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Abstract: A single gene deletion causes lack of leptin and obesity in B6.V-Lepob (obese; ob) mice

compared with wild-type C57BL/6J (B6) mice. This study compared the phenotype of nociception

and supraspinal antinociception in obese and B6 mice by testing 2 hypotheses: (1) microinjection

of cholinomimetics or an adenosine receptor agonist, but not morphine, into the pontine reticular

formation (PRF) is antinociceptive in B6 but not obese mice, and (2) leptin replacement in obese

mice attenuates differences in nociceptive responses between obese and B6 mice. Adult male mice

(n = 22) were implanted with microinjection guide tubes aimed for the PRF. The PRF was injected

with neostigmine, carbachol, nicotine, N6-p-sulfophenyladenosine (SPA), morphine, or saline (con-

trol), and latency to paw withdrawal (PWL) from a thermal stimulus was recorded. B6 and ob mice

did not differ in PWL after saline microinjection into the PRF. Neostigmine, carbachol, and SPA caused

PWL to increase significantly in B6 but not obese mice. An additional 15 obese mice were implanted

with osmotic pumps that delivered leptin for 7 days. Leptin replacement in obese mice restored the

analgesic effect of PRF neostigmine to the level displayed by B6 mice. The results show for the first

time that leptin significantly alters supraspinal cholinergic antinociception.

Perspective: This study specifies a brain region (the pontine reticular formation), cholinergic

neurotransmission, and a protein (leptin) modulating thermal nociception. The results are relevant

for efforts to understand the association between obesity, disordered sleep, and hyperalgesia.
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6.V-Lepob (obese; ob) mice differ from wild-type
C57BL/6 J (B6) mice by a single nonsense mutation at
the ob gene.22,53 This mutation results in the inability

of obese mice to produce the protein leptin. Obese mice ex-
hibit many phenotypic differences from congenic B6 mice
includingalteredmetabolic function, respiratoryabnormal-
ities34 and disrupted sleep.14,25 Human obesity is associated
with increased complaints of pain.21,30 This association en-
couraged us to determine whether the nociceptive pheno-
type was differentially expressed in B6 and obese mice.

The brain regions and molecules that link obesity and
nociception are complex and poorly understood. Admin-
istration of opioid, cholinergic, and adenosinergic drugs
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to the pontine reticular formation (PRF) alters nocicep-
tive responses of cat23,44 and rat.50 Therefore, the pres-
ent study was designed to determine whether PRF
administration of opioid, cholinergic, and adenosinergic
drugs alters latency of paw withdrawal from a thermal
stimulus as a function of mouse genotype and leptin re-
placement in obese mice. Portions of these results have
been presented in abstract form.47-49

Methods

Surgery, Recovery, and Behavioral
Conditioning

All experiments and procedures were approved by the
University of Michigan Committee on Use and Care of An-
imals. Adult male B6 (n = 13) and obese (n = 9) mice from
Jackson Laboratory (Bar Harbor, ME) were anesthetized
with2%to3% isoflurane (AbbottLaboratories,North Chi-
cago, IL) in 100% oxygen and placed in a David Kopf (Tu-
junga, CA) model 926 stereotaxic frame with model 923
mouse head holder and anesthesia mask. Isoflurane levels
were reduced to 1.3% to 1.8% and maintained through-
out the surgery. To enable access to the PRF, mice were
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implanted with 1 26-gauge stainless steel guide tube (Plas-
tics One, Roanoke, VA) aimed for coordinates 4.72 mm
posterior, 0.65 mm lateral, and 5.60 mm ventral to
bregma.36 Dental acrylic was applied to the guide tube
and 2 stainless steel screws were placed in the skull to pro-
vide an anchor surface for the acrylic. Additional obese
mice (n = 15) also were each implanted with an Alzet (Cu-
pertino, CA) model 1007D osmotic pump set to deliver lep-
tin at 15 mg/d for 7 days. All mice were allowed to recover
for 7 days after surgery, during which time they were han-
dled and conditioned daily to being placed in a Plexiglas
chamber. Animals were housed individually in a constantly
illuminated and temperature regulated room with free
access to food, water, and bedding.

Quantification of Nociception
Thermal nociceptive threshold was measured using an

IITC Life Sciences Model 336 Plantar Simulator Analgesia
Meter (Woodland Hills, CA) after a Hargreaves paw with-
drawal protocol.19 Mice were placed into individual Plexi-
glas chambers on a raised, tempered glass surface. A light
box beneath the glass surface provided a radiant heat
source as a 4 � 6 mm light beam. The adjustable heat
source was set at 40% active intensity and 10% idle inten-
sity (toallow aimingof thebeamwhen inactivated).To test
for thermal nociceptive threshold, the light was focused
on the plantar surfaceof one hind paw. The lightandtimer
were activated simultaneously and stopped when the
mouse reacted by moving its paw away from the thermal
stimulus. The time to the nearest 0.01 second between
turning on the light and the reaction of the mouse was re-
corded as the paw withdrawal latency (PWL). A cutoff time
of 15 second for the light beam was maintained through-
out all experiments to ensure no injury to the paw. Mea-
surements were taken at least 30 seconds apart and
alternated between right and left hind paws to prevent
habituation to the stimulus. PWL measurements were ex-
pressed as a percent change from premicroinjection base-
line values in the form of percent maximum potential
effect (%MPE)4 using the following equation:

%MPE ¼ PWL� baseline

cutoff � baseline
� 100%

Percent MPE provides a quantitative index of nocicep-
tion while accounting for individual differences between
mice, as well as stimulus cutoff time.

Experimental Procedure
At the beginning of each experiment, mice were al-

lowed 1 hour to habituate to the chambers before 5
baseline PWL measurements were taken, each 5 minutes
apart. The PRF was injected with 50 nL of either 0.9%
saline (vehicle control) or drug using a 31-gauge microin-
jector (Plastics One, Roanoke, VA) connected to a Hamil-
ton syringe via polyethylene tubing (PE 20). Three PWL
measurements were taken at each of 6 time points,
occurring at 10, 20, 30, 60, 90, and 120 minutes after in-
jection. Drug solutions (10 mM) microinjected included
the adenosine A1 receptor agonist N6-p-sulfophenylade-
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nosine (SPA; 222.7 ng), the acetylcholinesterase inhibitor
neostigmine bromide (151.6 ng), the cholinergic recep-
tor agonist carbachol (91.4 ng), the m-opioid agonist
morphine sulfate (379.4 ng), and the nicotinic acetylcho-
line receptor agonist nicotine base (81.1 ng). Repeated
microinjections into the same mouse were separated by
at least 5 days. Obese mice used for the leptin replace-
ment portion of the study received only 1 microinjection
of either saline or neostigmine on the 7th day of leptin
replacement. After PWL testing, obese mice were anes-
thetized and the osmotic pump was removed. Blood
was collected from a tail snip, and the serum was sepa-
rated and frozen for later verification of leptin delivery.

Histological Confirmation
of Microinjection Sites

Mice were deeply anesthetized and decapitated 2 to 5
days after the final microinjection experiment. For the
group of obese mice that received leptin, a final blood
collection was made immediately after decapitation. Se-
rum was separated and frozen for a subsequent leptin as-
say. Brains were quickly removed, frozen, and sliced in
40-mm coronal sections. Sections were mounted serially
onto glass slides, fixed with hot (80 �C) paraformalde-
hyde vapor, and stained with cresyl violet. Stereotaxic co-
ordinates of each microinjection site were obtained by
comparing the stained sections with those in a mouse
brain atlas.36

Assay for Leptin
Delivery of leptin to obese mice implanted with os-

motic pumps was verified using a leptin ELISA kit (Crystal
Chem Inc, Downers Grove, IL). Blood collected on day 7,
the last day of leptin treatment, was used to verify pres-
ence of leptin. Blood collected on day 9, 2 days after
pump removal, was used to verify degradation of leptin.
Positive and negative control samples from B6 and obese
mice, respectively, were also tested in each assay.

Statistical Analyses
All %MPE data were evaluated by 2-way analysis of

variance (ANOVA; drug by time and strain by time) for re-
peated or random measures. Additional inferential sta-
tistics included Student t test and Tukey Kramer post
hoc multiple comparisons test. All tests used P < .05 as
an indication of significance. Statistical tests were per-
formed in consultation with the University of Michigan
Center for Statistical Consultation and Research using
Statistical Analysis System v9.1.3 (SAS Institute, Inc,
Cary, NC) and GBStat (Dynamic Microsystems, Inc, Silver
Spring, MD). Data are reported as mean 6 standard error
of the mean (SEM).

Results

All Microinjection Sites Were Localized
to the PRF

Fig 1 shows that all microinjection sites were localized
to the PRF. Average 6SEM stereotaxic coordinates of the
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Figure 1. All microinjection sites were localized to pontine reticular formation regions comprised of the oral (PnO) and caudal (PnC)
pontine reticular nucleus.36 Microinjection sites for B6 mice (black dots, n = 13), obese mice (green dots, n = 8), and obese mice that
received leptin (purple dots, n = 15) are shown on 5 coronal drawings of the mouse brainstem. Numbers at the lower right of each
drawing indicate distance (mm) posterior to bregma. The top left figure shows a typical cresyl violet–stained tissue section with an
arrow pointing to the microinjection site. The top right figure represents a sagittal view of the mouse brain with vertical lines indi-
cating the anterior to posterior range of the microinjection sites. Brain drawings were modified from the Paxinos and Franklin mouse
brain atlas.36
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microinjection sites were 4.92 6 0.05 mm posterior, 0.75
6 0.07 mm lateral, and 4.61 6 0.08 mm ventral to bregma
for B6 mice. Microinjection coordinates for obese mice
that did not undergo leptin treatment were 4.85 6

0.04 mm posterior, 0.87 6 0.07 mm lateral, and 4.99 6

0.08 mm ventral to bregma. Microinjection coordinates
for obese mice that received leptin replacement were
4.94 6 0.02 mm posterior, 0.73 6 0.08 mm lateral, and
4.94 6 0.07 mm ventral to bregma.

Cholinomimetics and SPA Produced
an Antinociceptive Response in B6 Mice

Fig 2 (left column, A through E) shows %MPE as a func-
tion of time after microinjection of 5 drugs into the PRF.
Consistent with previous findings in cat,23 2-way ANOVA
revealed no significant change in %MPE after microinjec-
tion of morphine (Fig 2A). Nicotine administration also did
not significantly alter %MPE in B6 mice (Fig 2B). ANOVA
revealed that %MPE was significantly altered as a function
of drug after microinjection of SPA (Fig 2C; F = 5.53; df =
1,119; P < .05), carbachol (Fig 2D; F = 7.54; df = 1,119; P <
.05), and neostigmine (Fig 2E; F = 18.37; df = 1,107; P <
.001). Microinjection of SPA (Fig 2C; F = 4.04; df = 5, 119;
P < .01) and carbachol (Fig 2D; F = 2.74; df = 5,119; P <
.05) produced a significant time-dependent change in
%MPE. ANOVA also revealed a significant time by drug in-
teraction after microinjection of SPA (Fig 2C; F = 4.04; df =
5,119; P < .01). These interactions derive from the drug ef-
fects dissipating over time. Post hoc Tukey Kramer test
comparing drug and saline %MPE values revealed that
SPA (Fig 2C) significantly (P < .05) increased %MPE values
at 20 and 30 minutes after injection and that carbachol
(Fig 2D) significantly (P < .05) increased %MPE values at
10, 60, and 90 minutes after injection. Tukey Kramer test
also showed that neostigmine (Fig 2E) increased %MPE
values at all time points except 90 minutes after injection.
Consistent with hyperalgesia reported for some obese hu-
mans21,30 and rats,17 mean PWL in seconds was signifi-
cantly (P < .01) less for obese (5.31 seconds) than for B6
(7.0 seconds) mice after PRF microinjection of saline.

Morphine, Cholinomimetics, and SPA
Had No Effect on Thermal Nociception
in Obese Mice

Fig 2 (right column, F through J) reports %MPE as
a function of time and drug for obese mice. As observed
in the B6 mice, microinjection of morphine (Fig 2F) pro-
duced no significant change in %MPE. Obese mice also
showed no significant increase in %MPE caused by mi-
croinjection of nicotine (Fig 2G), SPA (Fig 2H), or carba-
chol (Fig 2I). After neostigmine administration (Fig 2J)
there was a significant time by drug effect (F = 3.97; df
= 5,107; P < .01). Post hoc Tukey Kramer analysis revealed
that %MPE was significantly (P < .05) increased by neo-
stigmine at 10 minutes after injection.

Leptin Replacement in Obese Mice
Restored the Antinociceptive Effect
of PRF Neostigmine Administration

To determine whether leptin replacement restores
the antinociceptive response to neostigmine, another
group of obese mice (n = 15) was given continuous lep-
tin for 1 week via osmotic pumps and the PRF was then
microinjected with either neostigmine or saline. Fig 3
shows the %MPE (mean 1 SEM) after PRF neostigmine
administration to 9 B6 mice and 11 obese mice that
received leptin replacement. There was no significant



Figure 2. Percent maximum potential effect (%MPE) values after microinjections into the pontine reticular formation of B6 and
B6.V-Lepob (obese) mice. Graphs showing data from B6 and obese mice for each drug are presented side by side to facilitate compar-
ison. The %MPE is a measurement of change from baseline (no injection) values. Higher %MPE values indicate a longer delay in mov-
ing the paw away from the stimulus, consistent with decreased nociception. Saline microinjections (vehicle control) produced %MPE
values around 0, indicating little change from baseline (no injection) values. Asterisks indicate a significant difference from saline at
designated time points.
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difference (t = 0.29; P > .05) for B6 mice (49.85 1 11.3)
compared with obese mice that received leptin (46.33
1 3.9). Thus, leptin replacement in obese mice restored
%MPE to levels displayed by B6 mice. Seven days of lep-
tin replacement also reduced the body weight of obese
mice by approximately 21% compared with preleptin
treatment weight (Table 1). Measures of leptin and
body weight confirmed leptin delivery for all 15 obese
mice (Table 1).

Discussion
The results show for the first time that microinjection

of cholinomimetics and an adenosine A1 receptor



agonist, but not morphine, into the PRF of B6 mouse
modulates thermal antinociception. Cholinomimetics
and the adenosine A1 receptor agonist did not produce
a significant antinociceptive response in obese mice.
These differences in nociceptive phenotype are of inter-
est relative to the fact that B6.V-Lepob and B6 mice differ
by lack of the leptin-producing ob gene. The finding that
leptin replacement in obese mice restored the thermal
antinociceptive response to neostigmine supports the in-
terpretation that the protein leptin can modulate supra-
spinal cholinergic antinociception. The results are
discussed in relation to the emerging understanding of
a significant interaction between obesity, sleep disrup-
tion, and pain perception.

Supraspinal Cholinergic Antinociception
For B6 mice, time course measures of %MPE showed

that PRF microinjection of SPA, carbachol, and neostig-
mine caused significant antinociceptive responses (Fig
2). PRF administration of morphine and nicotine did
not alter the time course of %MPE. These results are sim-
ilar to the effects of morphine, cholinomimetics,23 and
SPA44 microinjected into homologous regions of cat
PRF. Similar drug effects observed in mouse, cat, and on-
going studies of rat,50 support the interpretation that
the present thermal antinociceptive effects of SPA, car-
bachol, and neostigmine are not species-specific.

Neostigmine prevents the breakdown of the endoge-
nousneurotransmitter acetylcholine (Ach). Thismechanism
of action makes the antinociceptive effects of neostigmine
particularly relevant for understanding the role of the PRF
in thermal nociception. Spinally administered neostigmine
has been used in patients with promising antinociceptive
results.11 Intranasal nicotine also has been shown to reduce
postoperative pain in women recovering from uterine sur-

Figure 3. Leptin replacement restored the antinociceptive ef-
fect of pontine reticular formation neostigmine in obese mice.
Graph shows %MPE values averaged over the course of 2 hours
after microinjection of saline or neostigmine for obese mice, B6
mice, and obese mice that received leptin replacement. Asterisks
indicate a significant difference (P < .05) between response to
neostigmine and saline.
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gery.15 In contrast to B6 mice, the congenic line of obese
mice showed no significant enhancement of antinocicep-
tive behavior after microinjection of cholinomimetics or
SPA (Fig 2). These results are in line with data showing
that obese mice have a differential sleep response to PRF
neostigmine administration compared with B6 mice.14

Microinjection of morphine in obese and B6 mice (Fig
2, A and F) produced no change in nociceptive response
when compared with microinjection of saline. This find-
ing is consistent with previous data from cat23 and sug-
gests that the PRF is not a brain region that contributes
to the pain-relieving effect of morphine. Morphine ad-
ministered to the PRF has been shown to decrease acetyl-
choline release in the PRF29 and to inhibit the rapid eye
movement (REM) phase of sleep.27

The PRF is comprised of the pontine reticular nucleus,
oral part (PnO), and caudal part (PnC).36 The present focus
on the PRF as a brain region modulating supraspinal ther-
mal antinociception derives, in part, from the fact that
pain and sleep are inversely related and that both cholin-
ergic28,45 and adenosinergic10 neurotransmission in the
PRF regulates sleep. Sleep disruption is a leading com-
plaint of patients experiencing pain and pain patients fre-
quently exhibit disrupted sleep.8,24 Depriving healthy
subjects of 1 night of REM sleep causes a hyperalgesic re-
sponse to nociceptive stimuli.37 The foregoing points are
clinically relevant because opioids disrupt the sleep/wake
cycle and decrease the amount of REM sleep.7,27

Obese humans have disordered sleep,5,20,39,40,46 and
diet-induced obese mice show altered sleep patterns
that are reversed with weight loss.18 Rat models of met-
abolic syndrome52 are hyperalgesic for acute17 and
chronic32 pain and have disrupted sleep.33 The foregoing
evidence and the present results support the view that
the PRF is 1 brain region modulating the association be-
tween obesity, disordered sleep, and nociception.

The Role of Leptin in Antinociception
Leptin was discovered in 199453 and has been widely re-

ported to function as a satiety factor involved in meta-
bolic regulation of energy expenditure and energy
input.16 Leptin receptors are localized to the arcuate nu-
cleus38 and ventromedial hypothalamus,12 further dem-
onstrating that leptin regulates feeding and energy

Table 1. Leptin Replacement in Obese Mice

LEPTIN 6 SEM (NG/ML)
% DECREASE

IN BODY WEIGHT 6 SEM

B6 control 5.24 6 0.50 —

Obese control 0.03 6 0.01 —

Obese leptin

day 7

24.50 6 1.36 20.82 6 2.05

Obese leptin

day 9

0.02 6 0.01 21.89 6 2.11

NOTE. Leptin replacement was verified using an ELISA. Leptin day 7 values indi-

cate leptin concentrations (ng/mL) on the last day of leptin treatment. Leptin day

9 values were tested to verify elimination of leptin 2 days after removal of the

osmotic pump. Leptin replacement also decreased body weight in obese mice,

as expected.

Leptin Modulates Supraspinal Antinociception



balance.16 Studies of obese mice have provided insight
into the roles of leptin. Obese mice have deficiencies in
brain development,1 immunology,26 breathing,34 and
endothelial function51 and show disrupted sleep.14,25 Re-
placement of leptin has been found to restore partial or
complete function associated with leptin deficiencies.
Leptin levels have also been shown to be influenced by
the duration of sleep.41 In particular, there exists a corre-
lation in obese humans between short sleep duration and
decreased levels of leptin.43 The present results show that
leptin replacement for 7 days restored the antinocicep-
tive effect of PRF neostigmine such that the %MPE re-
sponse of obese mice to neostigmine was no different
from the response of B6 mice (Fig 3). Leptin replacement
for 7 days was modeled after previous studies showing
that leptin normalized breathing in leptin deficient
mice.34 The Table 1 data show that leptin replacement
produced serum leptin levels in ob mice that were about
5 times greater than levels of leptin in B6 mice. The mech-
anisms contributing to this 5-fold increase in leptin are
not known. These data encourage future studies to deter-
mine whether leptin delivered to normal B6 mice can
enhance thermal antinociceptive responses.

The mechanisms by which leptin altered supraspinal
cholinergic antinociception are unknown. Administering
neostigmine into the PRF decreases the degradation of
ACh released from the terminals within the PRF. These
ACh-releasing terminals originate from cholinergic neu-
rons localized to the laterodorsal and pedunculopontine
tegmental nuclei.42 Leptin can modulate cholinergic
function by altering expression of choline acetyltransfer-
ase,13 the enzyme responsible for synthesis of ACh. It
remains to be determined whether replacing leptin in
obese mice increases the production of acetylcholine.
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