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Synthesis and SAR of 3,5-diamino-piperidine derivatives: Novel
antibacterial translation inhibitors as aminoglycoside mimetics
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Abstract—Aminoglycoside antibiotics target an internal RNA loop within the bacterial ribosomal decoding site. Here, we describe
the synthesis and SAR of novel 3,5-diamino-piperidine derivatives as aminoglycoside mimetics, and show they act as inhibitors of
bacterial translation and growth.
� 2006 Elsevier Ltd. All rights reserved.
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Bacterial resistance to antibiotics is on the rise and rep-
resents a global medical threat. In hospitals in the Unit-
ed States, approximately two million patients per year
are infected.1 The majority of these nosocomial patho-
gens are resistant to at least one antibiotic and result
in about 90,000 deaths per year; a number that has in-
creased 7-fold over the last decade. The recent and rapid
spread of community acquired methicillin-resistant
Staphylococcus aureus further highlights the threat of
resistance development and illustrates the need for new
antibiotics that work by novel mechanisms.2 Given the
broad genetic and physiological diversity of bacterial
pathogens and the need for empiric therapies that cover
a broad panel of organisms, it is not surprising that dis-
covery of new antibiotics has advanced slowly. Central
to antibiotic discovery is identifying broadly validated
targets. One such proven target is the bacterial ribo-
some, which is the target for a significant number of
clinically important antibiotics that bind at the ribosom-
al RNA (rRNA).3 Here, we expand on the description of
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a novel series of antibacterial compounds that target
rRNA and block bacterial translation and growth.4

Three-dimensional structures of different aminoglyco-
sides bound to the decoding site, or A-site, within the
16S rRNA have been determined by X-ray crystallogra-
phy.5 Importantly, these studies have shown that
2-deoxystreptamine (2-DOS), a conserved core scaffold
among aminoglycosides, binds in a similar manner
regardless of the 4,5- or 4,6-disubstitutions found in
the neomycin or gentamicin families, respectively
(Fig. 1).6 The cis-1,3-configured amino groups of
2-DOS are predominantly involved in base recognition
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Figure 1. The aminoglycoside gentamicin and the DAP scaffold that

mimics 2-DOS of the aminoglycoside.
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Figure 2. DAPT (6) and tailpiece (R3) structures.
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by forming conserved hydrogen bonds with A1493,
G1494, and U1495 of the 16S rRNA. These interactions
anchor the aminoglycoside scaffold within the A-site
internal loop and displace residues A1492 and A1493
from the RNA interior. These two adenine residues
act as a molecular switch that is involved in securing
the fidelity of translation by interacting with the first
two bases of the mRNA–tRNA codon–anticodon hy-
brid. Thus, aminoglycoside binding impairs the ribo-
some’s ability to discriminate against near-cognate
tRNA–mRNA pairings, which ultimately causes cell
death.

While 2-DOS is recognized as a key pharmacophore for
binding rRNA, its synthesis and modification is chal-
lenging due to the five contiguous stereogenic centers.7

Therefore, we had developed synthetic mimetics of
2-DOS, one of which is cis-3,5-diamino-piperidine
(DAP) (1) (Fig. 1).4 The DAP ring retains the character-
istic cis-1,3-diamine configuration of 2-DOS that is
important for RNA recognition. In contrast to amino-
glycosides, the reduced chemical complexity renders
the DAP series and derivatives amenable to rapid elab-
oration by parallel synthesis. Here, we focus on the syn-
thesis and structure–activity relationships of DAP and
other synthetic mimetics of 2-DOS.

Scheme 1 outlines the synthesis of the Boc-protected
DAP (5). In this specific synthesis, the two NO2 groups
of 2-chloro-3,5-dinitropyridine (2) were hydrogenated at
room temperature in the presence of 10% Pd/C to gener-
ate 3,5-diaminopyridine 3. The amino groups were then
protected as a di-Boc derivative 4 which was subse-
quently hydrogenated at 2200 psi using 5% Rh/C in
the presence of acetic acid at 110 �C to yield the piperi-
dine derivative 5.8–10 Since aminoglycosides are relative-
ly large molecules that engage in at least 15 contacts
with rRNA,5 a single DAP scaffold would not allow
high-affinity binding to rRNA and, hence, additional
functionality was added. Guided by modeling studies
and the availability of a straightforward synthetic route,
DAP was linked to a triazine core which resulted in mol-
ecules (termed DAPT) that had a high affinity for A-site
containing RNA oligonucleotides.4 The DAP scaffold
and analogs (R1 and R2, termed ‘headpiece’) thereof
were linked at the 2- and 6-positions of triazine (6)
(Fig. 2). The so-called ‘tailpiece’ substituents (R3) were
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Scheme 1. Reagents and conditions: (a) H2, 10% Pd/C, rt; (b) Boc2O,

NaHCO3, H2O/MeOH/THF; (c) H2, 2200 psi, 5% Rh/C, CH3COOH,

110 �C.8–10
attached at the triazine 4-position via an N-linkage.
Representatives of R3 used in this study are shown in
Figure 2.4,11

Table 1 highlights the SAR of headpieces where R1 and
R2 are identical resulting in a symmetric configuration.
The symmetrical arrangement of two DAPs in com-
pounds 11 and 12 resulted in potent translation inhibi-
tors. Importantly, in the symmetric configuration, the
acyclic headpiece (13) and a dimethylated DAP (14) re-
tained activity (Table 1). Both of these headpieces allow
the amino groups to be located in identical spatial orien-
tation found both in DAP and 2-DOS and, hence, may
account for similar hydrogen bonding with target
rRNA. Although two amino groups in the five-mem-
bered ring headpiece of compound 15 have a slightly dif-
ferent spatial orientation than in DAP, 15 was
nevertheless active. In contrast, when one of the amino
groups in the headpiece is removed, or the spatial orien-
tation is significantly altered, activity is abolished (com-
pounds 16–18). These results support our hypothesis
that DAP can indeed substitute for the 2-DOS pharma-
cophore. Moreover, these findings show that the signa-
ture cis-3,5-diamino fragment of DAP, and by analogy
the cis-1,3-diamino fragment of 2-DOS, can tolerate a
variety of structure modifications as exemplified in com-
pounds 11–15.

Table 2 summarizes headpiece SAR with asymmetric
configurations of R1 and DAP (R2). For most headpiece
configurations there are as many as three R3 substitu-
tions on the triazine core (6), which allowed detailed
insight into headpiece (R1) SAR. Interestingly, a
mono-DAP compound (19) (R1 = H) has similar activity
as di-DAP compounds (12, 20, and 21). Consistent with
the results shown in Table 1, active headpieces in sym-
metric configuration (13, 14 and 15) also resulted in ac-
tive inhibitors when they were asymmetrically combined
with DAP (22–24, 25, and 29–31) (Table 2). Conversely,
a headpiece with symmetric configuration that resulted
in poor activity (Table 1; 16) was found to reduce activ-
ity when asymmetrically combined with DAP (38–40).



Table 2. Asymmetric (R2 is DAP) headpiece substitutions

Compounda R1 R3 IC50 Ecb Sac

19 H 8 16 4 nd

12

N

NH2

H2N

8 10 1 2

20 9 7 2 16

21 10 3 4 8

22

N

NH 2

H2N

8 10 4 8

23 9 18 16 32

24 10 1 16 8

25
N

NH

N
H

8 8 2 8

26

NH2N

H2N
8 8 2 4

27 9 11 8 16

28 10 1 16 8

29

N
H2N

H2N 8 10 4 2

30 9 12 8 32

31 10 13 32 2

32

N
H2N

HO
8 19 4 8

33 9 13 16 32

34 10 15 16 8

35
N

HO

H2N

8 10 8 16

36 9 19 16 32

37 10 21 16 8

38

N

OH

H2N

8 17 2 8

39 9 40 8 64

40 10 17 16 16

41

N

OH

8 310 16 16

42 9 40 64 32

43 10 44 16 8

44
NH2N

HO
8 21 4 16

45 9 31 32 32

46 10 27 32 16

47

N

HO

HO 8 72 16 32

48 9 77 32 64

49 10 43 32 32

50

N

H2N

H2N
9 58 16 16

51 10 36 32 16

Table 1. Symmetric headpiece substitutions and protein synthesis

inhibitory activity

Compounda R1 and R2 R3 IC50
b

11

N

NH2

H2N

7 10

12 8 7

13

N

NH2

H2N

8 7

14
N

NH

N
H

7 5

15

N
H2N

H2N

8 8

16

N

OH

H2N

8 100

17

N

NH2

7 >1000

18
N

H2N
7 800

Kan 0.4

Tet 2.8

a Kan, kanamycin; Tet, tetracycline.
b Coupled in vitro transcription–translation assay with Escherichia coli

extracts (lM).4

1208 Y. Zhou et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1206–1210
In general, the replacement of an amino group with a
hydroxy group on five- (32–34) or six-membered ring
headpiece (38–40) slightly reduced activity compared
to the di-amino substitutions (29–31 and 12, 20–21,
respectively). Similarly, other mono-hydroxy substitu-
tions exhibit moderate to weak activity (35–37, 41–43,
and 44–46). An azetidin-3-ylamine substitution was
tolerated (52–53), while a pyrrolidine-3,4-diamine sub-
stitutions (50–51) resulted in weak translation inhibitors.
Di-hydroxy substitutions (47–49) were found to yield
particularly weak inhibitors and appeared to destabilize
the binding of the asymmetric DAP scaffold to its target.
An acetamide substitution on the piperidine abolished
activity (54–55). In summary, these results show that a
symmetric substitution of two DAP moieties on the tri-
azine core represents an optimal configuration for inhib-
itors of bacteria translation and growth.4,10 However,
this work also shows that there is room to alter the
headpiece configuration while retaining antibacterial



Table 2 (continued)

Compounda R1 R3 IC50 Ecb Sac

52 N
H2N

9 14 8 nd

53 10 11 16 160

54

N
H2N

O

9 >1000 nd nd

55 10 >1000 nd nd

Cm 1.5 4 8

nd, not determined.
a Cm, chloramphenicol.
b E. coli ATCC 25922 minimum inhibitory concentration (lg/mL).4

c S. aureus ATCC 25923 (MIC).
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activity, which may be used to optimize other pharma-
ceutical properties such as bioavailability.

Summary and perspective. This paper focused on
headpiece optimization on our novel DAPT transla-
tion inhibitors. The active DAP pharmacophore was
derived from structural information of the molecular
recognition between the conserved 2-DOS scaffold of
aminoglycosides and the A-site RNA.5,6 This work
expands on our efforts to rationally design 2-DOS
mimetics, including the aminoazepane and novel
acyclic deoxystreptamine scaffolds.11 After the initial
design of DAPT, the series then evolved through an
iterative process of parallel synthesis and testing
that led to promising lead compounds. Medicinal
chemistry elaboration can now be used to generate
a potential clinical candidate that may improve on
the pharmaceutical properties of aminoglycosides,
including persisting resistance, poor bioavailability,
and toxicity.

In a future communication we will describe SAR
around protein binding and the effect of serum on
antibacterial potency. In the context of this study, a
particularly intriguing observation was found with
compound 22 in that the Escherichia coli MIC im-
proved in the presence of serum protein. This syner-
gistic activity with serum was titratable and reached
a peak reduction in MIC of 16-fold. Separately, par-
ticular core and tailpiece substitutions were found to
reduce the serum MIC shift. A striking feature of
the DAPT series is their potent antimicrobial activity
against Pseudomonas aeruginosa, a pathogen for which
there is a unmet clinical need to develop new antibiot-
ics.2 In one study, 53 clinical isolates of P. aeruginosa
were tested against a DAPT compound (compound 1a
in Ref. 4) and commercial antibiotics. The MIC90 of
the DAPT compound was 8 lg/mL, while the seven
reference antibiotics that included amikacin, imipen-
em, ciprofloxacin, ceftazidime, and tazobactam/pipera-
cillin all had higher MIC90 values. Based on these
and other findings we are particularly interested in
developing the DAPT compounds as novel anti-P.
aeruginosa agents.
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