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This Letter reports the synthesis and biological evaluation of a collection of aminophthalazines as a novel
class of compounds capable of reducing production of PGE2 in HCA-7 human adenocarcinoma cells. A
total of 28 analogs were synthesized, assayed for PGE2 reduction, and selected active compounds were
evaluated for inhibitory activity against COX-2 in a cell free assay. Compound 2xxiv (R1 = H, R2 = p-
CH3O) exhibited the most potent activity in cells (EC50 = 0.02 lM) and minimal inhibition of COX-2 activ-
ity (3% at 5 lM). Furthermore, the anti-tumor activity of analog 2vii was analyzed in xenograft mouse
models exhibiting good anti-cancer activity.

� 2012 Elsevier Ltd. All rights reserved.
Prostaglandin E2 (PGE2) is well known to play a pivotal role in
processes associated with inflammation, pain and pyresis and is
over expressed in various tumors where chronic inflammation
has been linked to the growth of various cancerous tissues. Indeed,
PGE2 has been identified as the major prostaglandin associated
with the progression of various tumor malignancies including that
of the colon, lung, and breast.1–5

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly
used as analgesics that function by inhibiting the activity of cyclo-
oxygenase (COX) enzymes which are involved in the biosynthesis
of a variety of prostaglandins, including PGE2. At high doses NSA-
IDs have been shown to reverse the growth of colorectal tumors
and patients using NSAIDs over long periods of time for chronic
disorders (i.e rheumatoid arthritis) exhibit a lower risk of develop-
ing colon cancer.1–4 It is postulated that the anti-cancer properties
elicited by NSAIDs are primarily due to a reduction in PGE2 levels
supported by the observation that exogenous treatment with
PGE2 is shown to impede NSAID induced tumor regression. Histor-
ically, side effects with non-selective COX-1/2 inhibitors (Aspirin,
Tylenol, Ibuprofen) driven by COX-1 mediated gastrointestinal
intolerance, promoted efforts to develop specific COX-2 inhibitors
(Celebrex�, Bextra� and Vioxx�). However, the latter two drugs
were subsequently withdrawn from the market due to a drug in-
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duced imbalance of prostacyclin (PGI2) and thromboxane A2

(TXA2) leading to cases of myocardial infarction and thrombo-
sis.1–4 Thus the search for colon cancer modifying therapeutics is
now geared towards the development of PGE2 reducing drugs that
do not alter COX activity.6–11

In search of novel anti-tumor small molecules with the capacity
to reduce cellular levels of PGE2 without affecting in vitro COX-2
activity, our group has recently reported a series of 2-aminothiaz-
oles with interesting biological profiles (Fig. 1).11 In particular, 1a
exhibited the most potent cellular PGE2 reducing activity of the en-
tire series (EC50 90 nM), with only a nominal COX-2 inhibition [IC50

>5 lM]. Furthermore, analog 1b exhibited promising anti-cancer
activity in mouse xenograft models.11 In continuation of our stud-
ies, we herein report the biological evaluation of a novel series of
aminophthalazines in Table 1 analogs 2 with PGE2 reducing char-
acter in HCA-7 colon cancer cells, Figure 1.

The aminophthalazines Table 1 (2i–xxiv), were assembled using
methodology depicted in Scheme 1.12,13 Briefly, 1,4-dichloroph-
thalazine 3 was treated at reflux with an equivalent amount of ani-
line 4 affording intermediates 5 in good yield. Compounds 5
smoothly underwent Suzuki-coupling with select boronic acids
enabling formation of final aminophthalazine analogs 2i–xxiv
in moderate yields. Analogs 6i–ii were obtained via standard
N-methylation methodology from 2vi and 2vii respectively.
Pyridazines 9i–ii were prepared from commercially available 1,4-
dichloropyridazine 7 and p-toluidine 4 in a similar fashion to the
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Figure 1. Structures of 2-aminothiazoles 1a–b and general structure of aminophthalazines 2.
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Scheme 1. Synthesis of aminophthalazines 2i–xxiv and 6i–ii (R1, R2 and X vary, see Table 1).13 Reagents and conditions: (i) (a) EtOH, reflux, 0.5 h, (b) NaOH (aq); (ii) Boronic
acid (2 equiv), K2CO3 (2 equiv), Bis(triphenylphosphine)palladium(II) dichloride (0.05 equiv), dioxane–H2O (4:1), microwave irradiation, 100 �C, 1 h; (iii) NaH (1.5 equiv), MeI
(1.5 equiv), DMF, 0 �C to rt.
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Scheme 2. Synthesis of aminopyridazines 9i–ii. Reagents and conditions: (i) (a) EtOH, reflux, 0.5 h, (b) NaOH (aq); (ii) Boronic acid (2 equiv), K2CO3 (2 equiv),
Bis(triphenylphosphine)palladium(II) dichloride (0.05 equiv), dioxane–H2O (4:1), microwave irradiation, 100 �C, 1 h.
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aminophthalazines in Scheme 2. Final compounds exhibited puri-
ties >95%, as judged by LC/MS (254 and 214 nm) and evaporative
light scattering (ELS).

All compounds were screened for their ability to reduce PGE2

production in HCA-7 colon cancer cells at 1 lM concentration
and activities are summarized as percentage reduction of PGE2 lev-
els Table 1.14 Compounds that exhibited reduction of PGE2 levels
higher than 70% were tested for COX-2 inhibition at 5 lM in an
in vitro cell free assay, with Celecoxib incorporated as a positive
control in both PGE2 and COX-2 assays.15 IC50 values for COX-2
inhibition were not determined, as no inhibitory activity against
COX-2 >50% was observed. Compounds exhibiting >70% reduction
of PGE2 levels, and <50% COX-2 inhibition were pushed forward for
EC50 determinations of PGE2 reducing level ability.

Aminophthalazines 2i–v, characterized by various polar substit-
uents at both the C-1 phenyl (R2) and C-4 aniline (R1) rings, gener-
ally exhibited poor reduction of cellular PGE2 levels (0–39%),
possibly due to a reduced ability to permeate the cellular mem-
brane. Replacement with R1 = p-CH3 (2vi–xvii) resulted in good
to high levels of inhibition of cellular PGE2 levels (59–99%), the
only exception being 2x (R2 = H, X = N, 15%), characterized by a po-
lar pyrimidine ring instead of the phenyl ring. In this group of ana-
logs, the activity was influenced by the nature and position of the
substituent R2 on the C-1 phenyl ring. In detail, when this ring was
unsubstituted (2vi), a strong reduction of PGE2 levels was observed
(99%; EC50 0.031 lM). Surprisingly, a para-methoxy substituent
(R2) led to the same level of inhibitory activity as 2vi (2vii, 98%;
EC50 0.032 lM). Movement of the methoxy group R2 to the meta
and ortho positions resulted in a reduction of activity (2viii and
2ix, 62 and 79%, respectively; 2ix EC50 0.59 lM). Similar to what
was observed for analog 2vii, a dimethylamine substituent at the
para position of the C-1 phenyl ring (R2) led to potent reduction
of PGE2 levels (2xi, 94%; EC50 0.42 lM), albeit 10-fold less than
2vii. Enlargement of the para-methoxy (R2) to ethoxy (2xii) or iso-
propoxy (2xiii) resulted in partial loss of activity (75 and 98%; EC50

0.57 and 0.70 lM, respectively). A consistent reduction in activity
was also observed when a bulkier 3,4-methylenedioxy substituent
was added to the phenyl ring R2 (2xiv, 59%).

Introduction of a bulky hydrophobic substituent at the meta po-
sition of the C-1 phenyl ring (R2), including chloro (2xv, 75%; EC50

0.86 lM) or phenyl (2xvii, 85%; EC50 0.54 lM) led to moderate
activity, whilst movement of a chlorine atom from the meta to
the ortho position (2xvi) improved activity (97%; EC50 0.38 lM).
This result may be explained by restricted rotation of the phenyl
ring and associated lowering of entropic barriers to binding,
resulting from bulky substituent in the ortho position. Elongation
of the para methyl group on the C-4 of the phenyl ring (R1) to ethyl
(2xviii, 85%; EC50 0.93 lM) resulted in slightly reduced levels of
activity when compared to 2vii (R2 p-CH3O; EC50 0.032 lM).
Movement of the para methyl group on the C-4 aniline ring to
the meta position led to a decrease in the observed activity (R1,
2xix and 2xx, 74 and 87%; EC50 0.76 and 0.64 lM, respectively),
compared with the activity previously observed for 2vi–vii (99
and 98%; EC50 0.031 and 0.032 lM). Replacement of the meta
methyl R1 with a bioisosteric chlorine (2xxi, 79%; EC50 0.5 lM)
resulted in a similar level of activity to 2xix. Introduction of a para
phenoxy substituent on the C-1 phenyl ring (R2, 2xxii–xxiii)
maintained strong reduction of PGE2 cellular levels, surprisingly
only when the C-4 anilino ring (R1) was substituted with a para
phenoxy group (92%; EC50 = 0.09 lM). Interestingly, removal of
the methoxy group from the aniline ring (R1 = H, R2 = p-CH3O)
resulted in slight increase of cellular activity (2xxiv, 97%;
EC50 = 0.02 lM), delivering the most functionally potent com-
pound observed in cells.



Table 1
Biological activity of aminophthalazines analogs 2i–xxiv, 6i–ii and pyridazines 9i–iiabcdef
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Compd R1 R2 X PGE2 (%)d COX-2 (%)e PGE2 EC50/lMf

2i p-CH3O p-C(O)NH(CH2)2OH C 39.2 ± 13 — —
2ii p-OH H C 26.7 ± 5 — —
2iii p-SO2NH2 H C NR — —
2iv p-COOEt H C 18.4 ± 3 — —
2v p-OCH2C(O)NH2 p-CH3O C NR — —
2vi p-CH3 H C 98.9 ± 1 23.0 ± 1 0.031 ± 0.07
2vii p-CH3 p-CH3O C 98.3 ± 3 NR 0.032 ± 0.02
2viii p-CH3 m-CH3O C 62.0 ± 8 — —
2ix p-CH3 o-CH3O C 77.2 ± 0 NR 0.59 ± 0.04
2x p-CH3 H N 15.1 ± 4 — —
2xi p-CH3 p-N(CH3)2 C 94.4 ± 1 14.2 ± 1 0.42 ± 0.002
2xii p-CH3 p-OEt C 75.3 ± 9 NR 0.57 ± 0.06
2xiii p-CH3 p-OCH(CH3)2 C 76.7 ± 3 NR 0.70 ± 0.25
2xiv p-CH3 3,4-OCH2O- C 59.0 ± 8 — —
2xv p-CH3 m-Cl C 75.2 ± 8 NR 0.86 ± 0.10
2xvi p-CH3 o-Cl C 97.2 ± ± 1 NR 0.38 ± 0.01
2xvii p-CH3 m-Ph C 84.2 ± 1 NR 0.54 ± 0.05
2xviii p-Et p-CH3O C 85.0 ± 11 NR 0.93 ± 0.01
2xix m-CH3 H C 74.1 ± 6 NR 0.76 ± 0.30
2xx m-CH3 p-CH3O C 87.5 ± 5 NR 0.64 ± 0.34
2xxi m-Cl H C 79.4 ± 9 10.1 ± 7 0.50 ± 0.4
2xxii p-PhO H C 71.2 ± 15 NR —
2xxiii p-PhO p-CH3O C 92.6 ± 5 NR 0.09 ± 0.05
2xxiv H p-CH3O C 97.3 ± 1 3.0 ± 10 0.02 ± 0.01
6i CH3 CH3O — 87.0 ± 2 NR 0.05 ± 0.02
6ii CH3O H — 92.4 ± 1 21.4 ± 27 0.220 ± 0.006
9i CH3 H — 62.5 ± 1 — —
9ii CH3 CH3O — 49.0 ± 4 — —

a Previously described inhibitor of cellular PGE2 levels, 1b, was used as a positive control (PGE2 10.9 ± 4.5 and EC50 = 0.33 ± 0.09 lM).11

b NR, no observed reduction.
c — Not determined.
d % of inhibition of PGE2 levels in HCA-7 cells at 1 lM concentration ± SD (n = 3).
e % of inhibition of COX-2 levels in vitro at 5 lM concentration ± SD (n = 3).
f EC50 for PGE2 level reduction in HCA-7 cells ± SD (n = 3).
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N-Methylation of 2vi–vii to afford 6i and 6ii respectively, inter-
estingly only slightly impaired the capacity to reduce cellular PGE2

levels (87 and 92%; EC50 0.05 and 0.220 lM) when compared to
structurally related analogs 2vi–vii. Finally, replacement of the
phthalazine scaffold with a pyridazine ring resulted in reduced le-
vel of activity (62 and 49%, 9i and 9ii, respectively) and no further
efforts were pursued with this heterocycle.

Remarkably for this class of compounds, the most functionally
active compounds in cells exhibited only negligible inhibition of
COX-2 activity in vitro at 5 lM, with % inhibition comprised be-
tween 0 and 30%. As such, no dose response curves for COX-2 were
determined.

In conclusion, we have prepared and evaluated twenty-six
aminophthalazine and two pyridazine analogs for their capacity
to reduce cellular levels of PGE2 in HCA-7 cells. The in vitro inhib-
itory activity against COX-2 was also determined, leading to the
identification of potent inhibitors of PGE2 levels with negligible
activity against COX-2. Compounds 2vi–vii, xvi and xxiv exhibited
the highest reduction of PGE2 levels, with percentage of PGE2

reduction between 97.2 and 98.9% and EC50 values comprised
between 0.038 and 0.02 lM respectively. Furthermore, 2vii was
tested for its effect on tumor growth in mouse xenograft
models expressing HCA-7 cells and was confirmed to have good
anti-cancer activity with tumor versus control value (T/C) of 34%
for HCA-7 human colonic adenocarcinoma cell lines, at a dosing
schedule of 100 mg/kg ip over 10 days. Work is now on going to
elucidate the mode of action of these molecules with tagged
probes. Future synthetic efforts will focus on further development
of new scaffolds with improved physicochemical properties to
further develop established SAR and promote discovery of new
candidates for in vivo evaluation in mouse xenograft models.
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