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Abstract: Epigenetic regulation of gene expression is a rapidly growing area of research.
Considering the longevity and plasticity of neurons, the studies on epigenetic pathways in the
nervous system should be of special interest for both epigeneticists and neuroscientists. Activation
or inactivation of different epigenetic pathways becomes more pronounced when the cells experi-
ence rapid changes in their environment, and such changes can be easily caused by injury and inflam-
mation, resulting in pain perception or distortion of pain perception (eg, hyperalgesia). Therefore, in
this regard, the field of pain is at an advantage to study the epigenetic pathways. More importantly,
understanding pain from an epigenetics point of view would provide a new paradigm for developing
drugs or strategies for pain management. In this review, we introduce basic concepts of epigenetics,
including chromatin dynamics, histone modifications, DNA methylation, and RNA-induced gene si-
lencing. In addition, we provide evidence from published studies suggesting wide implication of dif-
ferent epigenetic pathways within pain pathways.

Perspective: This article provides a brief overview of epigenetic pathways for gene regulation and
highlights their involvement in pain. Our goal is to expose the readers to these concepts so that

pain-related phenotypes can be investigated from the epigenetic point of view.
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nisms confer pluripotent progenitor cells that possess
identical genomic DNA with the ability to differentiate
into morphologically and functionally distinct popula-
tions, such as neurons, astrocytes, and Schwann cells.
This wide range of differentiation originates from
modulating genome expression in different manners
that are inheritable with each somatic cell division.
Beyond determination of cell fate, epigenetic regula-
tion is of special interest in the nervous system due to
the longevity of neurons. Unlike other organs in the
body, the regeneration rate of neurons in both the cen-
tral and peripheral nervous systems is remarkably low,
suggesting that neurons are designed to survive for
decades, possibly even the perpetuity of the organism.

549


Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:urrutia.raul@mayo.edu
mailto:urrutia.raul@mayo.edu
http://dx.doi.org/10.1016/j.jpain.2013.01.772
http://www.jpain.org
http://www.sciencedirect.com

550 The Journal of Pain

In order to survive such a long period of time, neurons
must possess the greatest capacity for adaptation to
changes in the environment, including physical and
psychological stress. Given the inherent stability of
DNA, such flexibility is most likely the result of
epigenetic regulation of genes.

Easily detectable phenotypes that reflect the wide
range of epigenetic mechanisms in the neurons are
observed in extreme conditions such as development,
where the cells experience rapid environmental changes
and chemical stress. Likewise, injury and inflammation
cause such environmental changes to the innervating
neurons that perceive pain. So far, the focus of
pain-related research has been mainly on genomics and
pharmacogenomics.®®444> Yet, recently, an increasing
number of investigators have started to realize the
importance of epigenetic mechanisms that link the
phenotype and genotype related to pain.”! Those studies
on epigenetics of pain are reviewed in this manuscript as
initial evidence showing participation of epigenetic
mechanisms in pain state.

Understanding the mechanism of how injury and
inflammation induce changes in gene expression leading
to changes in pain perception (eg, analgesia or
allodynia) would allow us to develop better therapeutic
strategies. Our goal in this review is to introduce the
basic concepts of epigenetics and to review direct
evidence of epigenetic mechanisms involved in pain
signal. Epigenetic drugs that are already available for
other diseases will be discussed briefly as well. In this
review we will 1) briefly discuss the achievement and lim-
itation of pain genetics; 2) discuss basic aspects of
molecular mechanisms that are important for under-
standing gene regulation; 3) examine existing evidence
of epigenetic mechanisms’ contribution to pain
pathways by reviewing transcriptional regulation of
opioid receptors; and 4) mention some epigenetic drugs
that may be used for intervention.

Genetics and Pharmacogenomics in Pain
and Analgesia

Pain has an impact on the patient’s life at several levels.
In addition to the suffering, pain, especially chronic pain,
can impair the individual’s ability, quality of life, mood,
and sleep, which can result in difficulties in personal and
social life. Even though objective assessment of pain has
been challenging, many self-report scales have been
developed in order to standardize the measurements
and have been used successfully in both clinical practice
and research.”® The interindividual variability in pain re-
sponse and analgesic response to pharmacological agents,
and variability in analgesic response patterns in different
strains of mice, have indicated genetic basis of pain percep-
tion."">%6% Following such observation, significant efforts
have been made to identify genes and polymorphisms that
are involved in specific pain phenotype and to develop
tailored therapy for each patient.'*”>

Numerous genes and single nucleotide polymorphisms
(SNPs) have been identified to affect pain perception and
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response to analgesic drugs. However, accumulating
data have been showing some controversial results on
the genetic associations with pain-related phenotype.”®
For example, the most prevalent SNP on human p-opioid
receptor (ORPM1A118G, asn40asp, rs1799971) was
initially reported to show increased binding affinity
for B-endorphin and to cause subsequent increase in
G-protein coupled potassium channel activation,
compared to the wild type.? Yet, more recent indepen-
dent study found no significant difference in ligand-
binding affinity, including that of B-endorphin, and
in the activation of intracellular signaling cascade,
between cells expressing the mutant and the wild-
type ORPM1." Similarly, catechol-O-methyltransferase
(COMT) val158met SNP (rs4680) was reported to be asso-
ciated with higher pain sensitivity by some groups, while
others found the same SNP to have no association with
pain perception.3*8° Such inconsistencies from genetic
studies suggest possible existence of additional, DNA
sequence independent, factors that play a role in pain
phenotypes. Such pathways, proteins, and mechanisms
are essential topics in the field of epigenetics.

Fundamental Concepts of Epigenetics

Chromatin Dynamics Forms the Basis of
Epigenetics

Chromatin is the structural conformation of DNA in
association with assembly proteins. The nucleosome is
the fundamental repeating unit of chromatin, consisting
of about 140 base pairs of DNA wrapped around
a histone octamer (consisting of 2 copies of H2A, H2B,
H3, and H4). Chromatin is dynamic, often switching
between 2 higher order chromatin structures: euchroma-
tin and heterochromatin.

Euchromatin is decondensed chromatin and consists
largely of coding sequences that are “poised” for
transcription.®® The transcriptional activity of the genes
in euchromatin is determined by recruitment of
transcription factors and other nucleosome-remodeling
complexes, which may be either repressors or activators.
On the other hand, heterochromatin is a highly
compacted chromatin structure where genes are
silenced. Heterochromatin is known to define centro-
meres, facilitating chromosome segregation during
mitosis and meiosis. Also, heterochromatin is formed at
telomeres, ensuring stability of genome. Histone tail
deacetylation and methylation of specific lysine residues
recruit heterochromatin-associated proteins (eg, HP1)
that establish DNA methylation and the formation of
heterochromatin.®'-¢®

The nucleosome is also dynamic with posttranslational
histone modifications, subunit variation, DNA methyla-
tion, and small noncoding RNA interaction. All these mod-
ifications on nucleosomes are interrelated and regulate
euchromatin and heterochromatin formation in an orches-
trated manner.3? In other words, the complexity achieved
by combinations of all the different modifications men-
tioned above provides multidimensional layers to the
readout of DNA and results in different patterns of gene
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expression or silencing from the same genome. Therefore,
in order to gain a complete understanding of the epige-
netic regulation of gene networks, all the basic paradigms
must be incorporated into an integrated picture.

The Histone Code and Subcode
Hypothesis: Codifying Gene Activation
and/or Silencing

Histones are small, basic proteins that are extremely
conserved throughout evolution. The first 20 or so amino
acids of histones, known as the histone tail, are very highly
conserved, and they structurally extend from the nucleo-
somal disk, which allows access of posttranslational
modification enzymes.>® In the histone tail, serine (S),
threonine (T), and tyrosine (Y) residues can undergo phos-
phorylation, and other residues, such as lysine (K) and
arginine (R), can be methylated, acetylated, ubiquiti-
nated, and sumoylated.”® Furthermore, lysine residues
have potential to be mono-, di-, ortri-methylated.42 These
histone modifications are known as “marks” and provide
specific docking sites for many chromatin-associated pro-
teins. The Histone Code hypothesis predicts that the type,
location, and combination of histone marks determine
recruitment of a specific chromatin-associated protein
or transcription factor, and subsequently determine
whether the gene would be expressed or silenced under
a particular set of circumstances.>?

The histone marks can be created, recognized, and
reversed by different proteins: writers, readers, and
erasers respectively.®® The writers include histone
acetyltransferases (HATs), histone kinases, and histone
methyltransferases.”®’> Marks imprinted by writers are
recognized by the reader proteins containing domains
engineered to recognize a particular mark, e,
chromodomain for methylation and bromodomain for
acetylation.>** The modifications can also be reversed
by eraser proteins, such as histone deacetylases (HDACs),
phosphatases, lysine specific demethylases (LSDs), and
Jumonji domain-containing proteins. The histone sub-
code hypothesis predicts that some of these chromatin-
associated proteins may also be posttranslationally
modified to create an additional layer of the chromatin
code, a subcode, that determines transcriptional activity
of the target genes.>" This hypothesis was supported by
changes in localization of pan-nuclear HP1y, which
becomes exclusively euchromatic with phosphorylation
of Ser 83 residue, suggesting that p-Ser 83-HP1y may
adopt different modes for silencing the target gene
compared to nonphosphorylated HP1v.>" Together, the
histone code and histone subcode hypotheses show
how posttranslational modifications of different nuclear
proteins precipitate differential protein complex
recruitment, gene expression, and chromatin dynamics.

Nucleosome Remodeling Machines and
Histone Variants

In addition to histone modifications, chromatin struc-
tures can be altered by recruitment of nucleosome remod-
eling complexes. Nucleosome remodeling machines, such
as SWI/SNF, nucleosome remodeling and deacetylation
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(NuRD), and chromatin accessibility complex (CHRACQ),
can move nucleosomes along DNA in ATP-dependent
manner.*”77:88 Several of these molecular machines have
been found to be conserved from yeast to human.*%:82
The SWI/SNF family of nucleosome remodeling
complexes transiently alters the structure of nucleosome,
exposing DNA.®7 Similarly, facilitates chromatin transcrip-
tion (FACT) initiates nucleosome release from DNA and al-
lows transcriptional elongation by RNA Pol 1184 These
nucleosome remodeling complexes work in concert with
histone modification complexes such as Spt-Ada-Gcn5-
acetyltransferase (SAGA) to regulate gene transcription.®

Other nucleosome remodeling complexes, such as the
SWR1 complex, are involved in exchange of histones and
histone variants.>” There are a number of histone
variants that may occupy a nucleosome to yield an effect
on transcriptional activity.?? For instance, histone H3 has
3variants in mammals, H3.1, H3.2, and H3.3, which differ
from each other by 1 to 4 amino acids in the tail.>® These
small differences allow the variants to have unique
patterns of modifications and different affinities to the
binding factors. Together, the combinatorial effect
between histone variants and their participation in
the Histone Code, known as the histone “barcode,”
introduces another level of complexity to transcriptional
regulation.?? The mechanisms and timing of histone
variant exchange and synthesis, and interrelationship
between the chromatin dynamics and nucleosome
remodeling is an active area of research.

Sequence-Specific Recruitment of
Chromatin-Associated Protein
Complexes

In order for the nucleosome remodeling complexes and
histone modification complexes to function properly in
regulating gene transcription, they must be recruited to
the correct location at the correct time. In this regard,
DNA sequences, especially the promoter sequences, play
asignificant role. Promoter footprinting and electropho-
retic mobility shift assays were utilized to identify se-
quence-specific transcription factors.>' Subsequent
investigations on these sequence-specific transcription
factors revealed DNA-binding domains and transcrip-
tional regulatory domains, indicating that these proteins
serve as adaptor proteins between DNA and chromatin-
associated protein complexes.>® For example, the Sp1/
KLF (Kruppel-like factor) family was established based
on their similarities in the DNA-binding domain, which
is composed of 3 zinc fingers. Some of the members of
this transcription factor family were able to compete
with each other for the same promoter, and due to the
variations in their regulatory domain, promoter occu-
pancy of a specific family member resulted in distinct
levels of transcription.>® Proteins that interact with tran-
scription factors to promote transcription are called coac-
tivators, while proteins that repress transcription are
called corepressors. These nonhistone chromatin proteins
function as either coactivators or corepressors via mediat-
ing histone modifications such as acetylation, methyla-
tion, and ubiquitination.
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DNA Methylation

In addition to the basis of sequence-specific
recruitment of transcription factors, DNA can also
function as a template for modifications. Unlike histone
modifications, which can occur in great variability, from
methylation to ubiquitination, DNA modification is
limited to methylation of cytosine residues. DNA
methylation was the first type of epigenetic changes to
be studied as a mechanism for the inactivation of tumor
suppressors. DNA methylation occurs on di-nucleotide
CpGs by DNA methyltransferases (DNMTs), and the
methylation is enriched at noncoding regions.'> DNA
methylation is closely related to heterochromatin
formation and chromatin silencing. DNMTs interact
with HP1 and the SUV39H1 histone methyltransferase,
which functions to establish tri-methylation of histone
H3-K9 and induce heterochromatin formation and
gene silencing.’®’?> DNA methylation-mediated gene
silencing has physiological significance. First, hyperme-
thylation of 1 of the 2 parental alleles of a gene is
a process of genomicimprinting that ensures monoallelic
expression of genes.> Second, hypermethylation of
repetitive genomic sequences prevent chromosomal
instability and translocations.3*

DNA methylation has been classified into 2 types,
namely de-novo and maintenance methylation.'
Human cells utilize 3 DNA methylases: DNMT1, DNMT3a,
and DNMT3b. DNMT3a and 3b function to establish
embryonic methylation patterns, whereas DNMT1 works
at the replication forks during DNA replication to main-
tain the methylation patterns in semiconservative
way. However, DNMT1 appears to be inefficient at
maintaining the methylation of many CpG dense
regions. Therefore, the de-novo activities of DNMT3a
and DNMT3b are also necessary in somatic cells in order
to reestablish the methylation patterns.® The mechanism
of DNA methylation inheritance is more obvious than
many other epigenetic regulators and the mark appears
to be very stable. However, the presence of de-novo
DNMTs suggests that certain amount of flexibility to
this mechanism may also exist.

RNA-Directed Gene Silencing

Beside DNA and histone modifications, RNA
interference (RNAi) machinery has been linked to
posttranscriptional gene silencing and heterochromatin
formation. RNAi machinery, including proteins like Dicer,
Argonaute, and RNA dependent RNA polymerase
(RdRP), breaks down double stranded RNA into small
RNA molecules, named microRNA (miRNA), to interact
and degrade the mRNA of homologous genes and inhibit
translation.”® Studies in Schizosaccharomyces pombe
have shown that mutations of any proteins in the RNAi
machinery lead to defects in chromosome segregation
due to unstable centromeric heterochromatin.?># This
evidence suggests the role of miRNA in heterochromatin
formation, in addition to posttranscriptional gene
silencing. Similar evidence has been found in mammals.
For example, mouse embryonic stem cells with depletion
in a component of RNAi machinary, Dicer, showed
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significant decrease in the formation of centromeric
heterochromatin and failed to differentiate.®®* In
human-chicken hybrid cell line, loss of Dicer resulted in
abnormal localization of heterochromatin proteins, de-
pletion of H3-K9 methylation, accumulation of abnormal
mitotic cells with premature sister chromatid separation,
and ultimately cell death.'® Therefore, these studies indi-
cate an active participation of RNAs in chromatin remod-
eling and gene silencing. In summary, there are multiple
layers of regulatory mechanisms that are functionally
interrelated for target gene silencing or activation.

Pain Research: Opening the Door to
Epigenetics

The field of painis at a great advantage to study the epi-
genetic pathways. The wealth of information gained from
previous molecular studies, microarray studies, and pain
genetics provide a robust ground for further epigenetic
investigations to come.3®4>°881 Eirst, molecular studies
have shown that injury and inflammation induce release
of steroid hormones and proteins such as glucocorticoid,
nerve growth factor, and substance P.>¢°8¢ These steroid
hormones and proteins bind to specific receptors to
activate intracellular signal pathways and intranuclear
transcription regulatory pathways for gene networks.
Second, microarray data provide an extensive list of
target genes to be studied. In combination with the
molecular studies, this information allow us to
concentrate on exploring epigenetic mechanisms,
answering questions such as which complexes appear
under which circumstances, how do different complexes
or pathways interact with each other, and what are the
target gene networks for each mechanism. Third, the
data from pain genetics provide an additional list of
genes to be studied, and some SNP information can be
incorporated into DNA methylation studies. Among
pain-related genes, opioid receptors are among a few ex-
amples of genes in which a substantial amount of investi-
gation on transcriptional regulation has been done.
Therefore, thisopens up a great opportunity for investiga-
tors to study the effect of pain on gene transcription. In
this section, we will use transcriptional regulation of an
opioid receptor (ORPM1) as a model to illustrate how dif-
ferent aspects of epigenetic mechanisms we have dis-
cussed in the previous section can come together to
regulated transcription of single gene.

Opioid receptors are G protein-coupled receptors, acti-
vated in response to opioids. They play critical roles in reg-
ulation of the pain experience, stress response, and action
of analgesic opioid drugs. Therefore, understanding the
expression patterns of these genes during pain state isim-
portant for generating strategies for pain management.
There are 4 subtypes of opioid receptors, which are initially
determined by their ligand-binding characteristics: p-opi-
oid receptors (OPRM:s), 3-opioid receptors (OPRDs), k-opi-
oid receptors (OPRKs), and nociceptin receptors (ORLs).%°
Among these receptors, OPRMs have been identified to
play a critical role in morphine response, tolerance devel-
opment, and physical dependence.®” Mechanisms of
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transcriptional regulation of OPRMs have been described
in a number of recent studies. As expected, there appears
to be several layers of mechanisms that work together (ie,
DNA methylation, histone modification, and miRNA
induced repression).2%8°

A number of sequence-specific transcription factors,
including Sox18, Sp1, poly(rC)-binding protein (PCBP),
cAMP response element-binding protein (CREB), spleen
focus-forming virus proviral integration 1 (PU.1), activator
protein 1 (AP1), and nuclear factor kappa-light-chain-en-
hancer of activated B cells (NF-kB), have been identified to
bind promoterregion of ORPM1 and to alter the transcrip-
tion activity.>26:27:304041.48 py 1 \yas identified to be
transcriptional repressor while others were activators.
Most of these transcription factors are known to bind to
specific DNA sequence and recruit chromatin-associated
protein complexes to induce histone modifications and/
or DNA modifications. For example, Sp1 and CREB have
been shown to interact with p300 and/or CREB-binding
protein (CBP), which are HATs, usually resulting in tran-
scriptional activation of the target gene.®>8° Questions
addressing how these transcription factors activities are
regulated, the existence of competition or cooperativity
between transcription factors, and in what
circumstances these transcription factors gain access to
the target gene promoters remain to be investigated.
More importantly, identities of epigenetic regulatory
complexes (ie, histone mark writers, readers, and
erasers) that are recruited specifically to the OPRM1
promoter by these transcription factors are crucial
information to further our understanding of epigenetic
gene regulations in pain pathways.

Some of the chromatin-associated proteins on the
OPRM1 promoter have been identified by chromatin im-
munoprecipitation (ChIP) assays.’® In this study, the
authors identified transcription factor Sp1 binding, re-
cruitment of nucleosome remodeling proteins Brg1 and
BAF155, dissociation of transcriptional corepressors
HDAC1, HDAC3, mSin3A, and MeCP2 on this promoter,
and subsequent activation of transcription during neuro-
nal cell differentiation. Brg1 is the ATPase subunit and
BAF155 (Brg1-associated factor, 155kD) is a ubiquitous
component of the nucleosome remodeling SWI/SNF com-
plex. Other studies have indicated direct interaction be-
tween Brg1 and Sp1 to activate target gene expression.>>
Similar mechanisms of SWI/SNF complex-induced recruit-
ment of RNA polll may apply to OPRM1 regulation. The
mSin3A is known to form a complex with HDAC proteins
to induce histone deacetylation, which usually results in
transcriptional repression.?’ Concordantly, the loss of
mSin3A, HDAC1, and HDAC3 from the promoter regionre-
sulted in decrease of H3 and H4 acetylation.?® Additional
changes in histone modification, such as increase in
H3K4me2 and decrease in H3K9me2, have been observed
with transcriptional activation.?® This result indicates in-
volvement of more chromatin-associated proteins that
have not been identified yet (ie, MLL complex for H3K4
methylation, G9a and Suv39 H3K9 methyltransferases,
and JmjC-domain containing H3K9 demethylases).

In addition to histone modifications, nucleosome
remodeling, and transcription factor interactions
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mentioned above, DNA methylation also plays a critical
role in OPRM1 transcription. First, when the gene was
activated by neuronal cell differentiation, the promoter
region became demethylated and MeCP2 (methyl CpG-
binding protein 2) level decreased.”® Further study
showed that disruption of MeCP2 expression or addition
of an artificial demethylation agent, 5-Aza-C, resulted in
activation of OPRM1 gene, suggesting the DNA methyla-
tion on the promoter region was actively repressing the
gene.” Second, an SNP in OPRM1 (A118G, rs1799971)
was shown to introduce a new CpG-methylation site, re-
sulting in enhanced methylation of OPRM1 DNA, which
leads to reduced expression of the protein.>? This
result is a good example showing how genetic studies
can be reevaluated from the epigenetics point of view.
Many of the proteins introduced so far in relation to
OPRM1 transcription are rather large and work in
multicomponent complexes. How all these complexes
and proteins can come together in restricted space
around the promoter region (~800 bp) is an intriguing
question to be investigated.

Two miRNA species have been identified for regulation
of Oprm transcription. First, miRNA23b, cloned from
mouse brain cortex and hippocampus, was found to inter-
act with 3’'UTR of Oprm mRNA to decrease the polysome-
mRNA association rate, and to ultimately result in
decreased translation.'%%%87 second, let-7 family miRNAs,
which includes 9 distinct, mature 22-nucleotide
sequences with only 1 to 4 nucleotide differences from
the canonical let-7a, were also found to downregulate
translation by interacting with 3’'UTR of Oprm mRNA.2*
Questions such as under what circumstances these
miRNAs become active, do these miRNAs interact with
any other mRNAs, and is there interaction between these
two miRNA mechanisms remain to be investigated.

As we have reviewed here, evidence for epigenetic
regulation of pain pathways is emerging from all
directions. Transcription of the OPRM1 is regulated by
histone  modifications, nucleosome remodeling,
sequence-specific transcription factor binding, DNA
methylation, and miRNA interactions, all at the same
time. So far, the studies presented here have investigated
each individual aspect of epigenetic mechanisms in
isolation. With all the information we gained from
individual studies, the importance of understanding
how all of the mechanisms are orchestrated in a cell in
response to injury or pain is apparent.

Epigenetic Mechanisms and Interventions
in Pain Management

An important advantage for bringing epigenetic drugs
into therapeutics is in the reversible nature of epigenetic
pathways.”® Unlike genetic mutations, if a pain pheno-
type is caused by epigenetic phenomena, such as DNA
methylation or histone modifications, they can be chem-
ically reversed. Such involvements of epigenetic mecha-
nisms in pain have been already implicated and
accordingly some therapeutic strategies for pain
management have been suggested.*”'® However, as
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implicated above with the opioid receptor, transcription
is regulated by complex multilayered pathways that
involve proteins with multiple target genes and
substrates. Therefore, understanding the epigenetic
pathway is critical to applying epigenetic drugs for
intervention. In this section, we will briefly review
some of the available epigenetic drugs and how they
may be applicable for pain management.

Histone deacetylase inhibitors (HDACis) have been
evaluated as therapeutic agents in several conditions
including cancer, autism, and neuropathic and inflam-
matory pain.#%®7° HDACis induce an increase in
acetylated histones by blocking histone deacetylase
activity of HDAC proteins. In general, histone
acetylation has been associated with transcriptional
activation. Recent study has investigated the potential
of HDACis as analgesic drugs. Based on studies
reporting that the upregulation of mGlu2 in dorsal
root ganglia can induce analgesia and that
transcription of mGlu2 is regulated by histone
acetylation, the authors tested 2 HDACis, MS-275
(benzamine derivative) and SAHA (suberoylanilide
hydroamic acid), in a mouse model of persistent
inflammatory pain.” With 5-day treatment, both HDACis
showed analgesic effect on the mice and increased
mGlu2 expression in dorsal root ganglia without chang-
ing the expression of mGlula, mGlu4, or mGlu5 recep-
tors. Another study showed that treatment with an
HDACI, Trichostatin A, in a mouse model of endometri-
osis induced transient decrease in the capsaicin-
activated type-1 cation channel (TRPV1) and significant
improvement in response to a noxious thermal stimulus,
suggesting its role as an analgesic drug.>3

While these examples appear promising, with current
knowledge, clinical use of these agents is still limited.
As we have previously discussed, HDAC proteins have
multiple target genes. Therefore, it is evident that
HDACis will inhibit deacetylation not only of desired
chromatins, but also of other chromatins, which may re-
sult in severe side effects. Drugs that affect DNA methyl-
transferase activities, such as glucosamine and valproic
acid, would present similar specificity problem. Thus, in
order to understand the mechanism and regard possible
application of these drugs, changes in transcription of all
genes, rather than a single target gene, need to be con-
sidered. Development of more specific HDACis for each
HDAC family member, and perhaps, combined with
gene therapy, development of HDACIs that can target
only the histones associated with a specific target gene,
will be extremely beneficial for therapeutics.

The siRNAs, as possible epigenetic drugs, stand on
a slightly different ground from other epigenetic
interventions. Unlike HDACis, siRNA sequence can be
designed for a specific target gene. A number of siRNA
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Concluding Remarks
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example, in the innervating nociceptive neurons, which
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What is the epigenetic basis of neuropathic pain? How
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