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Abstract: 
Various tetrazole and oxadiazole C-nucleoside analogues were synthesized starting from pure - or -glycosyl-
cyanide. The synthesis of glycosyl-cyanide as key precursor was optimized on gram-scale to furnish crystalline 
starting material for the assembly of C-nucleosides. 1,2,4-Oxadizole C-nucleosides were synthesized via two 
independent routes. First, both anomers of glycosyl-cyanide were transformed into tetrazole nucleosides followed by 
acylative rearrangement to furnish 1,2,4-oxadiazoles in high yields. Second, the glycosyl-cyanide was converted into 
an amidoxime which upon ring closure offered an alternative pathway for the assembly of 1,2,4-oxadizoles in an 
efficient manner. These protocols offer an easy access to otherwise difficult to synthesize C-nucleosides in good yield 
and protecting group compatibility. These C-nucleosides were evaluated for their antitumor activity. This work paves 
a path for facile assembly of library of new chemical entities useful for drug discovery.   
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Introduction: 
Unlike natural and synthetic N-nucleosides, C-nucleosides 1,2 are stable to enzymatic and acid-catalyzed hydrolysis of 
the glycosidic bond. Therefore, C-nucleosides offer a distinct advantage over the N-nucleosides for design of 
biologically active molecules. C-Nucleosides 3,4,5 have also attracted the interest of researchers looking for hydrogen-
bond interactions alternative to those produced in the classical Watson–Crick model. Among well-known antitumor 
C-nucleosides, pyrazofurin,6 showdomycin 9 and tiazofurin10 are five-membered heterocyclic structures showing 
excellent biological activity (Figure- 1). Despite of their remarkable activity profile, lack of specificity and 
neurotoxicity prohibited the clinical progress of these nucleosides. More recently, remdesivir (GS-5734)7,8 has shown 
promise for the treatment of COVID-19. Immucillins is yet another important class of C-nucleosides advancing into 
clinical trials as inhibitor of purine nucleoside phosphorylase. These observations have motivated us to revisit the 
study of C-nucleosides, with a particular interest of designing 2’-deoxyribose analogues of various five membered 
heterocycle and their antiviral and antitumor activity.  
⁎ Corresponding author.
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The presence of five-membered heterocyclic system is also a common feature in raltegravir,11 an antiviral drug for 
treatment of HIV. Interestingly, the oxadiazole ring system is also present in ataluren12 and zibotentan13 used for the 
treatment of Duchenne muscular dystrophy (DMD) and prostate cancer, respectively (Figure -2). These facts and other 
reports on the promising biological activity of various regioisomeric oxadiazoles inspired us to synthesise and evaluate 
the biological activity of novel C-glycosides assembled from 2’-deoxyribose and oxadiazoles.
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Figure-2
 In particular, the oxadiazole ring14 is an essential part of the pharmacophore favouring ligand binding, act as a flat 
aromatic linker to place substituents in the proper orientation and finally mimics as bioisoster of esters, amides, 
carbamates, and hydroxamic esters. The 1,2,3-oxadiazole ring is unstable. 1,2,4-Oxadiazole, 1,2,5-oxadiazole, and 
1,3,4-oxadiazole are well known and appear in numerous marketed drugs. We have chosen 1,2,4-oxadiazole and 1,3,4-
oxadiazole moiety for C-nucleoside synthesis. We envisioned the synthesis of a common building block by C-C bond 
formation at C1 and further integration of the heterocycle to assemble these C-nucleosides. We utilized the glycosyl 
cyanide as the key starting material which is obtained as mixture of /-cyanide anomers from 1-chloro carbohydrate 
by reaction with trimethyl silyl cyanide in the presence of a Lewis acid as catalyst. These two anomers of glycosyl 
cyanide were transformed into novel C-nucleosides. The main advantage of this strategy resides in availability of 
stereochemically pure glycosyl cyanide that is transformed into C-nucleosides without anomerization at the C1 
position. The C-nucleosides of both anomers of 2’-deoxyriboside of tetrazoles and oxadiazoles synthesised are 



reported for the first time and the methodologies developed are general, which can be applied to construct other 
structurally diverse anomerically pure C-nucleosides.

Result and Discussion: 
Herein, we describe a modular synthesis approach allowing rapid assembly of C-nucleoside library in an efficient 
manner. Synthesis of a common building block by C-C bond formation at C1 and further integration of the heterocycle 
was the key feature of our approach. We have divided our study in three parts: (i) synthesis and separation of glycosyl 
cyanine anomers on multigram scale, (ii) synthesis of 1,2,4-oxadiazole C-nucleoside via amidoxime intermediate and 
(iii) synthesis of 1,3,4-oxadozle via acylative rearrangement of tetrazole. 
(i) Synthesis and separation of glycosyl cyanide anomers on multigram scale:
The glycosyl cyanide is one of the most important type of C-glycosyl intermediate, which is usually obtained as 
mixture of cyanide anomers from commercially available Hoffer’s chloro sugar15 by reaction with trimethyl silyl 
cyanide in the presence of a Lewis acid as catalyst (Scheme 1). Synthesis of 2’-deoxy glycosyl cyanine anomers (1a 
and 1b) have been reported16 only on small-scale. Since 2’-deoxy glycosyl cyanine anomers (1a and 1b) are the key 
starting materials for our study, it was essential to optimize the yield and anomeric ratio with an ultimate objective of 
making it in hundred-gram quantity. Because chloro-sugar is devoid of neighbouring group participation, selective 
stereochemical outcome is challenging. Hence development of process which is robust and greener was undertaken. 
We screened various Lewis acids and solvents to improve yield and obtain better ratio of anomers in favour of -
selectivity. -Anomer 1b is desirable to produce C-nucleoside having resemblance to the naturally abundant 2’-deoxy-
nucleosides.     
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Scheme-1: Synthesis of glycosyl cyanide

Entry Lewis Acid anomeric ratio (β/α) Isolated Yield (%)

1 SnCl4 3:1 93

2 BF3.OEt2 2:1 70

3 TMSOTf 0.59:1 60

4 CeCl3 No Reaction (Starting 
material remain intact)

-

5 ZnCl2 2:1 55

6 Mg (ClO4)2 No Reaction (Insoluble in 
DCM)

-

7 FeCl3 5.7:1 70

Table-1: Screening of Lewis acid for cyanation of Hoffer’s chloro sugar in DCM at -78°C



Upon screening of various Lewis acids, FeCl3 afforded best : = 5.7:1 ratio in 70% yield (entry 7 Table 1). Next 
solvent screening using nitromethane, toluene, 1,2-dichloroethane, tetrahydrofuran, acetonitrile, 1,2-
dimethoxyethane, acetone and dimethyl formamide failed to improve the : ratio and yield compared to the reaction 
performed in dichloromethane. Considering desired : ratio, yield (93%) and scalability, SnCl4 was chosen as 
preferred Lewis acid for the present study. It is important to note that low temperature is essential for -selectivity and 
high yield. Further optimization effort is underway in our laboratory to find a robust process with non-toxic Lewis 
acid.   
The two anomers of glycosyl cyanides were easily separated by silica gel column chromatography and anomeric 
configuration was established by 1H NMR experiments. The SnCl4 protocol (entry 1 Table 1) was scaled-up to furnish 
366g of the pure -anomer required for the transformation into various C-nucleosides containing five membered 
heterocycles. This route is the largest scale synthesis of glycosyl cyanide 1b reported to date in high yield. 
(ii) Synthesis of 1,2,4-oxadiazole C-nucleoside via amidoxime intermediate:
Nitrile functional group has served as an excellent handle to install several heterocyclic rings. Separately, both 
anomers of glycosyl cyanide (1a and 1b) were converted into amidoxime (2a and 2b) following Tiemann protocol17 
using hydroxylamine hydrochloride under basic condition. Reaction was performed with NH2OH.HCl in presence of 
Hünigs base, instead of using NH2OH.HCl and Na2CO3 was reported by Adelfinskaya et al.18 Excellent yields were 
obtained for both anomers. These amidoxime derivatives were then converted into 1,2,4-oxadiazoles derivatives (5-6 
and 7-11) following two distinct protocols (Scheme 2). First, sequential synthesis of O-acylated amidoximes using 
acetyl chloride followed by cyclization to 1,2,4-oxadiazole ring (5-6) using alkaline DMSO solution. Whereas the 
second protocol involve direct cyclization of amidoximes19 to 1,2,4-oxadiazoles20-27 using orthoformate or acid 
anhydride in presence of BF3.Et2O as Lewis acid. The later protocol is shorter and offered higher yields compared to 
the first route. Deprotection of p-tolyl group was accomplished using NaOMe in methanol at room temperature in 
excellent yield except for 7a and 7b. Multiple product formation was observed on TLC for 7a and 7b. This 
phenomenon of multiple product formation can be attributed to the deprotonation28,29 of acidic C5-H of 1,2,4-
oxadiazole by NaOMe followed by ring opening and rearrangement. 
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Scheme-2 (Reagents and Conditions):  (i) NH2OH.HCl, DIEA, EtOH, reflux, 1h (92-96%); (ii) Acyl chloride ,1,4-
dioxane, RT, 16 h (73-97%); (iii) Trimethyl orthoformate, BF3.Et2O 110oC, 3 h (or) Acid anhydride, , BF3.Et2O, 110oC 
(or) Trifluoroacetic anhydride, DCM, RT, 5 h (80-98%); (iv) KOH, DMSO, RT, 6 h (72-98%); (v) NaOMe, DCM: 
MeOH (3:2), RT, 16h (48-97%).
(iii) Synthesis of 1,3,4-oxadozle via acylative rearrangement of tetrazole:
In 1994, Kobe et al.30 synthesised 5-β-D-ribofuranosyl-1H-tetrazole from allononitrile using NaN3 and AlCl3 in 
excellent yield. Our attempt to utilize same protocol starting with glycosyl cyanide 1a or 1b resulted in low yield of 
tetrazole derivative along with other unidentified products. Therefore, tetrazole derivatives31-33 (18a and 18b) were 
successfully synthesized in good yield from both anomers of glycosyl cyanide (1a and 1b) using azide click reaction 
with copper and cupric sulphate in DMF at 120°C. Unprotected tetrazole nucleosides (19a and 19b) were obtained by 
cleaving tolyl protecting group using sodium methoxide in methanol at room temperature (Scheme 3). The conversion 
of tetrazole to 1,3,4-oxadiazole derivatives34-38 was achieved either by reacting tetrazole derivatives with carboxylic 
acid anhydride in presence of hydroquinone under reflux or by reacting with carboxylic acid chloride in pyridine.39-42 
The Deprotection of p-tolyl group was executed using NaOMe in methanol at room temperature in excellent yield. 
However, the deprotection protocol suffers from a drawback for C5-unsubstituted and C5-substitution with electron 



withdrawing groups. In both cases, multiple product formation was observed due to the ring opening of the oxadiazole 
ring. This decomposition can be explained by the nucleophilic addition of NaOMe to C5-carbon and ring opening.43

The postulated mechanism44 of this conversion is illustrated in Scheme-4. 5-Substituted tetrazole undergoes N2-
acylation upon treatment with acylation reagent due to steric bulk of 5-substitution. This unstable intermediate (INT-
1) then ring opens via nitrogen extrusion and formation of N-acyl nitrilimine as putative intermediates (INT-2 and 
INT-3). These intermediates are then cyclized to form 1, 3, 4-oxadiazoles (20-25) in good yield. Structural elucidation 
of the new compounds described in this study was based on NMR and mass spectral data. 
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Scheme-4: Plausible reaction mechanism for 2-substituted 1,3,4-oxadiazole ring formation from 18a or 18b

Biological Activity:
We tested a set of 12 C-nucleosides both  and -anomers for their in-vitro cytotoxicity activity in five tumor cell 
lines,45namely HeLa, MDA-MB-231 (breast cancer), PANC-1 (pancreatic cancer), PC3 (prostate cancer) and SK-OV-
3 (ovarian cancer) using the MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 
Doxorubicin was used as a positive control to validate the MTT assay 46. Majority of the compounds failed to exhibit 
significant cytotoxicity against five cell lines tested at 10 mol concentration. The results are summarized in the graph 
shown below. Compounds 15b and 28a exhibited modest (9-11%) inhibition of breast cancer cell line MDA-MB-231. 
Whereas in case of SK-OV-3, we observed 10-14% inhibition exerted by five C-nucleosides (19b, 17b, 12b, 14b & 
14a) (Figure 3). 
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Figure 3: Inhibition profile for 12 C-nucleosides against 5 cell lines. Doxorubicin was used as a control which 
exhibited >90% inhibition at 2M.

Summary:
Various regio-isomeric five-membered oxadiazoles based 2’-deoxy-C-nucleosides were synthesized for the first time 
in good yield and high purity. All C-nucleosides were assembled from pure - or -anomer of glycosyl cyanide. The 
synthesis of glycosyl cyanide as key starting material was established on large-scale and in excellent yield. The easy 
accessibility of glycosyl cyanide further allows its utility in design of therapeutic oligonucleotides. 47The synthetic 
methodologies developed in this study are general and offer future scope to generate other nucleoside analogues for 
SAR study. Biological evaluation was carried out for synthesised compounds and shows reasonable cytotoxicity in 
five different tumor cell lines. Studies on antiviral activity of these compounds is in progress and it will be published 
elsewhere.
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