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Abstract: A growing body of evidence supports the modulation of pain by light exposure. As such,
phototherapy is being increasingly utilized for the management of a variety of pain conditions. The
modes of delivery, and hence applications of phototherapy, vary by wavelength, intensity, and route
of exposure. As such, differing mechanisms of action exist depending upon those parameters. Cuta-
neous application of red light (660 nm) has been shown to reduce pain in neuropathies and complex
regional pain syndrome-l, whereas visual application of the same wavelength of red light has been
reported to exacerbate migraine headache in patients and lead to the development of functional
pain in animal models. Interestingly visual exposure to green light can result in reduction in pain in
variety of pain conditions such as migraine and fibromyalgia. Cutaneous application typically requires
exposure on the order of minutes, whereas visual application requires exposure on the order of
hours. Both routes of exposure elicit changes centrally in the brainstem and spinal cord, and peripher-
ally in the dorsal root ganglia and nociceptors. The mechanisms of photobiomodulation of pain pre-
sented in this review provide a foundation in furtherance of exploration of the utility of
phototherapy as a tool in the management of pain.

Perspective: This review synopsizes the pathways and mechanisms through which light modu-
lates pain and the therapeutic utility of different colors and exposure modalities of light on pain.
Recent advances in photobiomodulation provide a foundation for understanding this novel treat-
ment for pain on which future translational and clinical studies can build upon.
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Introduction behavior. Sunlight at dawn promotes biological effects

including waking, increases in glucocorticoid secretion,

The exposure of human biological systems to light is and feeding.” In the modern-day era, however, expo-

ubiquitous. Importantly, light exposure from the sun

determines much of human circadian rhythms and
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sure to light is not limited to sunlight exposure. Artificial
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indoor lighting and computers present in the workplace
and home contribute a significant amount of light expo-
sure.”®33 Human exposure to light has also increased at
night, whether from street lights, night lights, or work-
place lights due to night shift work.'® These aberrant
light exposures cause circadian rhythm disruptions that
have been linked to negative health effects on mood,
metabolism, immune defense, and cancer risk.” Needless
to say, the exposure to light has many important impli-
cations on human biology and behavior.

The use of light in the form of phototherapy has been
increasingly investigated, although the idea has histori-
cal precedent.”® In the late 1800s, Nobel laureate Niels
Ryberg Finsen reported the use of red light in the treat-
ment of smallpox, as well as the use of ultraviolet light
to treat lupus vulgaris.”®> Light of various colors and
wavelengths has since been used to treat a wide variety
of conditions, including neonatal jaundice, seasonal
affective disorder, acne, circadian rhythm disruptions,
and psoriasis.”® Recently, light has been reported to
have an effect on pain, both as a treatment for pain as
well as an aggravator of pain,**:66:76.88,90

In the United States alone, 50 million adults have
chronic pain, with an estimated $261 to 300 billion
dollars being spent yearly to manage pain, resulting
in an annual economic cost of chronic pain of at least
$560 to 635 billion."®** Current methods of pain
management involve pharmacotherapy using agents
such as serotonin-norepinephrine reuptake inhibitors,
tricyclic antidepressants, nonsteroidal anti-inflamma-
tory drugs, corticosteroids, benzodiazepines, gaba-
pentinoids, and opioids; however, the use of these
drugs does not come without concerning side effects
such as sedation, cardiotoxicity, ataxia, addiction,
and respiratory depression.?’**® Therefore, there has
been a growing desire for research on complemen-
tary, nonpharmacological methods of pain relief
therapies and management. Current nonpharmaco-
logic therapies for pain include psychological, behav-
ioral, meditative, and physical therapy approaches, as
well as specialized procedural intervention techni-
ques by pain specialists.”>°® Recently, investigations
into the use of light as a treatment for symptomatic
pain and pain syndromes have become particularly
attractive as they are considered a low-cost, nonphar-
macologic alternative with few side effects.

Studies on pain in relation to light administration
have reported varying responses depending on the
wavelengths, intensities, and routes of administration
of light. For example, exposure to green light via the
visual system resulted in lesser pain in an acute migraine
episode compared to the exposure of other wave-
lengths such as white, blue, amber, and red.”® Red light
administered through visual pathways caused thermal
hyperalgesia and mechanical allodynia in rats.*” How-
ever, red light administered cutaneously decreased both
thermal and mechanical hyperalgesia in a mouse model
of complex regional pain syndrome.”® These reports are
just a few examples of the varying effects of light on
pain. Many articles report light-induced analgesia as
well as hyperalgesia, and novel studies have been

Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review

conducted to tease out the mechanistic basis of the
effects of light on pain.?®*3%7881 promising results
in preclinical animal studies have led to the clinical
translation of phototherapies for pain management.
Although the underlying mechanisms have yet to be
fully elucidated, the fact that light can modulate
pain is increasingly being acknowledged with more
experimental and clinical evidence forthcoming. This
review strives to shed light on the effects of light on
pain, the biological mechanisms through which light
acts on pain, as well as the current applications of
phototherapy on pain.

Overview of Photoreception and
Phototransduction

It must first be clarified that photoreception, photo-
transduction, and photobiomodulation all refer to dif-
ferent aspects of light modulating biological
mechanisms. Photoreception refers to the process of
light detection by photoreceptors.”® Phototransduction
involves the conversion of light signals into an intracel-
lular response, such as a membrane depolarization or a
phosphorylation, so that the light can exert its effects
on biological responses.54 Photobiomodulation, then, is
the overall biological effect that is produced in an
organism in response to light exposure,3%:49:88.90

There are two main routes by which light can act to
affect human biological processes, the most apparent
being via the visual system.*® Briefly, light travels
through the cornea/lens and reaches the retina, where
it acts on cone and rod photoreceptors in the outer seg-
ment of the retina. Cones and rods are considered as
the origin of the visual pathway in the retina, which
work together to capture information in the visual field
and ultimately respond to light.***> Rods have a
low threshold of activation and are activated by low
intensity light, whereas cones have a high threshold of
activation and are activated by colors.>®> Within photore-
ceptors are photopigments such as opsins, which are G-
protein-coupled receptors that respond to photons.
Upon activation, the intracellular cGMP concentration
decreases due to the activation of cGMP-phosphodies-
terase (PDE6).>* This ultimately leads to the closure of
nucleotide-gated Na* channels, resulting in hyperpolari-
zation of the photoreceptor cell and phototransduction.
Rods and cones function in image formation as well as
in the early and transient responses of the pupillary
light reflex.? This is in contrast to nonimage-forming
cells that are also present in the retina. Intrinsically pho-
tosensitive retinal ganglion cells (ipRGCs) are a type of
nonimage-forming cell that are involved in sensing
ambient light. As the name suggests, ipRGCs can depo-
larize in direct response to light, without any input
from rods and cones. The photopigment found in
ipRGCs is OPN4 (opsin-4, melanopsin) and has a peak
spectral sensitivity of 480nm, which falls in the blue/
cyan range of visible light.® This property of OPN4
explains the function of ipRGCs in circadian rhythm reg-
ulation, as it has been widely reported that circadian
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rhythm is disrupted with excessive blue light expo-
sure.”® From the retina, ipRGCs are able to regulate
the circadian rhythm by sending projections via the ret-
ino-hypothalamic tract (through the optic nerve) and
synapsing on the suprachiasmatic nucleus (SCN) of the
hypothalamus. In response to signals from the ipRGCs,
the SCN acts on the pineal gland to modulate the secre-
tion of melatonin, a hormone important for circadian
rhythm entrainment.” ipRGCs project to several areas in
the brain, including areas in the brainstem and thala-
mus associated with pain modulation such as the spinal
trigeminal  nucleus and rostral  ventromedial
medulla.?'-6676.7881.82 However, it is important to note
that ipRGCs are not the only source of retinal projec-
tions associated with pain modulation, as it has also
been shown that retinal ganglion cells that receive
input from rods and cones also contribute to these
pathways.’®

The second route of photoreception and phototrans-
duction occurs through the integumentary system. The
skin in humans is the largest organ in the body, and
light that is perceived by the eyes is sensed by the skin
as well.*® Interestingly, human skin also possesses pho-
tosensory functions involved in multiple biological
effects.®>>? In fact, opsins such as cone opsins (OPN1),
rhodopsin (OPN2), encephalopsin (OPN3), melanopsin
(OPN4), and neuropsin (OPN5), which are traditionally
known for their functions in the eye, have all been
found to be expressed in epidermal skin cells.>>>3 The
expression of OPN4 in the skin is particularly interesting
in that the function of OPN4 in the eye involves modu-
lating the sleep, circadian rhythms, melatonin secretion,
pain, and more.”®’7 Blue light irradiation on cultured
human skin cells causes Ca* influx and ERK,, phosphor-
ylation, indicating that skin cells can function in photo-
transduction by converting a light signal into an
intracellular response.>®> Skin exposure to ultraviolet
radiation (more specifically, ultraviolet B) also increases
endogenous vitamin D synthesis in the skin, and vitamin
D has been shown to decrease pain. The effects of vita-
min D on pain have been elaborated in a literature
review'? and meta-analysis.’’" Ultraviolet radiation
(UVR) exposure has also been implicated in analgesia
via increases in g-endorphin (a byproduct of melanocyte
stimulating hormone production from the proopiome-
lanocortin precursor), although there is other literature
documenting hyperalgesic effects of UVR.?>3” Lopes
and McMahon have succinctly synthesized the noxious
effects of cutaneous UVR exposure in another literature
review.®? It is important to note that most cutaneous
phototherapies utilize red and infrared light, the latter
of which is not sensed by opsins to cause phototransduc-
tion (Table 1).

Instead, red and infrared lights applied cutaneously
elicit phototransduction by acting directly on cellular
components. For example, red and infrared light can
excite chromophores in enzymes which can ultimately
result in increases in cellular metabolism and
growth.*®°" Specifically, the excitation of cytochrome ¢
oxidase (a mitochondrial membrane protein) has been
shown to result in increases in ATP production,
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intracellular calcium levels, mitochondrial membrane
permeability, reaction oxygen species generation, and
vasodilation, ultimately engaging the cell in a regenera-
tive state.’®*>%68% Although the mechanism of photo-
transduction through the skin has not yet been as
vigorously investigated as in the visual pathway in the
context of pain modulation, these findings show that
human skin contains functional units through which
phototransduction and photobiomodulation can occur,
providing the groundwork for a mechanistic under-
standing of the pain-modulating effects of light when
applied to the skin.%&°

Mechanisms of Visual Phototransduction
Leading to Pain Induction or Exacerbation

True photophobia, as defined by Lebensohn, is an
abnormal aversion to light in which exposure to light
either exacerbates or induces pain.>’ Specifically, photo-
phobia has been reported in a wide variety of condi-
tions, including neurological disorders (ie, multiple
sclerosis, posttraumatic brain injury), ophthalmological
pathologies (ie, herpes zoster opthalmicus), and psychi-
atric disorders (ie, depression, generalized
anxiety). 17649294100 Ho\wever, aversive photophobia is
not the only painful phenomenon that can be elicited
by light. Exposure to ambient light that is not necessar-
ily aversive has also been reported to cause hyperalgesia
and allodynia.®*’ There are a number of different pro-
posed mechanistic explanations for light inducing or
exacerbating pain, and it is likely true that all of these
mechanisms mentioned below work in concert to
achieve the overall effect of pain (Fig 1).

Dolgonos et al reported a mechanism of photophobia
in rodents that doesn’t explicitly involve the central
visual pathway.?' They found that even with lesions of
the optic nerve, bright light was able to elicit blink mod-
ifications characteristic of photophobia. This suggested
an intraretinal mechanism that modulates the trigemi-
nal system with bright light exposure. Although the
study did not identify a specific intraretinal mechanism,
the authors suggested that associational ganglion cells
(ie, ipRGCs) are responsible for sensitizing the spinal tri-
geminal nucleus neurons by projecting axons to the reti-
nal periphery, an area that is richly innervated by
trigeminal nociceptors.>®3 104

Okamoto et al reported a series of animal studies doc-
umenting the activation of the trigeminal nociceptive
pathway by bright light.®#? In their first study, they
reported light intensity-dependent increases in Fos-like
immunoreactivity, a marker of neuronal activation, in
the caudal trigeminal brainstem.®? Specifically, the neu-
ronal activation observed in the trigeminal caudalis/cer-
vical cord junction region (Vc/C1) and the nucleus
tractus solitarius was associated with regions involving
autonomic control, which explained increases in ocular
blood flow and activation of nociceptive trigeminal
nerves surrounding blood vessels in response to bright
light. In their second study, the authors demonstrated
that bright light activated nociceptive neurons in Vc/C1



Table 1. Summary of Studies on the Effects and Mechanisms of Light on Pain.
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CoLor Stupy SusJeCTs Route ExPOSURE INTENSITY/ IRRADIANCE Pain ConpiTion A Paiv MEcHanism oF AcTion
White Kowacs et al 2001°" Human Visual 2 sec 50-20,000 lux Migraine 1 |} trigeminal + cervical pain thresholds
390—740nm Dolgonos et al 20117 Rat Visual 9 min 9.1 x 10° uW/cm? - 4 Intraretinal trigeminal sensitization

Leichtfried et al 2014°° Human Visual 6 hr 5000 lux Chronic nonspecific back pain { -
Martenson et al 2016°° Rat Visual 30 sec 18,000 lux Fibromyalgia T Visual system — OPN — RVM
Noseda et al 20167° Human Visual 3 min 1-100 cd/m? Migraine 1 Retino-thalamo-cortical pathway
Burgess et al 2017'° Human Visual 1hr 3000+ lux Fibromyalgia 1 Dim light melatonin onset shift
Nir et al 20187° Human Visual 3 min 1-100 cd/m? Migraine 4 Retino-thalamo-cortical pathway
Burgess et al 2019"" Human Visual 1hr 3000+ lux Chronic LBP v Dim light melatonin onset shift
Burns et al 2020'” Human Visual 1hr 3000+ lux Chronic LBP ! -
Bumgarner et al 2020° Mouse Visual 10 hr 5 lux - 1 1 IL-6, NGF; 1+ PAG MOR
Blue Noseda et al 20167° Human Visual 3 min 1-100 cd/m? Migraine 4 Retino-thalamo-cortical pathway
450—500nm Nir et al 20187° Human Visual 3 min 1-100 cd/m? Migraine 4 Retino-thalamo-cortical pathway
Khanna et al 20197 Rat Visual 8 hr 4-5 ux Functional pain syndromes ! Visual system — RVM
Green Noseda et al 20167° Human Visual 3 min 1-100 cd/m? Migraine 1 -
500—-565nm Ibrahim et al 20174 Rat Visual 8 hr 4 lux Chronic pain 1 1 RVM descending pain inhibition;
| CaV2.2 response; 1 PENK;
Naloxone reversal
Khanna et al 2019*7 Rat Visual 8hr 4 lux Chronic pain i} Visual system — RVM
Martin et al 2020° Human Visual 1-2 hr 4-100 lux Migraine il -
Martin et al 2020 "77 Human Visual 1-2hr 4-100 lux Fibromyalgia 1 -
Amber Noseda et al 20167¢ Human Visual 3 min 1-100 cd/m? Migraine 1 Retino-thalamo-cortical pathway
590nm Nir et al 2018”2 Human Visual 3 min 1-100 cd/m? Migraine 1 Retino-thalamo-cortical pathway
Red Stelian et al 1992°° Human Skin 15 min 8 mW/cm? Knee osteoarthritis 1 -
625-740nm Hsieh etal 2012*" Rat Skin 60 sec 150 mW/cm? Neuropathic pain 1 1 TNF-o, IL1-B, HIF-1a
Noseda et al 20167¢ Human Visual 3 min 1-100 cd/m? Migraine 1 Retino-thalamo-cortical pathway
Nir et al 2018”° Human Visual 3 min 1-100 cd/m? Migraine 4 Retino-thalamo-cortical pathway
Langella et al 2018°° Human Skin 300 sec 16.66 mW/cm? Post-total hip arthroplasty $ J serum IL-8, TNF-«, IL-6
Khanna et al 20197 Rat Visual 8 hr 50 lux Functional pain syndromes T Visual system — RVM
Pigatto et al 2020%° Mouse Skin 60 sec 84.64 mW/cm? - 1 L TRPAT, TRPV1, TRPMS, and ASIC receptor
nociception
Herpich et al 20207 Human Skin 300 sec 5 mW/cm? TMD { -
Rodrigues et al 2020°° Rat Skin 20 sec 316 mW/cm? CRPS-| v -
Near-Infrared Stelian et al 1992°° Human Skin 15 min 11 mW/cm? Knee osteoarthritis l -
(750—1000nm) Cidral-Filho et al 2013'® Mouse Skin 32 sec 80 mW/cm? Neuropathic pain 1 | spinal cord + sciatic nerve TNF-o
Cidral-Filho et al 2014'© Mouse Skin 153 sec 80 mW/cm? Postoperative incisional pain 1 1 activation peripheral opioid receptors
Martins et al 2016”° Mouse Skin 50 sec 80 mW/cm? Inflammatory pain 1 4 IL-10; 4 catalase; 1 superoxide dismutase;
1 TBARS
Holanda et al 20177 Rat Skin 120 sec 300 mW/cm? Neuropathic pain 1 | signal via cytoskeletal disruption
Kobiela Ketz et al 2017%° Rat Skin 19 sec 43.25 mW/cm? Neuropathic pain 1 1 M2 macrophage activation
Pigatto et al 2017%7 Mouse Skin 20 min 17.3 mW/cm? - l | PKA, PKC activation
de Sousa et al 2018°° Mouse Skin 120 sec 50 mW/cm? Chronic peripheral pain 1 J DRG mGLuR1; 1 PAP
Langella et al 2018°° Human Skin 300 sec 9.66 mW/cm? Post-total hip arthroplasty il | serum IL-8, TNF-q, IL-6
Yadav et al 2018'% Rat Skin 10 min 0.4 mW/cm? Burn wound 1 1 TNF-a, NF«B, IL1-, COX-2, substance-
P receptor
Balbinot et al 2019° Rat Skin 40 sec 1.43 mW/cm? Knee osteoarthritis 1 |} spinal cord astrogliosis
Pigatto et al 2019%° Mouse Skin 20 min 17.4 mW/cm? CRPS-I, Neuropathic pain 1 -
Rodrigues et al 2020°° Rat Skin 40 sec 316 mW/cm? CRPS-| il -
Herpich et al 20207® Human Skin 300 sec 5 mW/cm? T™D i -

Abbreviations: ASIC, Acid-Sensing lon Channels; CaV2.2, N-type Voltage-Gated Calcium Channel; COX-2, Cyclooxygenase-2; CRPS-I, Complex Regional Pain Syndrome-1; DRG, Dorsal Root Ganglion; HIF-1a, Hypoxia-Inducible Factor-1e;
IL-1p, Interleukin 18; IL-6, Interleukin 6; IL-8, Interleukin 8; IL-10, Interleukin 10; LBP, Low Back Pain; mGLuUR1, metabotropic Glutamate Receptor Type 1; MOR, u-Opioid-Receptor; NF«B, Nuclear Factor kappa B; NGF, Nerve Growth Factor;
OPN, Olivary Pretectal Nucleus; PAG, Periaqueductal Gray; PAP, Prostatic Acid Phosphatase; PENK, Proenkephalin-A; PKA, Protein Kinase A; PKC, Protein Kinase C; RVM, Rostral Ventromedial Medulla; TBARS, Thiobarbituric Acid Reactive
Species; TMD, Temporomandibular Disorder; TNF-a, Tumor Necrosis Factor o; TRPAT, Transient Receptor Potential Ankyrin 1; TRPMS, Transient Receptor Potential Melastatin 8; TRPV1, Transient Receptor Potential Vanilloid 1.
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Figure 1. Neural pathways of visual phototransduction leading to pain induction or exacerbation. Exposures to light have been
reported to induce or exacerbate pain by eliciting changes in pain processing and modulating centers in the brain and brainstem.
The importance of the olivary pretectal nucleus in these pathways has been corroborated by multiple studies. The pain-modulating
rostral ventromedial medulla can be switched to a pronociceptive state following light exposure. In the setting of migraine, light
input and meningeal nociception signals ultimately converge on the thalamus to project to cortical areas of pain processing, result-
ing in photophobia. Abbreviations: ipRGC, intrinsically photosensitive Retinal Ganglion Cells; OPN, Olivary Pretectal Nucleus; PAG,
Periaqueductal Gray; RVM, Rostral Ventromedial Medulla; SSN, Superior Salivatory Nucleus.

by an intraocular mechanism via the trigeminal root
ganglion.?’” The proposed intraocular mechanism is as
follows: 1) luminance in the eye is relayed to the olivary
pretectal nucleus, 2) activation of the olivary pretectal
nucleus increases parasympathetic signals to the eye via
the superior salivatory nucleus, and 3) nerves of the tri-
geminal root ganglion are activated either by postgan-
glionic parasympathetic neurotransmitters or by
mechanical changes in ocular blood vessels due to
changes in ocular blood flow, as suggested in previous
studies (Fig 1).8% The authors also noted the importance
of the olivary pretectal nucleus in the transmission of
light information in this mechanism of the activation of
the trigeminal nociceptive pathway, which was also
emphasized by Martenson et al in their report of light
acting on the central pain-modulating system in the ros-
tral ventromedial medulla.®®

A retino-thalamo-cortical pathway of light exacerbat-
ing migraine headache pain has been described by
Noseda et al in both animal and human studies.”®’®
Blind individuals with nonimage-forming mechanisms
still intact (ie, ipRGCs) who suffer from migraines were
still able to experience an increase in headache pain
when subjected to light during a migraine.”® This led
the authors to hypothesize that nonimage-forming sig-
nals from the eye could modulate central trigeminovas-
cular neurons. Dura-sensitive neurons in the posterior
thalamus were found to be apposed primarily by axons
of ipRGGCs, and signals from ipRGCs induced by light
were able to affect the activity of dura-sensitive thala-
mocortical neurons. In short, meningeal nociceptors
traveling through the trigeminal ganglion convey sig-
nals to dura-sensitive neurons in the spinal trigeminal
nucleus, relaying the information to the dura-sensitive
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neurons in the posterior thalamus (Fig 1). Phototrans-
duction via ipRGCs is also relayed to dura/light-sensitive
neurons, which can modulate nociceptive information
originating from the dura mater before thalamic axons
project to pain-processing cortical areas. The signifi-
cance of this mechanism of photophobia is that it does
not involve image-forming components of the eye, such
as cones and rods. However, a later study published by
the same group reported a cone-driven pathway of
migraine photophobia.’® Blue light was found to acti-
vate more neurons with a greater magnitude in the
“thalamo"” portion of the pathway when compared to
green light. In fact, green light reduced pain intensity in
~20% of patients having active migraine attacks in the
study. The finding that migraine headache exacerbation
was color-sensitive suggested that a cone-driven retinal
pathway is also important in photophobia. The two
mechanistic pathways proposed by these two studies
suggest that there are both image-forming and nonim-
age-forming inputs that act together to exacerbate
migraine headache pain, further emphasizing that no
single mechanistic explanation is sufficient to describe
pain exacerbation and induction by light.

Martenson et al described a more central mechanism
of photophobia that contrasted with previous reports
of photophobia involving the trigeminal pathway.®®
The authors pointed out that although previous reports
of photophobia caused by the direct interaction of sen-
sory transmission adequately explain the exacerbation
of migraine headache pain; this mechanism does not
necessarily explain the pain exacerbation by light in
functional pain disorders such as fibromyalgia. They
hypothesized that light influences the intrinsic pain-
modulating system such as the rostral ventromedial
medulla (RVM). The animal study demonstrated that 30
seconds of 18 x 10° lux light exposure caused the activa-
tion of pain-facilitating “ON-cells” and the suppression
of pain-inhibiting “OFF-cells” in the RVM, ultimately
shifting the pain-modulating system into a pronocicep-
tive state. In the animal behavior studies, this effect
manifested as a lowered threshold for noxious heat-
evoked paw withdrawal. Furthermore, by using lido-
caine to selectively inactivate other potential relays of
light information, the authors were able to demon-
strate that the pathway of light information transmis-
sion acting on the RVM travels through the olivary
pretectal nucleus and not the posterior thalamus nor
the trigeminal ganglion (Fig 1). These findings suggest a
mechanism of light acting on the central pain-modulat-
ing system in the RVM, unique from other reports of
photophobia mechanisms described above,?'-7678:81.82

Aberrant light exposure at night causes disruptions in
the circadian rhythm by modulation of the melatonin
signaling system which ultimately disrupts sleep.” These
disruptions in the diurnal sleep schedule have been
shown to increase pain perception, as seen in night-shift
workers.>%71-80:86.97 Although the mechanism has not
been fully elucidated, there are some animal studies
that might provide a mechanistic explanation. Bum-
garner et al reported that dim light exposure at night in
male mice induced cold hyperalgesia and mechanical
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allodynia.® Specifically, 28 days of dim light exposure
caused increased expression of mu-opioid receptors in
the periaqueductal gray and increased IL-6 and NGF
expression in the medulla. Although far from a mecha-
nistic explanation, these findings provide important
clues to implicate the importance of neuroinflammation
caused by light exposure on nociceptive and neuro-
pathic pain states.

A psychological mechanism of pain exacerbation by
light has been described by Wiercioch-Kuzianik et al.?
This mechanism involves learned associations of certain
colors; for example, red conveys negative information
associated with failure, threat, and anger,”®*° whereas
green and pink conveys positive information associated
with happiness.?® In this study, participants were shown
a color on a computer screen prior to the administration
of a pain stimulus, and then asked to rate the perceived
pain.”® Interestingly, pain intensity ratings increased
from baseline values for all colors except for green.
However, compared to blue and green, red elicited
higher pain ratings in response to the pain stimuli.
These findings show that the psychological influence of
learned associations of colors can change pain percep-
tion, with red, a color normally associated to negative
emotions, causing a hyperalgesic effect.

The concept of visual phototransduction resulting in
the induction and exacerbation of pain has been used
to create injury-free animal models of pain. A recent
study reported that exposure to red light-emitting
diodes (LEDs, 660 nm) caused time- and dose-dependent
thermal hyperalgesia and mechanical allodynia in rats.*’
Microinjections of bicuculline, a gamma-aminobutyric
acid-A receptor antagonist, into the rostroventromedial
medulla (RVM) reversed the hyperalgesia and allodynia
due to red LED exposure, showing that phototransduc-
tion of red light occurred through the visual system and
ultimately acted on the RVM to increase descending
facilitation of the pain pathway, shifting the pain-mod-
ulating system into a pronociceptive state. These find-
ings are in agreement with Martenson et al and further
support the notion that light can modulate pain by act-
ing through the visual system and the RVM.*7-¢®

Mechanisms of Visual Phototransduction
Leading to Analgesia

Although the mechanism of light inducing or exac-
erbating pain via the visual system has been well-
documented, the therapeutic effect of light reducing
pain is only recently being studied. There are some
clinical studies emphasizing the effect of light expo-
sure on the circadian rhythm in reducing pain. Two
proof of concept studies — one in women with fibro-
myalgia'® and the other in military veterans with
chronic low back pain,’" showed that sitting before
broad-spectrum bright white lights (>3000 lux) for
one hour per day upon waking in the morning
improved pain sensitivity and behavior. These
changes were attributed to approximately an hour
earlier shift in circadian timing, indicated by changes
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cadian rhythms that also contribute to an overall analgesic effect. Abbreviations: CaV2.2, N-type Voltage-Gated Calcium Channel;
ipRGC, intrinsically photosensitive Retinal Ganglion Cells; OPN, Olivary Pretectal Nucleus; PAG, Periaqueductal Gray; PENK, Proenke-
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in dim light melatonin onset (Fig 2)."®"" The small
number of subjects in these promising pilot studies
underscores the need for additional future studies
with more subjects to elucidate the effect size and
broader application of this therapy to a larger and
more diverse patient population. Although these
studies do not demonstrate the exact pathway of
how shifts in melatonin onset might modulate pain,
the role of melatonin in pain modulation has been
well-studied and thoroughly reviewed.*'°> Nonethe-
less, these studies demonstrate that changes in circa-
dian rhythms by bright light can modulate pain.
Another clinical study by Noseda et al also showed
a potential therapeutic effect of light on migraine
headache pain.”® They reported that although white,
blue, amber, and red lights exacerbated migraine
headache pain, green light was found to exacerbate
the pain less. The authors proposed that green light
did not increase headache pain as much in migraine
patients because green light does not activate neu-
rons in the retino-thalamo-cortical pain pathway as
much as other colors of light such as blue or white.
This explanation defines that green light does not
exacerbate migraine headache, but it does not pro-
vide a mechanistic explanation as to why ~20% of
the migraine patients in the study reported reduced
headache pain when exposed to green light during a
migraine attack. However, a study from the same

group later showed that the effect of light on
migraine pain also involves hypothalamic-mediated
autonomic responses, further describing the complex-
ity of migraine photophobia.”® A recent clinical study
also showed that prophylactic green light exposure
for 1-2 hours daily for 10 weeks significantly reduced
the number of headache days as well as the intensity
and duration of headache attacks in patients with
episodic or chronic migraine.®®

Studies from our group were also able to elucidate
a possible mechanism of light producing antinocicep-
tive effects via the visual system. In a series of animal
studies performed in rats, Ibrahim et al found that
5 days of 8-hour exposure to green (525 nm) light,
via light-emitting diodes (LED) at 4-lux intensity, was
able to cause antinociception in rats that persisted
up to 4 days after cessation of the green LED expo-
sure.”> The antinociceptive effect of green LED
required engagement of the visual system and not
the integumentary system by use of colored contact
lenses as filters. Microinjections of lidocaine in the
RVM and intrathecal administration of naloxone
identified that the descending pain inhibitory path-
ways of the RVM and the mu-opioid receptor path-
ways were both necessary for the antinociceptive
effect of green LED exposure (Fig 2). Quantitative RT-
PCR of spinal cords in rats with L5 and L6 spinal
nerves ligated that were exposed to green LED found
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increased expression of proenkephalin-A mRNA, indi-
cating that the analgesia caused by green LED could
be partially explained by increased enkephalins in
the spinal cord. These results collectively describe a
mechanism of antinociception in which light, which
travels through the visual system, eventually acts on
the central pain modulation system to shift to an
antinociceptive state by activating descending pain
inhibitory pathways of the RVM, engaging the mu-
opioid receptor system, and increasing the expression
of enkephalins in the spinal cord. It was also found
that green LED treatment in naive rats caused a
decrease in depolarization-induced Ca%* influx
through N-type voltage-gated calcium channels
(CaVv2.2) in sensory neurons, which are important in
antinociception.”®°® Thus, green LED treatment may
have both central and peripheral effects contributing
to antinociception. Although it was identified that
the visual system was necessary in creating the anti-
nociceptive response due to green light, the exact
connection between the visual system and the pain
modulation system has not yet been elucidated and
requires further investigation. As multiple mecha-
nisms underlie pronociceptive effects of light, it is
likely multiple analgesic mechanisms are engaged by
green light.®%767881.82 Eyrther studies in this area
may reveal additional antinociceptive mechanisms of
light acting via the visual system.

Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review

Mechanisms of Cutaneous
Phototransduction Leading to Analgesia

Another mechanism by which light can reduce pain is
via the skin. Cutaneous applications of light for the
treatment of pain conditions have been widely
reported, including for neuropathic pain,®* chronic low
back pain,**'°® fibromyalgia,*® and postsurgical pain.**
The current mechanistic explanations of the effects of
cutaneous application of light for pain alleviation can
be divided into peripheral and central effects, both of
which likely contribute jointly to decrease pain (Fig 3).

Peripheral Mechanisms

A mechanism of cutaneously-administered light
inducing analgesia involving peripheral opioid recep-
tors in @ mouse model of postoperative pain has been
described by Cidral-Filho et al."® In this study, direct con-
tact of 950nm (infrared) LED light to the plantar incision
site reduced mechanical hypersensitivity in mice. Injec-
tions of naloxone, a nonselective opioid receptor antag-
onist, were able to prevent the analgesic effects of LED
treatment when injected locally in the plantar incision
site, but not when injected intrathecally, indicating that
the observed analgesic effects involve the activation of
peripheral, but not central, opioid receptors. Opioid-
containing leukocytes were found to be important in
the activation of these peripheral opioid receptors, as
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Figure 3. Mechanisms of cutaneous phototransduction leading to analgesia. Application of light cutaneously has peripheral and
central effects to reduce pain. Peripheral mechanisms include modulation by pro- and anti-inflammatory cytokines, immune cell
recruitment and activation, and decreased expression of receptors involved in neuronal transmission. Central mechanisms involve
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administration of fucoidin (an inhibitor of leukocyte
rolling) partially prevented the LED-induced analgesia.
This study also investigated the involvement of nitric
oxide (NO), an inflammatory mediator and messenger
of nociceptive transmission, in LED-induced analge-
sia.>>’* Experiments using L-arginine (nitric oxide pre-
cursor) and DN‘“—nitro-L-arginine (L-NOARG, nitric oxide
inhibitor) found that another mechanism of the analge-
sia is due to a local reduction of NO in the inflamed
site.’® Collectively, these findings demonstrate that the
involvement of peripheral opioid receptors and local
inflammatory pathways are important in the mechanism
of cutaneously-administered LED-induced analgesia
(Fig 3).

Another study reported by Martins et al showed an
anti-inflammatory mechanism by cutaneous LED treat-
ment that reduced hyperalgesia in a model of chronic
inflammatory pain.’® They found that 950nm (infrared)
LED light in direct contact with the plantar aspect of the
hindlimb was able to reduce mechanical and thermal
hyperalgesia in mice with Complete Freund’s Adjuvant
(CFA) injected in the hindlimb. Importantly, cytokine
analyses of the subcutaneous paw tissue found no sig-
nificant changes in pro-inflammatory TNF-o and IL1-5,
whereas anti-inflammatory IL-10 was increased (Fig 3).
Additionally, thiobarbituric acid reactive species (TBARS,
a measure of oxidative stress) were decreased, and cata-
lase and superoxide dismutase (both antioxidants) levels
increased in the LED treated group when compared to
the controls. These findings demonstrate that activation
of anti-inflammatory and antioxidant processes local to
the treatment area are important in the analgesic effect
of cutaneously-administered LED treatment. The
authors also reported the activation of peripheral opi-
oid receptors in response to the LED treatment, further
confirming the findings of Cidral-Filho et al.’®

Another anti-inflammatory mechanism contributing
to cutaneous light treatment analgesia has been pro-
posed by Hsieh et al in a rat model of neuropathic
pain.*' Cutaneous application of 660nm (red) light over
the area of loose nerve ligation of the sciatic nerve not
only decreased mechanical allodynia, but also decreased
the expression of TNF-o, IL1-8, and hypoxia-inducible
factor 1o (HIF-1a) in the sciatic nerve when compared to
sham controls (Fig 3). Neuroinflammation mediated by
pro-inflammatory cytokines and chemokines is known
to increase peripheral sensitization to pain.”? The find-
ings in this report show that cutaneous light treatment
is able to decrease pro-inflammatory cytokine levels in
order to decrease neuroinflammation contributing to
pain.

A study by de Sousa et al reported a peripheral mech-
anism of analgesia and antinociception involving bio-
molecular changes in the dorsal root ganglion (DRG).%°
In this study, 120 seconds of 810 nm (near infrared) irra-
diation in the lower back was able to increase pain
threshold in mice 3 hours after the treatment. More
importantly, the changes observed in the lumbar DRGs
included a decrease in metabotropic glutamate receptor
(mGIuR1) expression and an increase in prostatic acid
phosphatase (PAP). The authors posited that the
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decrease in mGluR1 expression contributed to the anal-
gesic effect either by decreasing the sensitization of
other neurons or, indirectly, by the decrease of gluta-
mate channel opening. PAP, an enzyme typically used as
a marker of prostatic cancer diagnosis and therapy,*’
can hydrolyze adenosine monophosphate (AMP), which
acts as a sensitizer for nociceptive neurons.’’ An
increase in PAP due to the irradiation therefore reduced
nociceptive signaling by decreasing AMP levels. The
findings reported in this study describe a mechanism of
LED treatment in which intracellular changes within the
DRG result in alterations that retard nociceptive trans-
mission.

Cytoskeletal changes in peripheral nerves contribut-
ing to light-induced analgesia have also been reported.
A number of rodent studies have shown that near-infra-
red light treatment on the skin over the affected nerve
can cause cytoskeletal changes in the nociceptive nerves
to decrease the transmission of nociception.?%3%%" Spe-
cifically, significant increases in axonal g-tubulin varicos-
ities in DRG neurons were found in light-treated groups
compared to controls.?%3° These varicosities were found
in axons corresponding to As- and C-fibers responsible
for the transmission of chemical, mechanical, and ther-
mal nociception.® The g-tubulin varicosities formed as a
result of light irradiation disrupting microtubules,
which are essential in mechanisms involved in neuro-
transmission.”® The cytoskeletal disruptions reported in
these studies only further support a mechanism of light-
induced analgesia in which nociceptive transmission is
hampered.

Another mechanism described by Kobiela Ketz et al
involves macrophage polarization in the DRG.*® Macro-
phages can either be activated to a classical M1 pheno-
type, typically associated with the production of
proinflammatory cytokines (TNF-o, IL1-8, IL-6), or an
alternative M2 phenotype, typically associated with the
production of anti-inflammatory cytokines (TGF-8, IL-
10)."348.65.69 | 3 spared nerve injury rat model, 980nm
(infrared) light treatment reduced mechanical hyper-
sensitivity.*> Moreover, immunohistochemistry staining
with M1- and M2-specific antibodies (CD86 and CD206,
respectively) found a higher M2 activation in the DRG
of the light-treated group, with the activation peaking
at 7 days after starting treatment and lasting for 15 days
thereafter. No significant differences in M1 activation
was observed in either sham or light-treatment groups.
Although further cytokine analyses are warranted to
elucidate the anti-inflammatory action of the M2-acti-
vated macrophages specific to light-treatment analge-
sia, these results show that macrophage activation to
the M2 phenotype in DRG in response to light treatment
contribute to the analgesic effect of cutaneous light
treatment (Fig 3).

Pigatto et al proposed a peripheral mechanism of LED
treatment analgesia involving hindering the activation of
protein kinase A (PKA) and protein kinase C (PKC) by
peripheral chemosensors.2” Endogenous noxious signals
such as glutamate, prostaglandin E2, and bradykinin
bind to G protein-coupled receptors to decrease periph-
eral nociceptive activation thresholds by phosphorylating
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different ionic channels (ie, TRPV1) via the PKA or PKC
pathways.5?33"6%85 |n the animal studies, intraplantar
injection of glutamate, prostaglandin E2, and bradykinin
all elicited nocifensive behavior in mice, but 890nm
(infrared) and 660nm (red) LED applied directly to the
skin was able to reduce these nocifensive responses.”-%°
Furthermore, intraplantar injection of forskolin (activator
of adenylyl cyclase) and phorbol 12-myristate 13-acetate
(PMA, activator of PKC) both caused nocifensive behavior
in mice, but LED treatment was also able to reduce these
nocifensive responses. These results suggest a mechanism
of analgesia by LED treatment by reducing the nocicep-
tive sensitization promoted by endogenous noxious sig-
nals ultimately by decreasing the activation of PKA and
PKC.

The involvement of peripheral chemosensors in anal-
gesia by LED treatment has also been implicated. Noci-
ceptive responses due to intraplantar injections of
noxious chemicals that activate Transient Receptor
Potential channels (TRPs) and Acid-Sensing lon Channels
(ASICs) including cinnamaldehyde (activator of TRPA1),
capsaicin (activator of TRPV1), menthol (activator of
TRPMS8), and acidified saline (activator of ASICs) were
decreased in mice with cutaneous red LED treat-
ment.®”®? Though the exact mechanism through which
LED treatment affects these channels requires more
investigation to be further elucidated, these results
show that peripheral ion channels sensitive to noxious
stimuli are important in the analgesic effects of LED
treatment.

Central Mechanisms

Pigatto et al have also reported a central mechanism
through which cutaneous LED treatment causes analge-
sia. 8 The authors showed that 890nm (infrared) LED
treatment in mice not only caused significant decreases
in nocifensive responses induced by thermal and chemi-
cal noxious stimuli, but also that the analgesic effect
was dependent on TRPV1-expressing nociceptors. This
was determined due to the fact that only centrally-
administered capsaicin (@ TRPV1 channel activator)
completely reversed the analgesic effects of LED therapy
when compared to other routes of administration, indi-
cating that the analgesic effects of LED therapy are
dependent on central afferent C fibers that express
TRPV1.

Another central mechanism of LED treatment analge-
sia involving cytokines was shown by Cidral-Filho et al.
In that study, 950nm (infrared) LED treatment applied
on the skin over the injury site decreased mechanical
hyperalgesia, but not cold hyperalgesia, in mice sub-
jected to sciatic nerve crush injury, a model of neuro-
pathic pain."” Pro-inflammatory cytokine analyses
found that LED treatment reduced TNF-« levels in the
sciatic nerve as well as in the spinal cord, with no signifi-
cant changes in IL1-8 and IL-10. The significance of this
study is that LED treatment was able to decrease levels
of TNF-a centrally, whereas other studies report only
peripheral changes in cytokine levels due to LED
treatment.”®

Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review

Therapeutic Applications of Different
Colors of Light for Pain Treatment

Although light has been shown to modulate pain
through a variety of biological mechanisms as described
above, the ability of light to elicit photobiomodulation
also depends on the physical characteristics of the light
itself. For example, light with lower wavelengths of the
visible spectrum tend to penetrate tissues less than
those of higher wavelengths.' Since light color is
dependent on its wavelength property, light colors with
shorter wavelengths on the visible spectrum (ie, violet,
380—-450 nm) will differ in photobiomodulation utility
than lights of longer wavelengths (ie, red, 625—740 nm;
near-infrared, 750—1000 nm). Additionally, the energy
delivered by light to tissues depends on the modality
through which the light is delivered. For example, lasers
emit monochromatic and 100% coherent light, meaning
that all light waves emitted are of a single wavelength
and that all waves are synchronized in time and space.®’
In contrast, LEDs emit light within a narrow range of
wavelengths (+4—10 nm) that is noncoherent. Due to
the noncoherence of its emitted light, LEDs ultimately
deliver less energy to tissues than do lasers, explaining
why the risk of thermal injury is higher with laser appli-
cations than with LED applications.’”°" Nevertheless,
both laser and LED applications of light have been used
for the treatment of pain,'*3%41:43.70.88

Lights of varying colors and wavelengths across the
electromagnetic spectrum have been used in many dif-
ferent therapeutic applications for a wide variety condi-
tions  including neonatal  jaundice, macular
degeneration, acne, cancer, and traumatic brain inju-
ries.*® However, for the treatment of pain, only white,
green, red, and near-infrared colors of light have been
used in humans and animals (Table 1). Because of the
differences in physical characteristics of the different
colors of light, each color varies in its route of adminis-
tration as well as the duration of light exposure per
treatment.

Red and near-infrared lights are typically used in cuta-
neous applications, where the light probe is pressed
lightly against the skin of the treatment area.'> 667089
Red light has the largest wavelength of all colors within
the visible spectrum (625—740 nm), and near-infrared
light, although outside of the visible spectrum, contains
even larger wavelengths (750—1000 nm). These large
wavelengths allow for very high tissue penetrance of
light.”" Because of this property, the duration of light
exposure for red and infrared light treatments is short
and only requires seconds to minutes to cause photobio-
modulation (Table 1). The cutaneous applications of red
and near-infrared lights have been used for the treat-
ment of pain associated with knee osteoarthritis,> com-
plex regional pain syndrome-,%3°° neuropathic
pain,'>39%988 inflammatory pain,’® temporomandibular
disorder,*® and postsurgical pain.'®>°

Unlike red and near-infrared lights, green light
(500—-565 nm) is of a much shorter wavelength and
exerts its analgesic effects through the visual path-
way.***” Because of the shorter wavelength of green
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light, the skin penetration it achieves is may be insuf-
ficient to elicit robust photobiomodulation in treated
tissues. In fact, studies to date have shown that the
cutaneous application of green light has been devoid
of antinociceptive effects.*> Green light was shown
in a clinical study to be as effective in treating actinic
keratosis while producing less pain when compared
to red light, although the less pain experienced by
patients in this study may be related to the visual
exposure to green light.®* The effects of green light
causing anti-nociception likely act through a cone-
driven mechanism in the eye which ultimately elicits
downstream analgesic effects.”® It is also interesting
to note that the duration of light exposure required
for green light to be therapeutic is on the order of
hours, which is in contrast to that of red and near-
infrared light treatments (seconds to minutes)
(Table 1). This further supports the difference in
mechanisms engaged by different colors of light and
routes of administration, as described above.

The use of bright white light for the treatment of pain
conditions has also been reported.'®'%>° Bright white
light is unique from the light colors previously men-
tioned as it is broad spectrum, meaning that it contains
light of all wavelengths in the visible spectrum. This
implies that the analgesic effects of bright white light
treatment can potentially be the result of light of many
different wavelengths. In addition, like green light
treatment, bright white light treatment appears to
work through the visual route of administration, requir-
ing exposure times of up to an hour.'®'%>° However,
one main difference between these two colors is the
intensity at which the light is administered. Bright white
light therapy is typically administered at >3000 lux'®"?
and even at 5000 lux in one study.>® This is in contrast to
green light therapy, which is administered at 4-110
lux.***” Although the route of administration is the
same for these two lights, the mechanism engaged by
low intensity green light (changes in pain modulation
centers of the central nervous system), varies from that
engaged by high intensity bright white light (shifts in
circadian rhythm).'%""*3 Applications of bright white
light therapy for pain treatment include as therapy for
fibromyalgia'® and chronic low back pain."""'*°° Green
light therapy has also recently been used in the treat-
ment of migraines, significantly reducing the number of
the number of headache days as well as the intensity
and duration of headache attacks in episodic or chronic
migraineurs.®®

Conclusion

Numerous reports in the past decade have now docu-
mented the mechanisms of pain modulation by light.
The exacerbation of clinical pain by light tends to occur
in the setting of a pre-existing pain syndrome, such as
fibromyalgia and migraine, and this increase in pain is
attributed to visual routes of light exposure which elicit
central mechanisms of pain modulation. However, the
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color of light is also important in these contexts, as
white, blue, amber, and red lights increase pain, while
green light decreases pain. On the contrary, both cuta-
neous and visual applications of light treatment induce
peripheral and central analgesic effects; however, cur-
rent evidence shows that cutaneous application acts pri-
marily via peripheral mechanisms, whereas visual
application acts via central mechanisms. For the treat-
ment of pain, red and near-infrared light are adminis-
tered cutaneously with a short duration of exposure.
(ie, seconds to minutes), whereas green and bright
white light are administered visually with long duration
of exposure (ie, hours). Current evidence shows the effi-
cacy of light treatment for pain in a variety of pain syn-
dromes, including fibromyalgia, complex regional pain
syndrome | and chronic low back pain. Future clinical
studies will likely delineate other pain syndromes for
which light therapy has applicability.

Current methods of pain management involve phar-
macotherapy that, though effective in some clinical set-
tings, contain concerning adverse effect profiles,
including sedation, cardiotoxicity, ataxia, addiction, and
respiratory depression.?’® As such, non-pharmacologi-
cal methods of pain management are being increasingly
explored as complementary therapies to pharmacologic
agents.”® In recent years, evidence for the use of light
therapy as a nonpharmacologic approach for pain
reduction has gained momentum, and both preclinical
and clinical studies have demonstrated its efficacy and
continue to explore its efficacy in a variety of pain syn-
dromes. In addition to its label as a nonpharmacologic
therapy, light therapy is attractive to both clinicians and
patients due to its noninvasiveness and lack of side
effects, ultimately increasing patient compliance.®”:®
When light therapy is administered cutaneously, the
main side effect reported is thermal injury, although
this issue can be solved by adjusting exposure settings
(ie, decreasing energy density or altering exposure
time) so that the same therapeutic dose of energy is
delivered to the tissue while reducing the risk of
injury.?>°! No adverse effects were reported by any
study participants in clinical studies of light therapy
administered visually,’®"" and animal studies support
this finding as well.**> Based on these findings, light
therapy can increasingly be a useful therapeutic analge-
sic modality, providing a safe and effective option to
reduce the physical, psychological, economic, and socie-
tal burden that acute and chronic pain inflicts on so
many patients.
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