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The first series of peptidyl aldehyde inhibitors that incorporate in their structure a glutamine surrogate
has been designed and synthesized based on the known substrate specificity of Norwalk virus 3C prote-
ase. The inhibitory activity of the compounds with the protease and with a norovirus cell-based replicon
system was investigated. Members of this class of compounds exhibited noteworthy activity both in vitro
and in a cell-based replicon system.

� 2011 Elsevier Ltd. All rights reserved.
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Noroviruses are a leading cause of food-borne and water-borne
non-bacterial acute gastroenteritis.1 Norovirus infections consti-
tute an important health problem with an estimated 23 million
cases of gastroenteritis occurring annually in the US, causing
50,000 hospitalizations and 300 deaths.2 There are currently no
effective vaccines or antiviral therapeutics for the treatment of
norovirus infection.

Noroviruses are small enveloped viruses of the Caliciviridae fam-
ily.3 The genome of the Norwalk virus, a prototype of noroviruses, is
comprised of a single-stranded, positive sense RNA molecule of�7.7
Kilo bases that consists of three open reading frames (ORFs) that en-
code a 200 kDa polyprotein (ORF1), a major capsid protein VP1
(ORF2), and a small basic protein VP2 (ORF3). The mature polypro-
tein is co- and post-translationally processed by a virus-encoded
protease to generate mature non-structural proteins.4 Processing
of the mature polyprotein is mediated by this 3C protease, a (chy-
mo)trypsin-like cysteine protease having a Cys-His-Glu catalytic
triad and an extended binding site. The substrate specificity of noro-
virus 3C protease has been determined using in vitro transcription/
translation studies, and peptidyl chromogenic and fluorogenic sub-
strates.5–7 The protease shows a strong preference for a –D/E–F/Y–
X–L–Q–G–P– sequence (where X is H, E or Q) corresponding to the
subsites S5–S4–S3–S2–S1–S1

0–S2
0–. Cleavage is at the P1–P1

0 (Q–G)
scissile bond. X-ray crystal structures of norovirus 3C protease
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utas).
alone8,9 or covalently-bound to an inhibitor, a peptidyl Michael
acceptor, have been reported.7

Norovirus 3C protease plays an essential role in virus replica-
tion, consequently, orally-bioavailable drug-like agents that inhibit
the 3C protease are of value as potential antiviral therapeutics. We
describe herein the results of preliminary studies related to the
inhibition of Norwalk virus 3C protease by a series of peptidyl alde-
hyde inhibitors (Fig. 1).

Initial design considerations included the use of a glutamine
surrogate10 for optimal synthetic tractability and design flexibility
(vide infra). Furthermore, our overarching goal was to identify a
suitably-functionalized di-peptide or tri-peptide inhibitor that
(Z = H, COOR, CONHR, etc)

Figure 1. General representation of the interaction between a cysteine protease
and a transition state inhibitor.
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Scheme 1. Synthesis of inhibitors 1–10. Reagents: (a) TFA/CH2Cl2; (b) Z-AA or Z-Gly-AA/EDCI/HOBt/NMM, AA = amino acid; (c) LiBH4; (d) Dess–Martin periodinane; (e)
(CH3)2CHNC/HOAc then K2CO3/aq CH3OH.
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could be further transformed into a molecule possessing molecular
properties that are important for oral bioavailability and favorable
ADME/Tox characteristics.11–13 The design of the inhibitors was
further augmented by insights gained via the use of computer
Table 1
Inhibitory activity of compounds (1–10)
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graphics and modeling and the X-ray crystal structure of the en-
zyme.7 The synthesis of inhibitors 1–10 was carried out as shown
in Scheme 1.14 The glutamine surrogate starting material was syn-
thesized using literature procedures.15
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Table 1 (continued)
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a Compounds were designated as inactive if the percent inhibition was <25 when incubated with the enzyme for 30 min at
an [I]/[S] ratio of 25.
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Deblocking with TFA, followed by coupling with an appropriate
Cbz-protected amino acid ester, yielded a product which was
subsequently reduced to the alcohol with lithium borohydride.
Dess–Martin oxidation yielded the desired aldehydes. Alpha-ketoa-
mide 10 was synthesized by reacting the corresponding peptidyl
aldehyde with isopropyl isonitrile in the presence of acetic acid, fol-
lowed by mild hydrolysis of the diastereomeric acetate ester to
yield the a-hydroxyamide, and then Dess–Martin oxidation.16 The
interaction of compounds 1–10 with Norwalk virus 3C protease17

was investigated and the results are summarized in Table 1.
Incubation of compound 4 with Norwalk virus 3C protease lead

to dose-dependent inhibition of the enzyme (Fig. 2). It is evident
from Table 1 that the presence of the aldehyde warhead is essential
for inhibitory activity since the precursor alcohols were either
inactive or had minimal activity (compare, e.g., compounds 3 and
4, 5 and 6, 7 and 8, Table 1). Furthermore, the nature of the cap
is of paramount importance (compare, e.g., compounds 1 and 4,
Table 1). In order to gain a better insight and understanding into
the binding of Inhibitor 4 to the active site of the enzyme,
computer modeling was used to demonstrate that 4 is capable of
adopting a low-energy conformation that closely resembles the
conformer of the co-crystallized peptide (Fig. 3).7,18 Thus, in addi-
tion to covalent bond formation between the active site cysteine
residue (Cys139) and the inhibitor aldehyde carbonyl (see general
illustration in Fig. 1), inhibitor 4 engages in multiple favorable
binding interactions with the enzyme, including lipophilic interac-
tions involving the –CH2–CH2– segment of the ligand lactam with
the –CH2–CH2– segment of Pro136, the leucine side chain in the
inhibitor with His30, Ile109 and Val 114, and interactions of the
phenyl ring in the Cbz cap—partially occupying the S4 pocket—
with Ile109. In addition, a network of hydrogen bonds involving
Thr134 (backbone carbonyl), Ala158 (backbone carbonyl), Gln110



Figure 2. Log dose–response curve for the inhibition of NV 3C protease by inhibitor
4.

Figure 3. Predicted covalently-bound conformer21 for NV 3C protease inhibitor 4
(stick structure with green carbon atoms and CPK-colored N and O atoms)
contrasted with the peptidic inhibitor acetyl-Glu-Phe-Gln-Leu-Gln-CH@CH–COO�

(stick structure with gray carbon atoms and CPK-colored N and O atoms) resolved
in the 1IPH crystal structure.7 The NV 3C protease binding site is shown as a
Connolly surface colored as follows: yellow = non-polar groups, white = partially
polar C, H atoms, red = polar O, blue = polar N, cyan = polar H. Key pharmacophore
residues are labeled according to the positions on the receptor surface from which
they interact with the ligand (except for Q110 whose approximate position is
marked but whose surface is not shown because the residue is above the plane of
the molecule).
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(side chain carbonyl), and Ala160 (backbone amide proton) is
clearly evident. Extending the inhibitor by an additional amino
acid (as in compound 5) improved potency, albeit not dramatically
(compare compounds 4 and 5, Table 1). Modeling studies sug-
gested that replacement of Leu by other hydrophobic amino acids
might result in an optimal fit of the amino acid side chain in the S2

pocket, improving potency. Indeed, compound 7 with a P2 Nle was
found to be a sub-micromolar inhibitor of the enzyme, however,
replacement of Leu with Ile (compound 9, Table 1) was detrimental
to inhibitory activity. a-Ketoamide 10 was devoid of inhibitory
activity, suggesting that steric congestion in the vicinity of the S1

0

subsite is severe.
The activity of inhibitors 4–5 against the Norwalk norovirus

was investigated using a cell-based replicon system.19–23 Com-
pounds 4 and 5 were found to be active against the virus with
effective doses that inhibit 50% of norovirus replication, ED50s, of
2.1 and 7.8 lM, respectively. The median toxic dose, TD50, for both
4 and 5 was found to be >320 lM. Compounds 4 and 5 also inhibit
the replication of murine norovirus (MNV) in RAW267.4 cells with
ED50s of 5.5 and 20.3 lM, respectively.24 The TD50s for both 4 and 5
with RAW267.4 were found to be >320 lM.24 The results of an
ongoing hit-to-lead optimization campaign will be reported in
due course.

In conclusion, the first series of transition state inhibitors of
norovirus protease has been reported. Members of this series of
compounds exhibited noteworthy activity in a cell-based replicon
system of norovirus infection.
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