 

underlying mechanisms are poorly understood. The aim of the present study was to 

investigate the association between cortical reorganization and NP after SCI. 24 

individuals with sensorimotor complete and incomplete para- and tetraplegia (12 

suffering from NP, 13 pain-free) and 31 healthy subjects were examined. Functional 

magnetic resonance imaging was used to assess activation in primary somatosensory 

and motor cortices in response to motor (i.e., active and passive wrist extension) and 

sensory (i.e., heat and brushing) tasks applied on the dorsum of the hand.  In individuals 

with SCI, there were no group-level differences in task related activation (i.e., movement 

or sensory) compared to healthy control subjects. However, based on the Euclidean 

Distance measure, individuals with SCI demonstrated a lateral shift of peak activity in 

primary sensory and motor cortices (p<0.05). Among those with NP, chronic pain 

intensity inversely correlated with magnitude of the shift in the primary motor cortex 

during active wrist extension. The findings reveal that neuropathic pain in motor and 

sensory tasks at/above the level of lesion is not associated with increased plasticity. In 

line with previous studies changes in somatotopy and activation following SCI are rather 

limited while the influence of neuropathic pain on plasticity remains controversial.  
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1. Introduction  

 Neuropathic pain (NP) represents a major secondary complication for people 

currently living with SCI, negatively impacting quality of life and functional independence 

[56; 57]. Among difficulties related to the development of more effective interventions, 

mechanisms of NP are poorly understood. One prevailing theory is that NP from below 

the level of neurological injury arises from maladaptive changes in supraspinal anatomy 

and physiology [9; 24; 44; 65; 66]. Central to this theory is that the intensity of NP 

symptoms positively correlates with the extent of cortical reorganization, such that 

greater reorganization is observed in individuals with more severe NP [15; 65]. In 

individuals with phantom limb pain, evidence of maladaptive plasticity has been largely 

demonstrated in primary sensorimotor areas following executed (contralateral to missing 

limb) or imagined  (missing limb) movement [35; 36; 39; 53]. Supporting ‘maladaptive 

plasticity’, Wrigley and colleagues recently demonstrated that greater reorganization in 

the primary somatosensory cortex in response to brushing was associated with more 

severe neuropathic pain in individuals with SCI [65]. Previous studies in SCI have also 

considered reorganization in the primary motor cortex [11; 27], although not in the 

context of NP (i.e., relationship between the extent of reorganization and the severity of 

pain symptoms). A common readout of cortical reorganization has been to measure 

changes in center of gravity (CoG) [10; 22] or Euclidean distance between peak activity 

associated with a motor task or afferent stimulation (e.g., brushing, finger-tapping, etc.), 

relative to a known (and fixed) anatomical landmark [3; 23; 65]. 

 The primary aim of the present study was to address the relationship between the 

intensity of NP and cortical reorganization after SCI in brain areas processing 
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sensorimotor information. In line with phantom limb studies, we hypothesized that SCI 

would induce sensory and motor reorganization, the degree of which would be 

associated with the intensity of NP symptoms. Using functional magnetic resonance 

imaging (fMRI), individuals with SCI were examined during sensory stimulation (i.e., 

brushing and heat), and movement tasks (i.e., active and passive wrist extension). 

Based on the presence and intensity of individuals reported NP symptoms, the analysis 

focused on addressing group-level differences in activity, as well as changes in the 

location of peak activity (i.e., Euclidean distance) in primary sensory and motor areas.  
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2. Material and Methods 

2.1. Subjects 
 A total of 26 individuals with a chronic traumatic SCI (mean (SD) 46.3 (11.9) 

years; sex: 3 female, 23 male) including individuals with tetra- (N=11) and paraplegia 

(N=15) were recruited. Only individuals that could perceive brushing and heat 

stimulation applied on the C6 dermatome, as well as independently perform active wrist 

extension were included in the study. Two individuals with SCI (1 individual with 

tetraplegia and 1 with paraplegia) were excluded due technical measurement errors. 

Additionally, 31 neurologically healthy individuals (mean (SD) 31.9 (9.9) years; sex: 14 

female, 17 male) were enrolled in the study. Participants’ demographic and clinical 

details are summarized in Table 1. All participants provided written informed consent 

and all procedures described below were in accordance with the Declaration of Helsinki 

and approved by the local ethics board (ref. number: EK-04/2006).   
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2.2. Clinical assessments 

 Prior to the functional magnetic resonance imaging (fMRI), all participants were 

interviewed to determine handedness and the existence of pain using the German 

versions of the Edinburgh inventory (14 item version, [46]) and the European Multicenter 

Study about SCI (EMSCI) pain questionnaire (V4.2, http://www.emsci.org/), respectively. 

The pain questionnaire examines various aspects of pain (e.g., duration, maximal and 

average pain intensity) as well as pain associated psychosocial factors. Accordingly, 

pain can be grouped into nociceptive (e.g., musculoskeletal or visceral) or neuropathic 

pain (e.g., at or below the lesion). To be classified as below-neuropathic pain, symptoms 

(e.g., burning, cold, tingling) reported had to be located three or more segments below 

the neurological level of lesion. In individuals with SCI, the neurological level of injury 

was assessed using the International Standards for Neurological Classification of Spinal 

Cord Injury published by the American Spinal Injury Association (ASIA) [4; 42; 43]. 

Briefly, sensory, motor, and neurological levels of injury were identified allowing 

characterization of sensory/ motor functioning as well as determination of the 

completeness of injury by means of the ISNCSCI Impairment Scale (AIS). 

2.3. Image acquisition 
 MRI data was collected on a Philips 3 T Achieva system (Philips Medical 

Systems, Best, the Netherlands) using an eight-channel Philips Sense head coil. 

Functional time series were acquired with a sensitivity-encoded (reduction factor 2), 

single-shot echo-planar sequence (SENSE-sshEPI) [54] with a measured resolution of 

2.75 x 2.75 x 4 mm. The 29 axial slices without interslice gaps covered the entire 

cerebrum. Slices were aligned to the anterior commissure–posterior commissure line. 

Other scan parameters were as follows: echo time =35 ms; flip angle= 90°; repetition 
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time= 3000s; field of view =220 x 135 x 220mm; reconstruction matrix of scan resolution 

72x72 voxels with 3 x 3 x 3 mm, and scan time of 16:12min. The first three scans were 

acquired to reach steady-state magnetization and then discarded. In total, 320 volumes 

were acquired.  

A 3D-GRE T1-weighted (T1w) sequence was used to acquire a whole-brain, 

structural scan optimized for simultaneous assessment of the brain and spinal cord [17]. 

The imaging parameters were: isotropic 1 mm3 resolution, field of view 256 x 256 x 180, 

repetition time = 6.88 ms, echo time = 3.1 ms, flip angle 8°, fat saturation, scan 

resolution 256x256 voxels, and a scan time of 6:31min. Prior to analysis the MRI data 

were screened for movement artefacts. 

2.4. Functional MRI paradigm 
 The functional task comprised active 20s blocks of uni-lateral (i.e., right hand) 

active and passive wrist extension, heat stimulation, and brushing. Six repetitions of 

each task blocks were performed alternating with 20s rest blocks (starting with a rest 

block). The active blocks were presented in pseudo-randomized order (Figure 1). 

All participants were scanned lying in a supine position and viewed visual stimuli 

projected screen via a mirror system mounted above the magnetic resonance head-coil. 

The right arm was secured to the MR bed only allowing the subject to execute the wrist 

extension following a physiological range of motion (i.e., range through which the wrist 

can be moved pain-free). In order to standardize sensory input, participants hold a 

handle in the hand during the entire time of scanning session (Figure 1). In addition, the 

strap attached to the handle was used to perform the passive wrist extension without 

touching the participant. During the passive wrist extension, the examiner extended the 

participants right hand-wrist along the physiological individual range of motion and then 
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brought it back to its original starting position using the strap [38; 60; 63]. For the active 

wrist extension task, participants were asked to actively extend their right wrist along the 

physiological range of motion and bring it back to the original starting position [27]. For 

both motor tasks, the hand was initially positioned in resting pronation, and was 

extended upward against gravity with a cadence of 10 movements/ block (i.e., 2Hz). 

Each subject practiced this cadence prior to entering the scanner. Heat stimulation 

comprised of placing heat packs (average temp: 52.3°C; Trevolution, Zurich, 

Switzerland) onto the right C6 dermatome for 20s [14; 30]. A new heat pack was used 

for each 20s block. Brushing involved consistently brushing the right C6 dermatome with 

cotton swabs [51; 55; 65]. Brushing was performed at the base of the thumb. 

Importantly, the area of brushing did not overlap with the area of heating. For both 

sensory tasks, participants were instructed to lie quietly and minimize the eye-

movement.  

2.5. Validation of the temperature of the heat packs 

 Fourteen reusable heat packs contain a supersaturated solution of sodium 

acetate (3H2O CH3COONa) in water were tested. The heat pack is activated by 
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triggering the crystallization of the sodium acetate by bending a small flat disc of notched 

ferrous metal embedded in the liquid. To account for the effect of the room temperature 

on the temperature of the heat pack, the validation study was conducted in at similar 

room temperature (i.e., 21°C) as in the MRI Scanner . Heat packs were tested twice, on 

two separate days by the same examiner (CRJ). The temperatures of the heat packs 

were assessed using the YSI 4600 Series Precision Thermometers (YSI Incorporated). 

The temperature was considered stable when the peak reading did not change for two 

minutes. This procedure was repeated twice and the averaged was calculated. 

Additionally, we determined the time it takes from initiating the crystallization until the 

stable temperature was reached.  

2.6. MRI Data Analysis 
 Functional volumes were preprocessed and analyzed in Matlab 2010b using 

Statistical Parametric Mapping 8 (SPM8)                              

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). The images were initially realigned to 

the first scan and unwarped to control for movement- and susceptibility-induced image 

distortions [1]. Movement parameter were calculated to be later included in the statistical 

model. Following coregistration of the anatomical and functional images, spatial 

normalization of the functional images was executed. Using a unified segmentation 

approach, individual brains were normalized to the Montreal Neurological Institute 

standard space (MNI space). Lastly, spatial smoothing was conducted by applying an 

isotropic 8-mm full-width-at-half-maximum (FWHM) Gaussian kernel to reduce image 

noise. 

 A voxel-wise general mixed model was used for the first-level analysis (i.e., within 

a subject) in order to calculate contrast images for each task separately (i.e., heat, 
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brushing, active and passive wrist extension). Vectors of motion estimates were included 

as ‘nuisance variables’ (covariates of no interest) to account for the variance due to 

motion in the GLMs [26]. Significant increases in BOLD signal were identified using a 

repeated box car model convolved with a canonical form of the hemodynamic response 

function [19]. The second-level analysis (i.e., group analysis) was performed to identify 

task-specific pattern of activation for each group (i.e., healthy controls, individuals with 

paraplegia, and individuals with tetraplegia). Significant differences between the control 

and SCI groups, between SCI without pain and SCI with pain groups during each task 

were also determined. Age, sex, level of lesion, and total intracranial volume (TIV) were 

included in the model as nuisance variables. All results reported were corrected for 

multiple-comparisons using the family-wise error (FWE). 

 For group comparisons, whole-brain analyses as well as region of interest (ROI) 

analyses were computed. The whole brain analysis was conducted for a comprehensive 

overview. Additionally, the ROI approach was performed to explore regional differences 

in task-related brain activation between all the groups. Thus, the ROIs were included as 

a mask in order to restrict the voxel-by-voxel statistical analysis (including FWE-

correction) to pre-specified brain areas [52]. These ROIs incorporated primary (S1) and 

secondary (S2) somatosensory cortices, primary motor cortex (M1), premotor cortex 

(PMC), supplementary motor area (SMA), thalamus, anterior cingulate cortex (ACC), 

and cerebellum and were generated using the WFU Pickatlas [33; 41].  The rational for 

the selected ROIs stemmed from all areas mainly being involved in the encoding and 

processing of either motor output (M1, PMC, SMA, and cerebellum) or sensory input 

(S1, S2, thalamus, ACC) [12; 50].  
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2.7. Euclidean Distance  
 The point at which the central sulcus meets the longitudinal fissure at the dorsal 

aspect of the brain was set as anatomical marker [65]. The Euclidean distance (ED) 

between the anatomical marker and the maximally activated voxel in task-specific ROIs 

(i.e., S1 for heat/brushing, M1 for active/passive wrist extension) was computed for the 

anterior–posterior, medial–lateral and superior–inferior coordinates. The ED between 

two points in a plane is calculated with the Pythagorean theorem and provides an 

absolute value independently of direction [18].  

2.8. Statistics 

 All statistical procedures were performed using IBM`s Statistical Package for the 

SocialSciences (SPSS) version 19.0 (Armonk, New York, U.S.). Non-parametric tests 

(Mann-Whitney-U and Kruksal-Wallis) were applied to determine significant differences 

in ED, peak activation, and cluster size between healthy controls, individuals with SCI 

and an intact C6 dermatome, as well as individuals with SCI and an impaired C6 

dermatome. Pain-specific changes of ED, peak activation, and cluster size were 

explored by comparing the control group with the neuropathic pain SCI group as well as 

the pain-free SCI group. P < 0.05 was considered significant. All multiple comparisons 

were Bonferroni corrected. Spearman correlation was applied to assess the relationship 

of EDs and pain parameters (e.g., intensity, duration). Level of lesion and injury severity 

(i.e., AIS score) were included as covariates. 

Contrast estimates of all ROIs from the SCI patients were extracted in order to perform 

Spearman correlations to identify associations between task-specific cortical activation 

and clinical characteristics (i.e., SCA, AIS motor and sensory scores, disease duration, 

level of lesion, pinprick and light touch scores, as well as pain intensity and duration). 
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3. Results 

3.1.  Injury and pain characteristics, subject demographics 

Of the 28 individuals with SCI, 11 had AIS complete (2 tetraplegic, 9 paraplegic) 

and 17 incomplete (12 tetraplegic, 5 paraplegic) injuries. In total, 13 patients (8 with 

paraplegia, 5 with tetraplegia) reported neuropathic pain (NP) (Table 2). The mean and 

maximal pain intensities were 4.5 ± 3.1 and 5.2 ± 3.8, respectively, and the duration of 

ongoing pain ranged from 4 to 33 years (mean 17.5 +/-12.3 years).  
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3.2. Validation of the temperature of heat packs 

From a total of 14 heat packs evaluated two were excluded because the average 

temperature did significantly differ from the other heat packs as the temperatures did not 

reach 50°C (i.e., 49.2 and 48.6°C) and the time to reach the stable temperature was 

longer than 20s. The temperatures of the remaining 12 heat packs averaged at 52.3°C ± 

0.4°C (range 51.8 - 53.1°C). The measured average t emperature is in line with the 

vendor’s specification (Trevolution by MIGROS, Switzerland, 

http://www.sportxx.ch/de/trevolution-shop). The time between initiating the crystallization 

and reaching the stable temperature ranged from 10 to 13s. 

3.3. Patterns of brain activation in response to brushing, heat stimulation, active 
and passive wrist extension 

There were no task-related activation differences between SCI and healthy 

controls (Figure 2). Active and passive wrist extension evoked significant increases in 

signal intensity in contralateral primary motor cortex, primary and secondary sensory 

cortex, premotor cortex, and cerebellum. Heat and brushing stimulation resulted in 

significant signal intensity increases in left (heat and brushing) and right secondary 

sensory cortex (heat only), and left primary somatosensory cortex (brushing only) (Table 

3).  
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3.4. Shifts in primary somatosensory and primary motor cortices topography 

Although the 

pattern of the task-

specific brain activation 

was similar across the 

group, there were 

significant differences 

in the location of peak 

activation. In 

individuals with SCI 

compared to control 

subjects, the analysis 

yielded significant 

differences in ED for 

heat and brushing 

(Figure 3), as well as 

for active movement 

(Figure 4a). In control 

subjects, the mean (±SD) X, Y, Z co-ordinates for active wrist extension: -33 ± 2.8, -28.8 

± 2.8, 60.7 ± 5.7; passive wrist extension: -33.8 ± 2.5, -27.9 ± 10.5, 63.9 ± 5.0; heat 

stimulation: -33.7 ± 3.1, -30.5 ± 6.4, 61.0 ± 4.0; brushing: -39.2 ± 9.6, -31.3 ± 8.5, 58.9 ± 

10.0. These coordinates yielded mean ED of 35.7 ± 3.3 mm, 36.3 ± 7.0 mm, 35.9 ± 3.6 

mm, and 42.5 ± 12.6 mm for active wrist extension, passive wrist extension, heat 

stimulation, and brushing, respectively. In individuals with SCI, the mean (±SD) X, Y, Z 
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co-ordinates for active wrist extension were -38.9 ± 4.7, -24.0 ± 4.3, 58.5 ± 4.7; passive 

wrist extension: -35.0 ± 2.7, -27.9 ± 2.8, 60.5 ± 5.8; heat stimulation: -46.6 ± 11.4, -17.7 

± 18.4, 44.1 ± 16.2; and brushing: -46.9 ± 11.4, -21.5 ± 8.4, 43.7 ± 10.3 (respectively). 

The mean ED between the anatomical marker and the MNI co-ordinates for active wrist 

extension were 42.2 ± 5.8 mm; passive wrist extension 37.5 ± 3.11 mm; heat stimulation 

56.1 ± 22.2 mm, brushing 55.9 ± 16.8 mm (Table 4). Pain-related changes in ED were 

found for primary motor cortex during the active wrist extension task (Figure 4b). While 

pain-free individuals with SCI exhibit an increase in ED compared to healthy controls, 

the ED of individuals with SCI reporting neuropathic pain did not differ from healthy 

control values. In pain-free individuals with SCI, the mean (±SD) X, Y, Z co-ordinates 

were active wrist extension: -35.7 ± 4.2, -26.0 ± 3.4, 59.3 ± 3.7, and the mean ED 

between the anatomical marker and the MNI co-ordinates were active wrist extension 
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37.7 ± 2.8 mm. In individuals with SCI suffering from NP, the mean (±SD) X, Y, Z co-

ordinates were active wrist extension: -35.1 ± 4.5, -26.1 ± 4.6, 57.8 ± 5.4; and the mean 

ED between the anatomical marker and the MNI co-ordinates were active wrist 

extension 40.5 ± 3.8 mm. Based on the classification with NP, EDs for brushing, heat 

stimulation, and passive movement were not significantly different.  

3.5.  Correlation with pain intensity and other variables 

The correlation between topographical shifts in primary motor cortex during active 

wrist extension and the intensity of chronic NP is illustrated in Figure 4c. The magnitude 

of cortical reorganization of primary motor cortex during active wrist extension negatively 

correlated with the intensity of ongoing neuropathic pain, such that shifts in peak 

activation were less pronounced in individuals with more severe NP compared to 

individuals with less severe NP. A sensitivity analysis indicated that the level and 

severity of injury had no impact on the correlation. No significant correlations were found 

between the ongoing pain and the task-specific brain activation during passive 

movement, heat stimulation, and brushing.  
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4. Discussion 

  Applying fMRI, the current study assessed reorganization in brain areas involved 

in processing sensorimotor information after SCI. Furthermore, the study aimed at 

determining if neuropathic pain constitutes a contributing factor for the observed 

plasticity. In line with investigations in phantom limb pain, we were primarily interested to 

examine primary motor cortex (M1) reorganization in response to movement, executed 

above the level of injury (i.e., intact spinal segments) [35; 40]. In response to SCI, 

topographical shifts in peak activity were observed following sensory stimulation 

(brushing and heat in primary somatosensory), as well as active movement (primary 

motor cortex). Interestingly, peak activation topography in response to wrist extension 

was significantly shifted to a greater extent in pain-free individuals compared to healthy 

controls and individuals with NP. A correlation analysis in individuals with NP revealed a 

significant negative relationship, such that larger topographical shifts in primary motor 

cortex were associated with less reported chronic neuropathic pain (i.e., individuals with 

higher NP intensities were more similar to healthy controls). In addition to demonstrating 

reorganization after SCI, these novel findings indicate that NP may preserve functional 

cortical topography.    

4.1. Preserved functional organization associated with neuropathic pain 

In agreement with previous studies, deafferentation due to SCI was shown to 

induce changes in the topographical organization of primary sensory and motor cortices 

[20; 21; 24; 27; 28; 62]. In contrast to Wrigley et al. [65], our findings suggest that 

cortical reorganization is dependent on individuals not reporting the presence of NP. 

This observation is further supported by a negative correlation between NP intensity and 

topographical shifts in primary motor cortex, indicating that individuals with more severe 
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NP are more similar to healthy controls than pain-free individuals (Figure 4c). The 

negative correlation we observed in primary motor cortex contrasts the maladaptive 

plasticity model, which fundamentally states that greater cortical reorganization is 

associated with more severe pain symptoms [15; 16; 51; 58; 65].  

Makin and colleagues recently demonstrated the need to revisit the relationship 

between pain and cortical organization, demonstrating intact functional and structural 

representations of the hand in amputees with phantom limb pain [40]. Pain was 

postulated to replace peripheral afferent input resulting from amputation, contributing to 

“maintained cortical representation” of the missing hand. Similar to amputation, cortical 

organization of the hand in primary motor area after SCI may be preserved by painful 

sensory input arising from areas of the body deafferented by damage in the spinal cord. 

Such an interpretation inherently suggests that preserved functional organization in 

primary motor cortex is a consequence of neuropathic pain. Conversely, cortical 

reorganization could also be preventing the development of neuropathic pain after SCI – 

a form of adaptive plasticity. In such a case, reorganization in primary motor cortex is 

protective and the failure to reorganize is maladaptive. 

Interestingly, we did not observe an effect of injury severity (i.e., completeness, 

lesion level, as well as AIS motor and sensory scores) on cortical reorganization. On one 

hand, this finding conflicts with the idea that residual sensation below the level of injury 

(i.e., NP) preserves functional activity in the brain. Several factors could explain why NP 

but not other forms of sensory sparring maintained cortical organization. First, clinical 

methods to assess residual sensory and motor sparing below the level of lesion may not 

be sensitive to detect subtle differences in injury severity. According to the ISNCSCI, 
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residual sensation (light touch and pinprick) is only examined using a 3-point scale (0-

absent, 1-impaired, and 3-normal).  Second, the intensity and persistence of below-level 

NP may represent greater afferent input compared to other residual sensation. In turn, 

chronic pain places higher demands on cortical structures, both ascending and 

descending, and thus has a greater impact on function.   

4.2. The primary motor cortex and NP 

Several studies in individuals with amputations have investigated the relationship 

between reorganization in primary motor cortex and phantom limb pain [13; 15; 35; 40]. 

Supporting the concept of maladaptive plasticity, evidence of functional reorganization in 

primary motor cortex has emerged from imagined and executed movement of the 

missing hand, and executed movement of the opposing (intact) hand [13; 16; 36; 39]. In 

healthy subjects, the primary motor cortex has been ascribed a role in processing 

normal responses to experimental noxious stimuli [29; 59]. Suggesting a role in anti-

nociception, projections from the motor cortex to the periaqueductal gray matter have 

been elucidated in naïve rats [47]. Indicative of a role in chronic pain, targeting the 

primary motor cortex with neuromodulatory therapies (e.g., repetitive transcranial 

magnetic stimulation of the primary motor cortex) has proven effective in the relief of 

some NP symptoms in patient populations [25; 34; 61]. Based on our findings, one 

potential avenue for therapeutic benefit of neuromodulatory therapies targeting primary 

motor cortex could be the induction of “adaptive plasticity” in individuals with NP. The 

responsiveness of peak topography shifting towards “normal deafferentation” 

organization in primary motor cortex is a potential avenue for future research.  
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4.3. Task-related activation of distinct brain areas 
 

In line with previous studies, our active and passive motor tasks elicited increased 

BOLD responses in the primary motor cortex, premotor cortex, primary sensory cortex, 

supplementary motor area, and cerebellum (active motor task only) [32; 37; 38]. The 

brushing task resulted in significant signal increases in the primary and secondary 

cortices [8; 65]. In line with previous studies, the secondary somatosensory cortex was 

also consistently active in response to noxious thermal stimulation [8; 49]. At a group 

level, however, activation in other prominent areas (e.g., thalamus, insula, and anterior 

cingulate) was not observed in response to noxious heat. A number of factors may 

explain why we did not observe activation in these areas, including methodological 

differences between studies. For example, in the current study, we applied a thermal 

stimulus using commercially available heat packs for 20 seconds, which nominally 

reached ~53oC. In general, our protocol involves longer duration and higher 

temperature, and a greater number of stimulation blocks (n=6) than comparable studies 

applying contact heat [2; 6-8; 45]. Due to repeated presentation of stimuli (noxious and 

non-noxious), activation in some brain areas (e.g., thalamus and ACC) may have been 

attenuated by habituation [2].  

4.4. Limitations 

In contrast to previous studies, we found no evidence for shifts primary 

somatosensory cortex (S1) topography related to the presence and intensity of NP 

during brushing in individuals with SCI compared to healthy control subjects [65]. 

Wrigley and colleagues found that the extent of cortical reorganization was associated 

with NP in response to brushing of the little finger, but not the thumb [65]. The present 
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study examined only the base of the thumb using different sensory modalities, and thus 

did not address reorganization in response to stimulation in other areas (e.g., little finger, 

lip). Also compared with Wrigley, a limitation of our study is the heterogeneity of the SCI 

sample, which included both individuals with tetra- and paraplegia, as well as all 

severities of injury [65]. While our statistical analysis took these differences into account, 

a more powerful study design may be required to examine the interaction between pain 

and specific injury characteristics. On the other hand, it is important to consider that NP 

after SCI is not related to level or injury severity [57], thus a heterogeneous sample is 

potentially more reflective of the clinical condition. Furthermore, we accounted for the 

variability between individuals with SCI and healthy volunteers by explicitly modeling the 

linear variance of age, sex, level of lesion, and total intracranial volume (TIV) in all GLM 

analyses. [5; 48]. Due to the small and heterogenetic sample size, weak effects may not 

have been detected. However, careful statistical tests ensure that the results are robust 

and controlled for Type I error – even when based on a small sample size. Lastly, 

employing an eight-channel head coil constitutes a limiting factor from a technical 

perspective. In fact, previous studies have demonstrated the advantages of 12- and 32-

channel head coils over an eight-channel coil including improved signal-to-noise ratio, 

enhanced resolution, and shorted scanning times [31; 64]. 

4.5. Conclusion 

 Cortical reorganization in sensory and motor systems after SCI was observed as a 

shift in peak activation topography during sensory stimulation (i.e., brushing and heat) 

and active wrist extension. In agreement with a recent study in individuals with phantom 

limb pain [40], shifts in the primary motor cortex topography were negatively correlated 
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with pain intensity, supporting an emerging theory that NP preserves cortical 

organization after deafferentation.  
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• Limited large scale cortical reorganization observed after human spinal cord injury  

• Neuropathic pain is not associated with increased plasticity in the brain 

• Reorganization in the CNS could be an adaptive process preventing development of 

neuropathic pain 




