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The release of arachidonic acid, a precursor in the production of prostaglandins and leukotrienes, is
achieved by activity of the cytosolic phospholipase A2a (cPLA2a). Signaling mediated by this class of bio-
active lipids, which are collectively referred to as eicosanoids, has numerous effects in physiological and
pathological processes. Herein, we report the development of a ligand-based pharmacophore model and
pharmacophore-based virtual screening of the National Cancer Institute (NCI) database, leading to the
identification of 4-(hexadecyloxy)-3-(2-(hydroxyimino)-3-oxobutanamido)benzoic acid (NSC 119957)
as cPLA2a inhibitor in cell-free and cell-based in vitro assays.

� 2011 Elsevier Ltd. All rights reserved.
During the last decade, efforts have been made to identify novel
selective inhibitors of cytosolic phospholipase A2a (cPLA2a), which
is a member of the PLA2 family.1 In general, the members of this
superfamily have a crucial role in the production of prostaglandins
(PGs) and leukotrienes (LTs). These lipolytic enzymes cleave ara-
chidonic acid (AA) from the esters of membrane phospholipids in
sn-2 position. The further production of PGs and LTs, collectively
referred to as eicosanoids, is catalyzed by several downstream-
functioning enzymes such as cyclooxygenases or 5-lipoxyge-
nase.2–4

Several non-selective and selective inhibitors of cPLA2a have
been reported (Fig. 1). The published in vivo data of these inhibi-
tors in models of inflammation confirms their efficacy.5–11 There-
fore, and based on data obtained from cPLA2a deficient mice,
cPLA2a is considered an interesting target for the treatment of sev-
eral inflammatory and allergic diseases.12,13 Recently, the role of
cPLA2a in prostate cancer was characterized.14

The active site of cPLA2a is arranged around a catalytic dyad,
composed of Ser228 and Asp549. The translocation of cPLA2a to
the perinuclear membrane is induced by an increase of the intracel-
lular Ca2+ concentration. The interaction of the enzyme with the
All rights reserved.
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lipid interface is assumed to induce a substantial change of the en-
zyme conformation including the movement of a loop that covers
the active site, referred to as lid region. This profound change allows
the lipid substrate to bind to the active site. Furthermore, phos-
phorylation of the enzyme at Ser505 by mitogen-activated protein
kinases (MAPKs) alters the active site conformation.15 In summary,
large changes of the enzyme conformation result from interaction
with the lipid interface and from phosphorylation by MAPKs.
Therefore, the X-ray crystal structure of cPLA2a (PDB ID: 1cjy), rep-
resenting an inactive state of the hydrolase, was not used for struc-
ture-based modeling. Instead, virtual screening was conducted by
using a ligand-based 3D pharmacophore model. In general, 3D
pharmacophore modeling and pharmacophore-based screening
have been established in drug discovery for several applications
that include lead identification, lead optimization, and de novo de-
sign.16,17 To our best knowledge, pharmacophore modeling of
cPLA2a inhibitors has not been reported before. Herein, we report
the development of a ligand-based pharmacophore model for
cPLA2a inhibitors as well as pharmacophore-based virtual screen-
ing, in order to identify novel chemical classes of cPLA2a ligands.

In order to develop ligand-based pharmacophore models, the
3D models were generated using the HipHop refine module in Cat-
alyst 4.11 from Accelrys (http://www.accelrys.com).18 The discrim-
inatory power of the retrieved pharmacophore models was
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Figure 1. Reported cPLA2a inhibitors with published in vivo data (for details see Ref.5–11).
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investigated by screening two datasets. The first one was a test set
of highly active inhibitors that were not included in the training
set. As putatively inactive molecules, so-called decoys, a compound
collection assembled from the ChEMBL 03, from which reported
inhibitors of all PLA2 subtypes had previously been removed, was
screened. The enrichment obtained in the screening experiments
was quantitatively investigated by two enrichment metrics. The
model with the highest enrichment of active compounds was se-
lected for a virtual screening campaign of the National Cancer
Institute (NCI) database. Afterward, compounds were submitted
for evaluation in biological testings after visual inspection of the
hit list (Fig. 2).

Out of a heterogeneous dataset of cPLA2a inhibitors, examples
shown in Figure 1, this molecular modeling study focused on three
chemical classes that are composed of an aryl-alkyl-/alkyl-(oxy)
Figure 2. Workflow for the development of the cPLA2a inhibitor pharmacophore
model.
side chain, a central carbonyl moiety, and in most cases of two to
three aromatic rings.

First, conformational models of the training set compounds
(Fig. 3) were generated with a maximum number of 255 conforma-
tions per molecule and ‘BEST’ quality within Catalyst. For the com-
mon feature pharmacophore hypotheses generation, the HipHop
algorithm was used.19,20 Using HipHop refine, these models were
fine-tuned by strategically placing XVOLs in approximated forbid-
den areas from steric hindrance.21 For this reason, the activity or-
der of the training set compounds is a mandatory input for
hypothesis generation. Highly active and medium active training
set compounds are labeled with 2 and 1, respectively, and weakly
or inactive compounds with 0.22

In brief, the hypothesis generation was performed by using
six highly active (class 2) inhibitors from the diaryloxy-propan-
2-one and the 5-carboxyindole-1-yl-propan-2-one scaffolds
(6–11),23,24 and four moderately active inhibitors (class 1), namely
the 2-oxoamide inhibitor 1,5 and three diaryloxy-propan-2-one
inhibitors (12–14)25,26 (Fig. 3A). The algorithm uses the informa-
tion of medium active compounds to conduct a ranking of initially
generated hypotheses. The hypotheses that map the highly active
inhibitors and the moderately active inhibitors in consistency with
their experimental data are prioritized. Additionally, four weakly
active or inactive compounds (15–18), selected basically from the
same chemical classes,25,26 were used for the steric refinement step
(Fig. 3B). A summary of the training set compounds with the as-
signed activity classes is given in Table 1. The generation of 3D
pharmacophore models resulted in ten hypotheses, of which seven
models consisted of six features, two were composed of five fea-
tures, and one of seven features, respectively.

In order to perform the theoretical evaluation of the gener-
ated hypotheses, a set of 12 highly active compounds that were
not included in the training set was assembled (Fig. 4). Further-
more, reported PLA2 inhibitors were removed from the ChEMBL
03, a database of drugs and drug-like compounds with pharmaco-
logical activity notes.27 Afterwards, this database that consisted
of 310732 unique entries was refined by applying a physico-
chemical property-based filter. In total, 1712 compounds similar



Figure 3. Highly active and active training set compounds for the HipHop refine model (A) and weakly or inactive compounds for the steric refinement (B).

1204 S. M. Noha et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1202–1207
in physicochemical properties to the highly active compounds
were selected using a protocol in PipelinePilot 7.5,28 which is sum-
marized in Table 2. The conformational models for this validation
dataset were generated within Catalyst 4.11 with a maximum
number of 100 conformations per molecule and ‘FAST’ quality.

The enrichment of active molecules was quantitatively investi-
gated by the enrichment factor (EF) using the equation,

EF ¼ ½n=TP�=½A=N�

where TP is the number of active compounds correctly identi-
fied by screening with the 3D pharmacophore model (true posi-
tives), n is the total number of molecules retrieved by screening
with the pharmacophore query (selection), A is the number of ac-
tive compounds in the entire validation dataset (Actives), and N is
the number of all compounds in the validation dataset (Number of
entries in the validation dataset).29

Screening of this validation set with the 4th-ranked model
(Fig. 5) retrieved 9 out of 12 active compounds (75.0%) and 14
out of 1712 inactive compounds (0.8%) using ‘fast flexible search’.
Additionally, the Receiver Operating Characteristic (ROC) curve
method was used for the quality control.30,31 The area under the
curve (AUC) of the displayed ROC plot can be used as measure
for the enrichment of a screening method, referred to as ROC/
AUC. This enrichment plot, a two-dimensional graph that displays



Table 1
Training set compounds for the HipHop refine model

Compound Activity Class Reference

6 IC50: 4 nM Highly active 24

7 IC50: 8 nM Highly active 24

8 IC50: 4.3 nM Highly active 23

9 IC50: 4.9 nM Highly active 23

10 IC50: 15 nM Highly active 23

11 IC50: 16 nM Highly active 23

1 Xi(50): 17 nM Active 5

12 IC50: 300 nM Active 25

13 IC50: 400 nM Active 25

14 IC50: 760 nM Active 26

15 IC50: >10 lM Inactive 25

16 IC50: 20 lM Inactive 26

17 IC50: 34 lM Inactive 26

18 IC50: 63 lM Inactive 26

Table 2
Physicochemical property analysis of the dataset of cPLA2a inhibitors and the
putatively inactive ChEMBL compounds (‘decoys’)

Dataset (n = 22) Decoys (n = 1712)

MolW 466.9 ± 34.5 470.7 ± 32.2
ALogP 6.3 ± 0.6 6.3 ± 0.8
NRot 16.1 ± 2.3 14.1 ± 2.6
tPSA 98.9 ± 19.5 83.8 ± 23.1
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the true positive rate (sensitivity) against the false positive rate
(1-specificity), is used for the evaluation to address the issue of
early enrichment in virtual screening experiments. In detail, this
enrichment plot is described elsewhere.30,32
Figure 4. Test set for the theo
The EF of 56.2 and the ROC/AUC of 0.87 (Fig. 6) pointed towards
an excellent model quality, and represented the best results of all
created models.

To experimentally evaluate the predictive power of the devel-
oped 3D pharmacophore model, the NCI database (247041 entries)
was virtually screened.33 For the generation of the conformational
models for the NCI compounds a maximum number of 100 confor-
mations per molecule and ‘FAST’ quality was employed. The virtual
screening was performed using ‘fast flexible search’ and returned
185 hits (0.07%). For the selection of test compounds, we focused
on (i) structurally diverse compounds, (ii) which were available at
retical model validation.



Figure 7. Biologically active compound 31.

Figure 5. Representation of the 3D pharmacophore model—Chemical features are
color coded: cyan - hydrophobic feature, green - hydrogen-bond acceptor, and blue
- negative ionizable (A). Mapping of the biologically active virtual hit compound 31
to the model (B).

Figure 6. ROC curve for the theoretical validation of the developed 3D pharmaco-
phore model.

1206 S. M. Noha et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1202–1207
the time of our study, and (iii) which achieved high pharmacophore
fit values. For assessment of cPLA2a inhibition, a cell-free in vitro
assay based on isolated human recombinant cPLA2a was used and
the cPLA2a reference inhibitor N-{(2S,4R)-4-(biphenyl-2-ylmethyl-
isobutyl-amino)-1-[2-(2,4-difluorobenzoyl)-benzoyl]-pyrrolidin-
2-ylmethyl}-3-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)-phenyl]-
acrylamide (compound 43) was used as control to validate the
assay (for details see Supplementary data). Biological evaluation
of 12 virtual hits showed that compound 31 (Fig. 7) inhibited iso-
lated human recombinant cPLA2a in the cell-free assay with an
IC50 value in the low micromolar range (IC50 = 4 lM; Supplemen-
tary data Fig. S1). All other compounds (32–42, Supplementary data
Chart S1) failed to inhibit cPLA2a activity at a concentration of
10 lM by more than 40%. Higher concentrations than 10 lM were
not tested due to poor solubility in the aqueous assay buffer. The
novel bioactive compound 31 was further analyzed for inhibition
of cPLA2a-mediated AA release in a cell-based model using Ca2+-
ionophore A23187-stimulated human monocytes (for details see
Supplementary data). In fact, 31 inhibited AA release from human
monocytes with similar potency (IC50 = 5 lM; Supplementary data
Fig. S1) as in the cell-free in vitro assay. Again, the cPLA2a reference
inhibitor 43 inhibited AA release as expected (Supplementary data
Fig. S1). Together, compound 31 can be considered as an interesting
candidate for further chemical optimization to obtain potent inhib-
itors of eicosanoid-related inflammation and cancer.

The next step in the development represents the characteriza-
tion of the pharmacological profile of 31 against other targets rel-
evant in the production of PGs and LTs. Unfortunately, the
identification of a novel chemical class not composed of a reactive
moiety, such as an activated carbonyl group, was not achieved. The
results even suggest that a reactive moiety is essential for the
potency of the compounds investigated. This finding can be
considered in the virtual screening workflow by including a pre-
filtering step to recognize reactive moieties and a refinement of
the 3D model.
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