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Quinazolin-4-one 1 was identified as an inhibitor of the HIF-1a transcriptional factor from a high-
throughput screen. HIF-1a up-regulation is common in many cancer cells. In this Letter, we describe
an efficient one-pot sequential reaction for the synthesis of quinazolin-4-one 1 analogues. The
structure–activity relationship (SAR) study led to the 5-fold more potent analogue, 16.

Published by Elsevier Ltd.
N

N

O

N

N

O

OEt

O

A

B

C

Hypoxia-inducible factor (HIF-1) is a dimeric transcription fac-
tor consisting of an oxygen regulated a-component and a constitu-
tively expressed b-component. At normal oxygen levels, HIF-1a is
degraded via the pVHL-mediated ubiquitin-proteosomal pathway.
Under hypoxic conditions, HIF-1a rapidly accumulates and dimer-
izes with HIF-1b. This heterodimer binds to the DNA hypoxia-
response element (HRE) and activates a diverse array of target
genes.1 This pathway is particularly relevant to the cancer field be-
cause oxygen levels in tumors are commonly lower than in the sur-
rounding tissues. Hypoxic cells are resistant to radiation damage
and their distances from blood vessels reduce the potency of
anti-cancer drugs. Hypoxia additionally promotes the up-
regulation of genes involved in drug resistance. HIF-1 is directly
responsible for the induction of numerous genes that are present
at higher levels in cancer cells, in particular VEGF. The overexpres-
sion of HIF-1 has been related to the aggressiveness and vascularity
of tumors, and mortality rate in patients. Despite the introduced
difficulties in treating hypoxic tumors, the hypoxic environment
found in tumor cells can be exploited for targeted therapy. One
strategy to achieve this involves the identification of HIF-1 inhibi-
tors as potential anti-cancer drugs.2 We recently reported a high-
throughput cell-based HIF-1 mediated b-lactamase reporter gene
assay. Upon screening a library of 73,000 compounds (PubChem
AID:915 (http://pubchem.ncbi.nlm.nih.gov)), several compounds
were identified as novel inhibitors of the HIF-1 signaling pathway.3
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).
Among these hits, quinazolin-4-one 1 (NCGC00056044) showed
good drug-like properties and was selected for further exploration.

Three areas were selected for structure-activity relationship
(SAR) studies: (1) substitution in area A; (2) piperazine region B;
and (3) phenyl substitution in area C (Fig. 1).

To facilitate our compound synthesis for the SAR study, we
modified a reported method4 to remove the need for intermediate
purification. In addition, a microwave reactor was used to acceler-
ate the synthesis. Acylation of anthranilic acid 2 with chloroacetyl
chloride gave 3, which was treated with aniline 4 to afford chloride
5 (Scheme 1). The chloride was reacted with amine 6 to give com-
pounds 1, 7–36. All three steps were conducted in one-pot without
1

Figure 1. Optimization plan for NCGC00056044 (1).
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Scheme 2. Reagents and conditions: (i) iPrNEt2, DCM, 2-furoyl chloride; (ii) LiOH; (iii) 2-ethoxyaniline, 2a, pyridine, MW 230 �C, 10 min.
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Scheme 1. Reagents and conditions: (i) iPrNEt2, ACN, rt; (ii) ArNH2 (4), POCl3, MW 150 �C, 15 min; (iii) K2CO3, EtOH, MW 150 �C, 5 min; then amine 6, MW 150 �C, 10 min.
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the need for intermediate isolation. This protocol was carried out
in a parallel fashion to prepare the analogues which were purified
via HPLC.5

Compound 39 was prepared as described in Scheme 2. Reaction
of 37 with 2-furoyl chloride, followed by a hydrolysis reaction
yielded acid 38. The desired 39 was obtained via a microwave
assisted one-pot three-component reaction of 38, acid 2a, and
2-ethoxyaniline.6

Scheme 3 describes the synthesis of the area C analogue 42. Ni-
tro-reduction of 40 gave 41. Alkylation of the aniline nitrogen in 41
using ethyl iodide followed by a Boc-deprotection gave 42.

All analogues were evaluated in a cell-based HIF-1 mediated b-
lactamase reporter gene assay under hypoxic conditions.7 Area A
showed little tolerance for substitution (Table 1). The C-6 methoxy
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Scheme 3. Reagents and conditions: (i) Na2S2O4; MW 100 �C, 10 min (ii)
(7), C-5 iodo (9), and C-4 and C-5 dimethoxy (10) substitutions
were inactive. Compound 8 with a methyl group at C-6 was active,
but it was 3-fold less potent than the original hit (1). Considering
these results, our efforts focused on the optimization of areas B
and C (Fig. 1).

Modification of the piperazine region B is shown in Table 2. Acet-
ylation of N-4 (11) resulted in similar activity to the hit compound
(1), but capping the piperazine nitrogen with a benzamide (12) or
ethyl carbamate (13) resulted in a loss of activity. N-4 methylation
(14) or benzylation (15) resulted in a 2-fold and 64-fold loss of
activity respectively. Ultimately, the most active compound was
the unsubstituted N-4 analogue (16), which was about 5-fold more
potent than 1. N-4 was critical for activity because when it was
replaced with either a carbon (19) or oxygen (18), activity was lost.
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EtI, DMF, iPr2NEt, K2CO3, MW 150 �C, 15 min; (iii) DCM, TFA, rt 2 h.



Table 2
SAR study for the piperazine region*

Entry Compd X 1% O2 IC50 (lM)

N

N

O

N1

N4

O

O

OEt

1

1 1
N N

O

O
0.43

2 11 N N
O

0.47

3 12
N N

O

1.7

4 13 N N
O

O
9.4

5 14 N N 0.81

6 15
N N

27.5

N

N

O

X

OEt

7 39
N

O

O
27.6

8 16 N NH 0.09

9 17 N
NH

0.16

10 18 N O 27.6

11 19 N Inactive

* Values of IC50 are the mean of three independent experiments.

Table 1
Modification at the R1 position*

Structure Entry Compd R1 1% O2 IC50 (lM)

N

N

O

N

N

O

O

OEt
R1

6

3

1 1 H 0.43
2 7 6-Methoxy Inactive
3 8 6-Methyl 1.2
4 9 5-Iodo Inactive
5 10 4,5-Dimethoxy Inactive

* Values of IC50 are the mean of three independent experiments.
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In fact, both piperazine nitrogens were important because replace-
ment of N-1 with a carbon (39) also resulted in a 40-fold decrease in
activity. Finally, the piperazine ring was expanded to homopiper-
azine (17) and there was a slight loss in activity relative to 16, but
this analogue was still more potent than 1.

The modification of area C was explored in Table 3. The first set
of compounds was based on piperazine scaffold A (Table 3, entries
1–12) and there was almost no tolerance for substitution. The only
moderately successful analogue was 2-OMe (29), but even this was
8-fold less active than 1. Scaffold B presented a greater opportunity
for SAR analysis (entries 13–20). Large alkoxy groups, such as ben-
zyloxy (33), or iso-butyloxy (34) at C-2 resulted in significant loss
of activity in comparison with ethoxy (16). Moving the methoxy
group from the 2- to 4- position resulted in a complete loss of
activity (29 vs. 36). A dramatic substitution effect was observed
at the 5-position. Replacement of the nitro group (32) with a CF3

(31) resulted in more than a 20-fold improvement in potency. Fi-
nally, by comparing 35, 16, and 42, the ethoxy group appeared to
be better than ethoxythio or ethylamine at the C-2 position.

To confirm HIF-1a inhibition, compounds 18 and 16 were eval-
uated in a Western blot analysis.8 At 1 lM, 16 completely sup-
pressed HIF-1a accumulation while 18 had no effect on the
protein accumulation (Fig. 2). This result is in agreement with
the compounds’ activities observed in the cell-based assay.



Table 3
SAR study for R2 position*

Scaffold Entry Compd Scaffold R2 1% O2 IC50 (lM)

1 20 A 4-F Inactive
2 21 A 2-tBu Inactive
3 22 A 2-NO2 Inactive

N

N

O

N

N

O

O

R2

Scaffold A

4 1 A 2-EtO 0.43
5 23 A H Inactive
6 24 A 2-Cl Inactive
7 25 A 2-Me Inactive
8 26 A 2-Benzyloxy Inactive
9 27 A 2-F Inactive
10 28 A 2-PhO Inactive

N

N

O

N

N
H

R2

Scaffold B

11 29 A 2-MeO 3.3
12 30 A 2-MeO, 5-CF3 Inactive
13 31 B 2-MeO, 5-NO2 0.2
14 32 B 2-EtNH 4.2
15 42 B 2-Benzyloxy 4.1
16 33 B 2-Benzyloxy 22.9
17 34 B 2-isobutoxy 6.2

18 35 B 2-EtS 3.5
19 36 B 4-MeO Inactive
20 16 B 2-EtO 0.09

* Values of IC50 are the mean of three independent experiments.

HIF-1a

ß-Actin

1% O2
- +

Compounds

- -

+ + + +

1 10 1 10

16 16 18 18

µM

Figure 2. Effect of compounds 16 and 18 on the accumulation of the HIF-1a protein
under hypoxia conditions.
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However, compound 18 at 10 lM also inhibited HIF-1a protein
accumulation. Stockwell and co-workers reported that these
quinazolin-4-ones caused rapid death of human tumor cells
(BJ-TERT/LT/ST/RASV12 cells) via RAS-RAF-MEK dependent signal-
ing.9 Because Ras, a well known oncogene, has been shown to
stimulate HIF-1a expression via the Raf/Mek/ERK pathway,10 it is
possible that the activity of these quinazolin-4-ones against HIF-
1a accumulation is via the RAS signaling pathway.

In conclusion, we have identified a series of novel quinazolin-4-
one HIF-1a inhibitors. A library synthesis and SAR studies revealed
analogue 16 as the new lead, which was almost 5-fold more potent
than the hit from the primary screen (1). The inhibition of HIF-1a
was further confirmed in Western blot analyses. Detailed mecha-
nistic studies and evaluation of these compounds as anti-cancer
agents in rare types of cancer are currently under way and will
be reported in due course.
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