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Decision tree for adjuvant right ventricular support in
patients receiving a left ventricular assist device
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BACKGROUND: Right ventricular (RV) failure is a significant complication after implantation of a left
ventricular assist device (LVAD). It is therefore important to identify patients at risk a priori. However,
prognostic models derived from multivariate analyses have had limited predictive power.
METHODS: This study retrospectively analyzed the records of 183 LVAD recipients between May 1996
and October 2009; of these, 27 later required a RVAD (RVAD�) and 156 remained on LVAD only
(RVAD�) until transplant or death. A decision tree model was constructed to represent combinatorial
non-linear relationships of the pre-operative data that are predictive of the need for RVAD support.
RESULTS: An optimal set of 8 pre-operative variables were identified: transpulmonary gradient, age,
right atrial pressure, international normalized ratio, heart rate, white blood cell count, alanine amino-
transferase, and the number of inotropic agents. The resultant decision tree, which consisted of 28
branches and 15 leaves, identified RVAD� patients with 85% sensitivity, RVAD� patients with 83%
specificity, and exhibited an area under the receiver operating characteristic curve of 0.87.
CONCLUSIONS: The decision tree model developed in this study exhibited several advantages com-
pared with existing risk scores. Quantitatively, it provided improved prognosis of RV support by
encoding the non-linear, synergic interactions among pre-operative variables. Because of its intuitive
structure, it more closely mimics clinical reasoning and therefore can be more readily interpreted.
Further development with additional multicenter, longitudinal data may provide a valuable prognostic
tool for triage of LVAD therapy and, potentially, improve outcomes.
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Mechanical circulatory support for end-stage heart fail-
ure has become an established therapeutic option with sig-
nificant survival benefit. However, patients who receive a
left ventricular assist device (LVAD) alone periodically
develop post-operative right ventricular (RV) failure neces-
sitating pharmacologic or mechanical support. This applies
to �10% to 30% of all LVAD patients1–4 and is associated
with increased morbidity and death.5 Severe RV failure
results in renal and hepatic dysfunction due to elevated
central venous pressure as well as under-filling of the
LVAD.6 Post-operative RV failure also adversely affects
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outcomes of patients who are ultimately bridged to trans-
plant.3,7,8

Conversely, implanting an RVAD bears its own risk of
increased morbidity,9 effectively doubling the likelihood of
thrombosis, infection, and mechanical failure. Therefore,
the prediction of RV failure before VAD implantation is
critically important to an optimal course of treatment and
clinical outcome. This prognosis is sometimes obscured by
the complex interaction between pre-operative conditions,
intra-operative factors, and immediate post-operative hemo-
dynamic status.9–11

As a consequence, previous predictors of RV failure based
on univariate and multivariate statistical analyses1,3,5,11–16

have not provided adequate sensitivity and specificity for prac-
tical use. For example, a popular RV failure risk score, the
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(RVFRS),11 which has demonstrated an 80% positive predic-
tive value of RV failure in LVAD candidates (based on a
threshold value of 5.5), reports an overall sensitivity of only
35%. Furthermore, the performance of this index is prognos-
tically inconsistent when evaluated in independent samples.
Thus, there remains a need for a more accurate, sensitive,
specific, and robust method to identify LVAD candidates at
risk for RV failure.

This study aimed to develop an improved prognostic tool
by capitalizing on recent advances in data mining and ma-
chine learning theory. These techniques are gaining popu-
larity to predict future trends and discover unknown patterns
in clinical outcomes, including breast cancer, pneumoni-
tis,17,18 and others.19–21 The decision tree is one such algo-
rithm that has been used extensively in medicine.22–25 It has
proved to be reliable and effective, providing high classifi-
cation accuracy with a simple representation of gathered
knowledge. Because of its tree structure, it can be readily
interpreted and therefore more likely to be adopted than,
say, an ambiguous numeric risk score.26 This study used the
decision tree algorithm combined with over-sampling and
feature selection techniques to identify and represent the
non-linear interactions among pre-operative variables.

Methods

Study design

This study retrospectively analyzed 183 de-identified patients en-
rolled in the Artificial Heart Program at the University of Pitts-
burgh Medical Center (UPMC) from May 1996 to October 2009.
These patients initially received an LVAD, but 27 (15%) later
required an RVAD (RVAD�) and 156 (85%) remained on LVAD
until the time of transplantation or death (RVAD–). Multiple de-
vices were used throughout this interval (Table 1 and Table 2),
including BVS 5000 and AB 5000 (Abiomed, Danvers, MA),
Bio-Medicus Perfusion System (Medtronic Inc, Minneapolis,
MN), Novacor (Worldheart, Salt Lake City, UT); CentriMag,
HeartMate XVE, Thoratec IVAD, Thoratec PVAD, and HeartMate
II (Thoratec, Pleasanton, CA); Jarvik 2000 (Jarvik Heart Inc, New
York, NY), and Ventrassist (Ventracor Ltd, Chatswood, NSW,

Table 1 Left Ventricular Assist Devices Used in Patients
Who Did Not Require a Right Ventricular Assist Device

Device No. (%)

Pulsatile devices 121 (77.6)
Abiomed AB 5000 6 (3.8)
Novacor 43 (27.6)
HeartMate XVE 33 (21.2)
Thoratec IVAD 6 (3.8)
Thoratec PVAD 33 (21.2)

Continuous-flow devices 35 (22.4)
HeartMate II 15 (9.6)
JARVIK 2000 2 (1.3)
Ventrassist 18 (11.5)

Total 156 (100)
Australia). Initial pulsatile-flow LVADs were implanted in 143 of
the cohort (78.1%), comprised of 121 RVAD– and 22 RVAD�

patients; and continuous-flow LVADs were implanted in 40 pa-
tients (21.9%), comprised of 35 RVAD– and 5 RVAD� patients.

A total of 39 pre-operative variables were selected based on a
survey of the literature and their availability in the patient records,
categorized as patient demographics (n � 6), hemodynamics (n �
14), blood chemistry and hematologic laboratory values (n � 13),
and medications (n � 6), including digoxin, angiotensin-convert-
ing enzyme inhibitors/angiotensin II receptor antagonists, �-block-
ers, vasodilator, antiarrhythmics, and inotropic agents (Table 3).

Data were reviewed retrospectively from the UPMC Transplant
Patient Management System (TPMS), a password-protected,
Health Insurance Portability and Accountability Act-compliant,
Institutional Review Board-approved, Web-based data repository
for all patients who receive mechanical circulatory support. Data
were extracted from pre-operative Day 14 to Day 1. For variables
with multiple values, the value closest to the time of surgery was
used. When data elements were missing, various interpolation
techniques (mean, median, nearest neighbor) were implemented
(Table 3). The primary end point was whether the LVAD patient
received an RVAD after the index LVAD surgery, and the sec-
ondary end point was 1-year survival.

Analysis

The set of pre-operative variables was first ranked by chi-square
analysis and then combined into incrementally sized sub-sets (n �
1, 2, . . ., 39). Further analyses were performed on each of the
sub-sets to determine the optimal set that provided sufficient in-
formation without over-fitting. A well-known decision tree algo-
rithm, C4.5, was used, implemented in an open-source software
library27 (WEKA, J48, University of Waikato, New Zealand). This
analysis uses recursive partitioning methods to separate the 2
groups of patients into distinct sub-sets by identifying the signif-
icant non-linear interactions among the pre-operative variables and
automatically constructing the decision branches. The correspond-
ing breakpoints for each of the variables were selected with the
criterion of maximization of the purity of the cohort after splitting.

Table 2 Device Combination Used in the Patients Who
Required a Right Ventricular Assist Device

RVAD device LVAD device No. (%)

Abiomed BVS 5000 Abiomed AB 5000 2 (7.4)
Abiomed BVS 5000 Novacor 1 (3.7)
Biomedicus HeartMate XVE 1 (3.7)
CentriMag HeartMate IIa 3 (11.1)
CentriMag Thoratec IVAD 1 (3.7)
CentriMag Thoratec PVAD 3 (11.1)
CentriMag Ventrassista 1 (3.7)
Thoratec PVAD HeartMate IIa 1 (3.7)
Thoratec PVAD HeartMate XVE 2 (7.4)
Thoratec PVAD Novacor 3 (11.1)
Thoratec PVAD Thoratec PVAD 9 (33.3)
Total 27 (100)

LVAD, left ventricular assist device; RVAD, right ventricular assist
device.

aPatients with initial continuous-flow LVAD in RVAD� group (n �
5 in total).
The algorithm also includes a “pruning” procedure to reflexively
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eliminate unnecessary branches, reduce the estimated errors, and
generalize the model.

The objective function for this analysis was to minimize the
error between the predicted and historical decision of RVAD
implantation (RVAD�/RVAD–, defined above.) It was assumed
here that the clinical cost of failing to initially implant an RVAD
in a patient who developed RV failure would be comparable to the
cost of implanting an RVAD unnecessarily. Synthetic Minority
over Sampling Technique (SMOTE)28–30 was applied to supple-
ment the RVAD� data to compensate for the imbalanced RVAD�-
to-RVAD– ratio in the current cohort (1:6) and avoid unintended
bias in the calculation of error rate.

Tenfold cross-validation was used to evaluate the predictive
performance of the decision tree model, whereby the data were
divided into 10 mutually exclusive sub-sets, 9 of which were used
for training and 1 for evaluation. This was repeated 10 times,

Table 3 Pre-implant Characteristics for Two Groups of Patient

Variable a
Neares
neighb

Demographics
Age, years
Female, %
Pulsatile-flow LVAD, %
Body mass index, mean kg/m2

Weight, kg 15
Ischemic etiology, %

Hemodynamics
Cardiac index, liter/min/m2 20
Cardiac output, liter/min 10
Pulmonary capillary wedge pressure, mm Hg 10
Transpulmonary gradient, mm Hg 10
Pulmonary vascular resistance, mean WU
Mean pulmonary artery pressure, mm Hg 7
Pulmonary arterial systolic pressure, mm Hg 10
Pulmonary arterial diastolic pressure, mm Hg 10
Right atrial pressure, mm Hg 10
Right ventricular diastolic pressure, mm Hg 10
Pulmonary arterial oxygen saturation, % 15
Right ventricular systolic pressure, mm Hg 5
Heart rate, beats/min 15
Intra-aortic balloon pump, %

Laboratory tests
Creatinine, mg/dl 15
Blood urea nitrogen, mg/dl 15
Aspartate aminotransferase, IU/liter 7
Alanine aminotransferase, IU/liter 15
Total bilirubin, mg/dl 15
Hematocrit, % 15
White blood cell count, 109/liter 10
Platelet count, 109/liter 20
International normalized ratio 15
Hemoglobin, g/dl 20
Albumin, g/dl 5
Prothrombin time, sec
Sodium, median mEq/liter
aContinuous data are presented as mean � standard deviation or as
bValues derived from nearest neighbor imputing method.
cStatistically significant (p � 0.05).
thereby using 10 different, but overlapping training sets, and 10
unique testing sets. The performance measures for evaluation of
the decision tree analysis were:

1. true-positive rate, RVAD�/�, in which the algorithm agrees
with the historical clinical decision to implant an RVAD;

2. true-negative rate, RVAD–/–, in which the algorithm and the
historical clinical decision both agree to forgo an RVAD;

3. false-positive rate, RVAD–/�, in which the model predicts
RVAD implantation but the historical decision declined the
RVAD; and

4. false-negative rate, RVAD�/–, in which the model prediction
disagreed with the historical decision of RVAD implantation.

Additional measures of performance were the area under the
receiver operating characteristic (ROC) curve and � statistics.
The specificity and sensitivity of the model were defined as the
RVAD–/– and RVAD�/� rates, respectively. To investigate the

RVAD– RVAD�

p-value(n � 156) (n � 27)

53.3 � 12.7 49.9 � 10.5 0.04c

14 37 0.01c

78 81 0.80
28.2 � 6.1 27.8 � 5.4 0.99
89.3 � 21.7 76.0 � 17.3 0.06

54 56 0.99

2.3 � 0.8 2.3 � 0.8 0.80
4.3 � 1.0 4.3 � 1.4 0.22

26.6 � 8.4 24.2 � 8.9 0.42
11.3 � 6.0 13.4 � 3.9 0.10
2.2 � 2.6 3.6 � 1.7 0.35

38.1 � 9.4 37.8 � 10.8 0.86
55.6 � 14.6 56.8 � 16.8 0.81
27.4 � 8.2 26.8 � 9.8 0.75
12.1 � 6.2 9.9 � 6.1 0.26

10 � 6.3 11 � 7.0 0.70
51.8 � 12.7 53.7 � 13.8 0.53
54.4 � 15.8 56.4 � 14.2 0.67
93.0 � 25.1 81.3 � 28.5 0.18

76 74 0.81

1.5 � 0.7 1.4 � 0.7 0.23
32.0 � 20.5 28.6 � 18.9 0.37
83.7 � 162.8 60.7 � 50.6 0.47
92.8 � 174.1 53.5 � 36.3 0.76
1.2 � 0.9 1.4 � 1.6 0.75
33 � 7.0 35 � 7.4 0.34

9.4 � 3.9 11.8 � 7.3 0.16
207.7 � 78.8 187.7 � 94.0 0.23

1.3 � 0.4 1.5 � 0.7 0.48
13.8 � 10.4 14.6 � 10.1 0.30
3.3 � 0.6 3.4 � 0.8 0.46

56.6 � 28.7 58.3 � 29.6 0.92
134.2 � 5.8 133.5 � 5.8 0.58

ted; categoric data as percentage.
s

t
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the initial LVAD, this analysis was repeated in the sub-groups of
patients with an initial pulsatile-flow LVAD (n � 143) and an
initial continuous-flow LVAD (n � 40).

The performance in survival was provided by Kaplan-Meier
analysis. Differences in actuarial survival were evaluated using the
log-rank test. For comparison, the RVFRS11 was also calculated
for each patient, which stratified the cohort according to the pub-
lished definition. Standard ROC curves were constructed to illus-
trate overall sensitivity and specificity.

Results

Baseline data and comparison between RVAD– (n � 156)
and RVAD� (n � 27) groups are summarized in Table 3.
The RVAD� group included CentriMag in 8 (30%),
Abiomed BVS 5000 in 3 (11%), Biomedicus RVAD in 1
(4%), and Thoratec PVAD in 15 (55%). The demographic,
hemodynamic, and laboratory data were typical of patients
with advanced heart failure and were similar between
RVAD– and RVAD� groups. The RVAD� group was
younger (50 vs 53 years; p � 0.04) and had a higher
proportion of women (37% vs 15% overall; p � 0.01).
Pearson product-moment pairwise analysis identified 2 vari-
ables that were significantly positively correlated with the

Table 4 Pre-operative Variables Significantly Correlated
With Late Right Ventricular Assist Device Support

Pre-op variables
Late RVAD support

p-valueCorrelation (95% CI)

Sex 0.21 (0.07 to 0.35) 0.004
White blood cell count 0.18 (0.04 to 0.32) 0.012
Weight �0.16 (�0.29 to �0.01) 0.004

CI, confidence interval; RVAD, right ventricular assist device.

Figure 1 Significant correlations among the pre-operative varia
intervals of correlation coefficients. ALT, alanine aminotransferas

pressure; WBC, white blood cell count.
need of post-RVAD individually: female sex and elevated
white blood cell (WBC) count (RVAD–: 9.4 � 3.9 �
109/liter vs RVAD�: 11.8 � 7.3 � 109/liter). Pre-operative
weight was inversely correlated with late RVAD use
(RVAD–: 89.3 � 21.7 kg vs RVAD�: 76.0 � 17.3 kg).
The corresponding correlation coefficients and 95% confi-
dence intervals (CI) are summarized in Table 4, which
demonstrates significant differences between groups (p �
0.05) but generally weak correlations coefficients are close
to zero.

Decision tree model

Feature selection resulted in 8 pre-operative variables com-
prising the decision tree model for the complete cohort:
transpulmonary gradient (TPG), age, right atrial pressure
(RAP), international normalized ratio (INR), heart rate
(HR), WBC, alanine aminotransferase (ALT), and the num-
ber of inotropic agents. Pearson product-moment pairwise
analysis identified 7 significant correlations (p � 0.05):
number of inotropes was positively correlated with WBC,
which indicated that an elevated WBC count was associated
with a greater number of inotropic agents. Similar observa-
tions were found between WBC and RAP, ALT and RAP,
INR and ALT, and INR and RAP. Yet, RAP and HR were
inversely correlated with age, which reflects younger pa-
tients tending to have greater RAP and HR in this cohort.
Figure 1 shows the corresponding correlation coefficients as
well as 95% CI.

The resulting decision tree built upon the above data set
with 5X synthetic RVAD� samples is provided in Figure 2.
In this model, TPG is the initial splitting feature, with a
breakpoint of 7 mm Hg. The branch of TPG � 7 mm Hg
predicts no need of RVAD support. The branch of TPG �
7 mm Hg leads to age as the secondary splitting feature,
with a breakpoint of 59. On the third level, different thresh-

volved in the decision tree. Range bars show the 95% confidence
, heart rate; INR, international normalized ratio; RAP, right atrial
bles in
e; HR
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olds of RAP exist, depending on age: 18 mm Hg (� 59
years) and 10 mm Hg (� 59 years). This demonstrates the
apparent non-linear relationship among these pre-opera-
tive features. Thereafter, additional splits unveil the com-
plicated patterns embedded in the RVAD� and RVAD–

data sets. The tree eventually terminates in 15 leaves
representing 1 of 2 outcomes: RVAD– or RVAD�. This
model indicates that elevated INR and/or WBC are com-
mon to the branches with increased risk of the need of
RVAD support. This model achieved 85% sensitivity and
83% specificity (Table 5A.)

ROC curves were generated for the decision tree
model, and the RVFRS was calculated for this cohort
(Figure 3). Comparison of AUC showed that decision
tree exhibited better performance than RVFRS in this
cohort (AUC, 0.87 vs 0.54.) The figure also depicts the
RVFRS ROC curve reported in Matthews et al,11 in
which the reported AUC is 0.73.11 When this weighted
score was applied in the present cohort, 18.5% RVAD�

patients were identified as high risk and 64.1% RVAD– as
low risk, leaving 22.2% RVAD� patients and 19.2%
RVAD– patients as medium risk.

Survival outcome

Kaplan-Meier 1-year survival curves of the 2 groups with
respect to historical decisions of RVAD– and RVAD� are

Figure 2 Decision tree for optimal identification of right ven
(LVAD) patients. Features used for splitting the cohort are indic
corresponding branches: white, freedom of RVAD support; gray,
aminotransferase; HR, heart rate; INR, international normalized
white blood cell count.
provided in Figure 4 (log-rank p � 0.0008). Survival for the
RVAD– and RVAD� groups was 89% and 78%, respec-
tively, at 30 days post-LVAD, 78% and 60% at 90 days,
73% and 37% at 180 days, and 51% and 19% at 1 year.
Figure 5 provides the survival curves for the sub-set of
patients in the RVAD–/– and RVAD�/� groups. Compared
with Figure 4, short-term post-LVAD survivals between the
groups were similar: 89% and 84% at 30 days and 77% and
65% at 90 days, respectively. However, the 1-year survivals
are much more distinct: 51% for RVAD–/– and 0%
RVAD�/�. The overall curves were statistically different
(log-rank p � 0.0108).

Comparison of first- and second-generation LVADs

In the sub-group of patients who received a continuous-flow
(second-generation) LVAD, the incidence of late-RVAD
implantation was 12.5%, which was relatively lower than
the 15.4% in those who received a pulsatile-flow (first-
generation) LVAD. The performance of the aggregate
model (Figure 2) with this sub-group was 80% sensitivity
and 86% specificity, which was similar to the full cohort
(Table 5B).

The decision tree model developed exclusively on the
continuous-flow cohort re-prioritized the predictive vari-
ables, promoting the importance of body mass index,
cardiac output, and diastolic pulmonary artery pressure.
It also demoted the prognostic values of INR and WBC.

assist device (RVAD) support in left ventricular assist device
y ellipses. Rectangles indicate the predicted outcomes following
ity of RVAD; dashed borderline, simplified leaves. ALT, alanine
AP, right atrial pressure; TPG, transpulmonary gradient; WBC,
tricular
ated b
necess
ratio; R
It exhibited 100% sensitivity and 97% specificity based
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on 10-fold cross validation. However, when tested on the
pulsatile-flow LVAD group, it exhibited only 18% sen-
sitivity (RVAD�/�) and 84% specificity (RVAD–/–).
Similarly, the model developed exclusively with the sub-

Table 5 The Expected Performance of the Aggregate Model

(A) Performance evaluated on the complete cohort (n � 183)

Prediction

Clinical decision

RVAD�

RVAD� RVAD�/� (true po
Sensitivity: 85%

RVAD� RVAD�/� (false ne
False-negative rat

RVAD, right ventricular assist device.

(B) Performance evaluated on the sub-group with initial contin

Prediction

Clinical decision

RVAD�

RVAD� RVAD�/� (true po
Sensitivity: 80%

RVAD� RVAD�/� (False N
False negative rat

RVAD, right ventricular assist device.
Predictive outcomes are suggested by the model; clinical decisions

Figure 3 Receiver operating characteristic curve of our decision

our cohort and RVFRS published in the Matthews et al11 study.
set of patients with the initial pulsatile-flow LVAD per-
formed poorly when tested on the continuous-flow LVAD
group, exhibiting 20% sensitivity (RVAD�/�) and 89%
specificity (RVAD–/–).

RVAD�

RVAD�/� (false positive)
False positive rate: 17%

) RVAD�/� (true negative)
Specificity: 83%

ow LVAD (n � 40)

RVAD�

RVAD�/� (false positive)
False-positive rate: 20%

e) RVAD�/� (true negative)
Specificity: 86%

e by the experts in hospital.

odel, Right Ventricular Failure Risk Score (RVFRS) evaluated on
sitive)

gative
e: 15%

uous-fl

sitive)

egativ
e: 14%

are mad
tree m
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Discussion

The complex pathophysiology of post-operative RV fail-
ure11 and care31 makes the pre-operative prediction of RV
failure difficult and hinders the optimal course of treatment
for an individual candidate.8,10,31,32 In lieu of sole univariate
analysis or traditional linear multivariate analysis, the cur-
rent study sought to develop a decision tree to facilitate the
identification of patients who may require RV support. As
contrasted to a weighted combination of independent vari-
ables, the decision tree is better able to represent the com-
plicated, non-linear relationships and synergy between vari-
ables that underlie the development of RV failure after
LVAD implantation. An added benefit of the decision tree
model is its ability to graphically illustrate the prediction
logic, compared with a purely mathematically derived index
that requires “blind faith” of the decision maker.

The decision tree presented here includes predictive pre-
operative variables that are supported by previous RV

Figure 4 Kaplan-Meier survival curve for retrospective clinical
did (RVAD�) and did not (RVAD–) require right ventricular assi

Figure 5 Kaplan-Meier survival curve for right ventricular as
historical clinical decision to implant an RVAD, and RVAD–/– pa

RVAD.
failure studies and further reveals potentially counterintui-
tive dependencies on variables not previously emphasized.
For example, the first splitting variable found by the model,
elevated TPG, has been previously identified as a significant
predictor of RV dysfunction after LVAD implantation.33

However, the decision tree model further qualifies this split-
ting criterion for instances in which TPG exceeds 7 mm Hg,
in which case additional factors should be considered. Al-
though this cut point would not appear to be clinically
relevant, particularly with respect to historical linear anal-
yses, the current study suggests that even a modest elevation
of TPG may impart risk when considered with other vari-
ables. Likewise, age, also identified by Fukamachi et al15 as
an important predictor, appears twice in the decision tree, in
each case further qualified by subordinate variables.

INR, also previously correlated with RV failure,2,11,16 is
incorporated into the decision tree in a somewhat complex
fashion. For example, for a patient with TPG � 7 mmHg,
age � 59, RAP � 18 mm Hg, and elevated INR � 2.6, the

on in patients supported with a left ventricular assist device who
ce support.

vice (RVAD)�/� patients, in which the algorithm agrees with
in which the algorithm and clinical decision both agree to forego
decisi
sist de
tients,
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model indicates the need of an RVAD; yet for a patient with
the same profile—except RAP � 18 mm Hg—the predic-
tion is much more complicated and depends on HR, WBC,
ALT, and number of inotropes. This interdependence of
variables may possibly reflect their causality; for example, it
is less likely that elevated INR contributes directly to RV
failure than it is indicative of other underlying pathologies
that adversely affect outcomes. Accordingly, the model
does not imply that altering a patient’s INR would affect the
risk of RV failure. Rather, it is more likely that a prevailing
condition leading to a high INR is further associated with
many other physiologic abnormalities that eventually cul-
minate in RV failure. Being a retrospective study, it is
impossible to eliminate the bias potentially introduced by
the “human in the loop.”

The present study also revealed that multiple decision
tree structures might provide equivalent results. (See, for
example the decision tree of Figure 6, which is a variant of
the present model with comparative performance to the
model shown in Figure 2.) This non-uniqueness can be
considered an asset because it accommodates multiple sets
of data elements. Therefore, the user may select from an
assortment of decision trees most consistent with the (lim-
ited) data available.

Although not reported here, it is intuitive that the per-
formance of the decision tree would deteriorate as data
elements are excluded. Conversely, the addition of more
sensitive indices of RV function, such as echo-derived ejec-
tion-phase metrics34 would improve the decision tree. But
again, the data are often incomplete in practical situations;
and therefore, the decision tree can make the best use of the
limited data available—in contradistinction to existing func-
tional scores that cannot be computed without each of the
component data elements.

It is important to note that the objective function for this
study was the “error” between the prediction and the even-
tual decision, as contrasted with a definitive measure of RV

Figure 6 A variant of the aggregate decision tree model with co
of RVAD support; gray, necessity of RVAD; dashed borderlin
aminotransferase; CI, cardiac index; INR, international normali

pressure; TPG, transpulmonary gradient.
failure. Therefore, the model as it stands serves essentially
to replicate expert judgment before LVAD insertion. Its
clinical utility in its present form is twofold:

1. to codify best practices within a single institution and
perhaps alert the clinician or practice when an initial
evaluation before LVAD insertion is at variance with the
model, and

2. to transfer expertise from experienced, successful med-
ical centers to those less experienced.

The single-center experience might negatively affect the
generality of this model, and the reader is cautioned from
blindly extrapolating these results to their clinical service.
Until the model has been calibrated and validated on a
multicenter data set, readers are advised to repeat the anal-
ysis with data from their own VAD programs to assure
consistency before it is used in clinical practice.

A related limitation is the very definition of what
constitutes RV failure, which is a continuum of disease
with varying severity and has changed over the extended
time course of this study, and is also somewhat subjec-
tive, hence influenced by institutional bias. This study
assumed that the expert decisions represented ground truth;
that is, “more correct” than the model. This would imply that
the model may have overlooked additional, perhaps subcon-
scious, factors.35 This applies to the set of independent vari-
ables as well as to the definition of optimal outcome.

In this regard, it is intriguing to consider the cases in
which the model disagreed with the historical clinical deci-
sion (Figure 7). Those that the model predicted the need for
RVAD but in which the patient did not receive one
(RVAD–/�) appear to have very similar survival character-
istics to RVAD–/–. In these cases, it may be concluded that
the expert decision was correct and the model incorrect.
Those patients who did receive an RVAD contrary to the
model prediction (RVAD�/–) faired much more poorly than
those RVAD recipients for whom the model and expert

tive performance to the model shown in Figure 2. White, freedom
plified leaves. ALT, alanine aminotransferase; AST, aspartate

tio; PTT, prothrombin time; RV_sys, right ventricular systolic
mpara
e, sim

zed ra
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agreed (RVAD�/�). Early death was far more common in
this, albeit small, sub-set of 8 patients. However, 2 patients
who survived past the critical 90-day period exhibited sim-
ilar 1-year survival as the RVAD– cohort. This disparity is
difficult to explain without knowledge of the patient history
and re-examination of the raw data.

This illustrates that clinical judgment cannot be defined
in terms of pure mathematics.35 There are many circum-
stances in which the need for an RVAD is plainly obvious,
such as the presentation of ventricular tachycardia, cardio-
genic shock with multiorgan failure, or confounding issues
such as a ventricular septal defect. Likewise, there are
circumstances in which an RVAD is clearly unnecessary
and a computer is not required to make a decision. The
greatest clinical impact of a decision support model there-
fore may be in discriminating the marginal cases: to deter-
mine who will recover with a temporary RVAD and who
will require long-term support.

Future improvements to this model will inevitably re-
quire additional complexity and sophistication. It would
also clearly benefit from enlarging the data set and inclusion
of more patients from multiple centers being implanted with
the current generation of LVAD technology, which would
alleviate many of the deficits caused by the limited patient
cohort and single-center experience. A prospective study
would allow differentiation between various degrees of RV
failure, the need for short-term vs long-term support, elim-
inate subjectivity and related institutional bias, and allow

Figure 7 Kaplan-Meier survival curve for right ventricular assi
survival curves of RVAD–/– and RVAD�/� (gray line). RVAD�/�

RVAD–/–, algorithm and clinical decision both agree to forgo an
decision declined the RVAD; RVAD�/–, model prediction disagr
focus on more modern LVAD devices rather than the wide
assortment devices of the present study spanning from 1996
to 2009.
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