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A B S T R A C T

A series of inhibitors of the soluble epoxide hydrolase (sEH) containing lipophilic groups of natural origin
(camphanyl, norcamphanyl, furan-2-yl) were developed. Inhibitory potency ranging from 0.4 nM to 2.16 μM
were obtained. While having the same level of inhibitory activity bicyclic ureas are up to 10-fold more soluble
than the corresponding ureas containing adamantyl or 4-trifluoromethoxyphenyl substituents. This makes them
easier to formulate, more bioavailable and thus more promising as therapeutic sEH inhibitors. Endo/exo-form of
compound 2b derived from L-camphor is 14-fold more potent than the corresponding analogue derived from D-
camphor (IC50 = 3.7 nM vs. 50.6 nM) indicating enantiomeric preference.

The human soluble epoxide hydrolase (sEH) is involved in meta-
bolism of epoxides derived from arachidonic acid and other natural
epoxy-fatty acids,1 which have multiple, largely beneficial, physiolo-
gical activities.2 sEH converts epoxides into the corresponding vicinal
diols through the addition of a water molecule, thus affecting pain,
inflammation and other pathological states.2 Thereby inhibition of sEH
could be beneficial in treatment of numerous cardiovascular, neuronal
and renal diseases.3,4

Although, thousands of various sEH inhibitors (sEHI) have been
designed and synthesized over the last decades,5–7 they are character-
ized by low water-solubility, which makes them hard to formulate, as
well diminishes their bioavailability and in vivo efficacy. Good solubi-
lity appears critical to their success as a potential medicines for the
treatment of neurological diseases.8 Hundreds of sEH inhibitors fea-
turing a common structure of R-Ad-X-NH-C(O)-NH-R’, where Ad is
adamantan-1-yl or adamantan-2-yl, X is an alkyl or aryl linker and R
and R’ are alkyl, aryl or heterocyclic groups, have been synthesized and
evaluated in vitro and in several in vivo models.7,9–11 However, poor
metabolic stability of adamantane containing ureas limits their useful-
ness and application in some cases.

Recently, ureas containing polycycles such as bisnoradamantane

and diamantane were investigated as sEH inhibitors.12 The replacement
of adamantane with larger lipophilic groups led to increase of in-
hibitory activity but was accompanied by tremendous decrease in me-
tabolic stability and water solubility. In attempt to improve water so-
lubility and metabolic stability, herein, we changed one of the most
common sEHI lipophilic fragment, an adamantane group, with natural
occurring cyclic and bicyclic groups such as furan-2-yl, camphanyl and
norcamphanyl and investigated the effects of such substitution on the
potency and properties of the resulting compounds.

Reaction of either bicyclic isocyanates13 with amines of bicyclic
amines14 with isocyanates were used to synthesize ureas 1a, 1b, 2a, 2b,
2d, 2e and 3a-c (Scheme 1). Furan-2-ylmethanamine was used for
compound 2c.

Moreover, ureas containing both adamantyl and bicyclic (4a, 4b) or
furan-2-yl (4c) moieties were synthesized (Scheme 2).

Diureas containing two adamantyl fragments with two urea groups
linked with aliphatic spacer are also potent sEHI.10 High potency of
these compounds is supposed to be due to the binding of second urea
group with Ser374 of the sEH active site. In this case it is of interest to
evaluate the effect of bioisosteric substitution in diureas (Scheme 3).

For ureas containing camphanyl moiety (2b, 2e, 3b, 3c and 5c-f)
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starting camphanylamine (1,7,7-trimethylbicyclo[2.2.1]heptan-2-
amine) is a mixture of four stereoisomers: S and R enantiomers, each
containing both exo and endo isomers derived from L-camphor and D-
camphor respectively. To test the impact of each enantiomer on in-
hibition potency pure S and R forms of compound 2b were synthesized.
Exo and endo diastereomers were not separated. To our knowledge, no
studies showing the effect of stereochemistry on sEH inhibitory activity
has been performed before. Potency of the compounds was measured
against the human sEH, and their solubility determined in phosphate
buffer (Table 1).

A vast majority of synthesized ureas showed high potency, in-
hibiting sEH in concentrations as low as 0.4 nM. The only exceptions
are compounds 3a (~1.58 µM), 3b (2.17 µM) and 5 g (1.80 µM).
Relatively low activity of compounds 3a and 3b correlates with pre-
vious results on adamantane ureas and thioureas with the same lipo-
philic part.16 In all series of diureas 5a-i, elongation of the aliphatic

chain between the two urea fragments led to a remarkable increase in
potency. Endo/exo-S-form of compound 2b is 14-fold more active than
the corresponding R-form, meaning that more active species of cam-
phene-containing compounds 2e, 3c, 5e and 5f could be synthesized.

Solubility in sodium phosphate buffer for the most of synthesized
compounds lays in a range (100–300 μM) much higher than the original
adamantane derivatives. For example, for ureas containing trans-4-[(4-
aminocyclohexyl)oxy]benzoic acid part, compound 1a (norcamphane
lipophilic group, IC50 = 1.5 nM) is 2-fold more soluble than t-AUCB
(adamantane lipophilic group, IC50 = 2.0 nM) and significantly more
soluble than t-TUCB (4-(trifluoromethoxy)phenyl lipophilic group,
IC50 = 2.0 nM).

To understand the effect of inhibitor spatial configuration on po-
tency, all ureas containing camphane-2-amine isomers (2b) were
docked in similar poses with 2-fluorophenyl moiety of ligand main-
taining π-π stacking interactions with W336 and urea fragment inter-
acting with catalytic residues Y466, Y383 and D335 of the active site
(Fig. 1).

The analysis of the molecular dynamics simulation results demon-
strated low variation among the calculated binding energy results. Also,
in general, the S-isomers are better binders in terms of calculated values
which are consistent with experimental results. The internal dielectric
constant (indi) was varied to probe the protein environment as it may
depend on amino acid composition of the binding site. Per-residue
binding decomposition energy was performed for MM-PBSA (Table 2),
results obtained with indi equals to 4 are the more consistent with ex-
perimental results, and in some cases worked better.17 The configura-
tional change in the camphanyl scaffold leads to redistribution of the
energy contributions between two main catalytic residues (D335, Y466)
which structurally is interpreted by differences in hydrogen bond sta-
bility between catalytic residues and the isomers of N-(camphan-2-yl)-
N’-(2-fluorophenyl)urea (Fig. 2).

In conclusion, the replacement of adamantyl and 4-

Scheme 1. Reagents and conditions: a. DMF, Et3N, rt, 8 h.

Scheme 2. Reagents and conditions: a. DMF, Et3N, rt, 8 h.
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Scheme 3. Reagents and conditions: a. DMF, Et3N, rt, 8 h.

Table 1
IC50 values and some physicochemical properties for ureas 1a, 1b, 2a-e, 3a-c, 4a-c and 5a-i.

# Structure mp (°C) logPa Solubility (μM)b Human sEH IC50 (nM)c

1a 143–144 3.77 350 ± 25 1.5

1b 324–325 4.20 300 ± 25 35.3

t-AUCB 250–2555 5.18 160 ± 209 2.05

t-TUCB 244–2735 4.92 518 1.0 ± 0.119

2a 195–196 3.09 325 ± 25 6.8

(continued on next page)

V. Burmistrov, et al. Bioorganic & Medicinal Chemistry Letters 30 (2020) 127430

3



Table 1 (continued)

# Structure mp (°C) logPa Solubility (μM)b Human sEH IC50 (nM)c

2b 238–239 4.23 225 ± 25 14.4

(S)-2b 241–242 4.23 225 ± 25 3.7

(R)-2b 235–236 4.23 225 ± 25 50.6

2c 137–138 2.22 425 ± 25 635

2d 150–151 3.95 – 0.4

2e 125–126 5.08 – 2.5

3a 110–111 1.52 > 2000 1,579

3b 90–91 2.65 > 2000 2,166

3c 67–68 5.87 125 ± 25 6.5

4a 223–224 4.20 – 0.7

(continued on next page)
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Table 1 (continued)

# Structure mp (°C) logPa Solubility (μM)b Human sEH IC50 (nM)c

4b 263–264 4.03 – 0.9

4c 135–136 3.34 300 ± 25 44.8

5a 248–249 2.75 – 21.0

5b 148–149 5.78 – 0.4

5c 274–275 2.79 75 ± 5 11.8

5d 215–216 4.81 – 0.4

5e 308–309 5.05 10 ± 2 2.3

5f 263–264 7.08 10 ± 2 0.4

5g 225–226 1.04 225 ± 25 1,802

5h 194–195 2.05 100 ± 10 86.3

5i 190–191 3.06 50 ± 10 214

a Calculated using Molinspiration (http://www.molinspiration.com) © Molinspiration Cheminformatics.
b Solubilities were measured in sodium phosphate buffer (pH 7.4, 0.1 M) containing 1% of DMSO.
c Determined via a kinetic fluorescent assay. Results are means of three separate experiments.15
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(trifluoromethoxy)phenyl groups with natural bicyclic lipophilic groups
yielded a series of sEHI with similar potency as the original compounds.
However, the new compounds are up to 10-fold more soluble than the
corresponding ureas containing adamantyl or 4-tri-
fluoromethoxyphenyl substituents, which makes them easier to for-
mulate, more bioavailable and thus more promising as therapeutic sEH
inhibitors. Interestingly, the endo/exo-(S)-form (3.7 nM) of camphanyl-
containing compound 2b is 14-fold more active than the corresponding
endo/exo-(R)-form (50.6 nM), demonstrating enantiomeric preference
in inhibitor binding.
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Fig. 2. The results of binding energy decomposition for the isomers of N-(camphan-2-yl)-N’-(2-fluorophenyl)urea (MM-PBSA, indi = 4).
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