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a b s t r a c t

BACE1 and presenilin (PS)/�-secretase are primary proteolytic enzymes responsible for the generation of
pathogenic amyloid �-peptides (A�) in Alzheimer’s disease. We and others have found that �-subunits
of the voltage-gated sodium channel (Nav�s) also undergo sequential proteolytic cleavages mediated by
BACE1 and PS/�-secretase. In a follow-up study, we reported that elevated BACE1 activity regulates total
and surface expression of voltage-gated sodium channels (Nav1 channels) and thereby modulates sodium
eywords:
lzheimer’s disease
ACE1
-Secretase
resenilin
-Secretase

currents in neuronal cells and mouse brains. In this review, we focus on the molecular mechanism of how
BACE1 and PS/�-secretase regulate Nav1 channels in neuronal cells. We will also discuss potential phys-
iological and pathological roles of BACE1- and PS/�-secretase-mediated processing of Nav�s in relation
to Nav1 channel function.

© 2010 Elsevier Ireland Ltd. All rights reserved.

oltage-gated sodium channel
odium channel �2-subnit

lzheimer’s disease (AD) is the most common cause of demen-
ia in the elderly [2]. AD patients lose their ability to acquire
ew memories and the capacities for reasoning, abstraction, and

anguage skills. In addition, AD patients in late stages frequently
how severe personality changes and various neuropsychiatric
ymptoms, including depression, aggressiveness, agitation, and
eneralized anxiety [1,70]. Epileptic and myoclonic seizures are
ommon in early-onset AD patients with familial presenilin muta-
ions, but are also frequently found in late-onset forms of the
isease [9,17,18,31].

Two major pathological hallmarks of AD are extracellular amy-
oid deposits (senile plaques) and hyperphosphorylated tau protein
n neurofibrillary tangles [54]. Amyloid deposits are composed pre-
ominantly of amyloid � peptides (A�), central in AD pathogenesis
16,47]. A� is generated from sequential cleavage of the amyloid �
recursor protein (APP), mediated by �-site APP cleaving enzyme
(�-secretase, memapsin 2, BACE1) and presenilin/�-secretase

PS/�-secretase).
In neuronal as well as non-neuronal cells, APP undergoes

wo distinctive cleavage pathways mediated by �-/�- or �-/�-
ecretases (Fig. 1). Cleavage by �-secretase gives rise to a soluble

xtracellular domain (sAPP-�) and a C-terminal fragment (C83)
hat is further processed by PS/�-secretase to generate p3 frag-

ent and an intracellular domain (AICD, Fig. 1A). In �-/�-secretase
athway, APP is first cleaved by BACE1 to generate sAPP� and C99
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that is then converted to AICD and A� by PS/�-secretase activity
(Fig. 1B).

BACE1 is a membrane-bound aspartic protease that is highly
expressed in the brain [22,51,56,67]. PS/�-secretase is a mem-
brane protease complex consisting of Nicastrin, Aph-1, Pen-2,
and a catalytic component PS, which is ubiquitously expressed
in various tissues [49]. These proteases have been extensively
studied to understand their pathological roles in Alzheimer’s dis-
ease. A number of studies have suggested that altered BACE1
and/or PS/�-secretase activity play important roles in the patho-
genesis of sporadic and familial AD by modulating A� generation
[3,12,14,49,55,68]. In addition to their pathological roles, mouse
knockout studies have also demonstrated that these proteases play
important physiological roles in brain function. BACE1-null mice
show cognitive and behavioral deficits together with altered elec-
trophysiological properties in neurons [11,30,46,59]. BACE1-null
mice even display spontaneous behavioral seizures [21]. Deficits
in sodium channel may contribute to these phenotypes since hip-
pocampal neurons from BACE1-null mice display a positive shift
in voltage-dependent sodium current inactivation as well as an
increase in sodium current densities as compared to control wild-
types [11,21]. Adult-specific deletion of PS also induces deficits
in synaptic plasticity and presynaptic function and even neurode-
generation in mice [45,50,69,71]. These deficits likely derive from

altered cleavages of neuronal substrate proteins of BACE1 and/or
PS/�-secretase.

In addition to APP, dozens of additional BACE1 substrates and
PS/�-secretase substrates have been reported to date. This supports
the proposed multifunctional roles of BACE1 and PS/�-secretase
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Fig. 1. APP and Nav�2 are processed via similar cleavage pathways. (A) In the
non-amyloidogenic pathway, APP/�2 undergo extracellular domain shedding by
�-secretase and is subsequently cleaved by PS/�-secretase to produce �2/APP intra-
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Table 1
Summary of Nav1 channel changes by elevated BACE1 activity.

Neuroblastoma cells with
BACE1 overexpression

BACE1-transgenic
mouse brains

Full-length Nav�2 ↓a ↓a

Nav�2-CTF ↑ ↑
�2-ICD ↑ N/Db

scn1a (Nav1.1) mRNA ↑ ↑
Nav1.1 total protein ↑ ↑
Nav1.1 surface protein ↓ ↓c

Na+ current density ↓ ↓c
ellular domain (AICD/�2-ICD). (B) In the amyloidogenic pathway, APP/�2 first
ndergo an extracellular domain shedding by BACE1. A membrane-tethered C-
erminal fragment, C99/�2-CTF�, is then cleaved by PS/�-secretase to produce
ICD/�2-ICD and the amyloid � peptide (A�).

35,49,57]. While most PS/�-secretase substrates undergo a
equential cleavage pathway regulated by �-/�-secretase, only a
ew PS/�-secretase substrate proteins also undergo an alternative
-/�-secretase cleavage pathway similar to APP. In brains, Neureg-
lins 1, 3 (NRG-1, 3) and �-subunits of the voltage-gated sodium
hannel (Nav�s) are reported as cleaved by both BACE1 and PS/�-
ecretase under physiological conditions [19,20,28,29,64,65].

Similar to APP, Nav�2 is processed by two distinctive cleav-
ge cascades mediated by �-/�-secretase or �-/�-secretase (Fig. 1).
leavage by �-secretase (ADAM10) gives rise to a C-terminal frag-
ent (�2-CTF�) that is further processed by PS/�-secretase activity

o generate an intracellular domain (�2-ICD, Fig. 1A). In the �-/�-
athway, Nav�2 is first cleaved by BACE1 to generate �2-CTF� and
hen converted to �2-ICD by PS/�-secretase activity (Fig. 1B). It
s not clear yet whether PS/�-secretase -meditated processing of
2-CTFs also generates A�-like peptides.

Nav�s assemble with channel-forming �-subunits and regu-

ate cell surface expression and inactivation channel kinetics of
he voltage-gated sodium channels (Nav1 channels) [6,7,24,25].
n addition, Nav�s interact with neuronal adhesion molecules
nd therefore play a role in neuronal adhesion and migration
4,5,25,34]. While all the �-subunits (Nav�1–4) are cleaved by
a Moderate or slight decrease.
b Not detected.
c Nav1 channel surface levels and sodium current density are analyzed in hip-

pocampal neurons acutely dissociated from BACE1-transgenic mice.

BACE1 and PS/�-secretase in vitro, only Nav�2 and Nav�4 have been
shown as physiological BACE1 substrates in mouse brains [65]. Our
laboratory focused on Nav�2 because of its neuron-specific expres-
sion and primary role in regulating sodium channel �-subunits in
hippocampus and cortex [8,26].

One of the well-known PS/�-secretase functions is to modu-
late signaling cascades via “regulated intramembrane proteolysis”
or RIP of specific proteins [35,48]. For example, PS/�-secretase-
mediated cleavage of the Notch receptor releases a membrane-
bound intracellular domain (NICD) that localizes to the nucleus
and regulates target gene transcription [48]. Since PS/�-secretase-
mediated cleavage of Nav�2 also releases �2-ICD, we investigated
whether PS/�-secretase can initiate RIP by cleaving Nav�2. To
directly address a potential nuclear function of �2-ICD, we gen-
erated a recombinant �2-ICD fragment and expressed it in rat
and human neuroblastoma cells. We found that this recombi-
nant �2-ICD fragment localized to the nucleus and specifically
increased both protein and mRNA levels of a sodium channel �-
subunit, Nav1.1 [28]. Elevated BACE1 activity increased �2-ICD
levels and thereby Nav1.1 levels while the inhibition of BACE1 or
PS/�-secretase activity significantly decreased Nav1.1 levels in neu-
roblastoma cells and cultured primary neurons [28,29]. We also
found that levels of Nav�2 cleavage products and Nav1.1 �-subunits
were increased in brains of BACE1-trangenic mice as compared to
wild type controls [28], summarized in Table 1. Although further
studies are required to see whether �2-ICD interacts with other
transcriptional machinery to regulate gene transcription under
physiological conditions, our data suggest a novel mechanism of
Nav1 channel regulation through RIP of Nav�2.

When we checked whether elevated total Nav1.1 levels
increased voltage-dependent sodium currents, paradoxically we
found that BACE1 elevation dramatically decreased sodium current
density and surface levels of Nav1 �-subunits in neuroblastoma
cells and hippocampal neurons [28], see Fig. 2. These results
strongly suggest that Nav1.1 �-subunits resulting from Nav�2
cleavage followed by increased Nav1.1 �-subunit mRNA, are not
translocated into the plasma membrane (Fig. 2). One possibility
is that the intracellular accumulation of Nav1.1 precursors may
directly or indirectly interfere with Nav1 channel trafficking. In
the same publication, we have shown that elevated BACE1 activity
induces Nav1.1 accumulation in an unusual HSP70-positive intra-
cellular compartment [28]. It is interesting to note that elevated
BACE1 activity induces impaired trafficking of APP along axons,
similar to the impaired trafficking of Nav1 �-subunits to the cell
surface [32]. It is also possible that highly elevated BACE1 depletes
Nav�s, and in particular Nav�2, that is required for surface expres-

sion of Nav1 �-subunits. However, we were still able to detect
significant amount of intact Nav�2 in brains of BACE1-transgenic
mice [8,28].

BACE1 may also alter sodium currents by modulating addi-
tional �-subunits in addition to Nav1.1. Hu et al. have recently
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Fig. 2. Schematic representation of Nav1 channel regulation by BACE1/ADAM10
and �-secretase. Nav�2 undergoes ectodomain shedding by either �- (ADAM10)
or �-secretase (BACE1). The resulting membrane-tethered C-terminal fragments
are further cleaved by PS/�-secretase to release �2-ICD, which then localizes to
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(2003) 231–238.
he nucleus. �2-ICD increases mRNA and protein levels of Nav1.1 �-subunit levels.
owever, elevated BACE1 activity also interferes with the trafficking of Nav1 �-

ubunits to cell surface.

hown that axonal and surface levels of Nav1.2 are significantly
ncreased in hippocampal neurons from BACE1-null mice [21].
imilarly, elevated BACE1 activity may decrease surface levels of
av1.2, contributing to the dramatic decrease of sodium currents

hat we have observed in BACE1-transgenic mice [28]. In addition,
uth et al. reported that overexpressed BACE1 can induce a hyper-
olarizing shift of Nav1.2 current activation in cultured cell lines
23]. However, this finding does not explain the observed BACE1-

ediated decrease of sodium current density in adult hippocampal
eurons [28]. Further studies are required to clarify the molecular
echanism underlying BACE1-mediated regulation of Nav1 chan-

el trafficking. These data suggest the interesting possibility that
levated BACE1 activity specifically modulates the surface expres-
ion of membrane proteins essential for neuronal function, such as
odium channels and APP.

Nav�s interacts with various neuronal proteins including con-
actin, tenascin, neurofascin, NrCAM, receptor protein tyrosine
hosphatase � (RPTP�), and ankyrinG [4,5,10,25,27,34,36,37,66].
hese interactions are reported to modulate axonal localization of
av channels, surface expression, and even neuronal cell adhesion
nd migration [5,10,27,34,36]. BACE1 and/or PS/�-secretase medi-
ted cleavage of Nav�s may affect these interactions and potentially
odulate these functions. Interestingly, we found that blockage of
av�2 cleavage by PS/�-secretase inhibitors interferes with cell-
ell adhesion and migration in cultured cells [29]. In addition,
ACE1-mediated processing of Nav�4 increases neurite extention

n Neuro2a cells [38]. These data suggest an additional molecular
echanism potentially contributing to BACE1/�-secretase medi-

ted regulation of neuronal function.
BACE1 and presenilins are directly involved in AD pathol-

gy in specific groups of patients. BACE1 activity and levels are
ignificantly increased in brains of a subset of AD patients, pos-
ibly contributing to A� accumulation [12,55,68]. Elevated BACE1
evels in AD mouse models increase A� generation and deposi-
ion [72]. Mutations in PS1 and PS2 are tightly associated with

arly-onset familial Alzheimer’s disease (FAD) and all PS FAD muta-
ions alter A� generation by modulating PS/�-secretase activity
3,14,49]. Altered activities of these secretases may affect Nav1
hannel metabolism as well as A� generation through the reg-

[

[
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ulation of Nav� cleavages. We have already found that Nav�2
C-terminal fragment and Nav1.1 �-subunit levels are significantly
increased in brains of AD patients with elevated BACE1 activity
as compared to age-matched controls [28]. Altered Nav1 chan-
nel metabolism may contribute to neuronal dysfunction and/or
neurodegeneration in the course of the disease. Indeed, epileptic
and myoclonic seizures are common in early-onset AD with famil-
ial presenilin mutations, but are also found in late-onset forms
of the disease [17,52,58]. Increased excitatory neuronal activi-
ties, so called “silent seizures”, are also detected in AD animal
models [41–43]. Further studies will be required to test whether
elevated BACE1 contributes to AD pathogenesis by altering Nav1
channels.

Altered expression of sodium channels were reported in mul-
tiple sclerosis and chronic pain after nerve injuries [15,60–62].
Interestingly, animal model studies have shown that Nav�2 con-
tributes to the pathogenic mechanism in these conditions by
regulating sodium channel metabolism [40,44]. BACE1 levels and
activity are increased in some other injury conditions including
brain trauma [33] and ischemia [13,53,63]. O’Conor et al. proposed
that BACE1 functions as a stress-response protein elevated by phos-
phorylation of the Translation Initiation Factor eIF2� [39]. The fact
that BACE1 regulates Nav1 channel metabolism through Nav�2 sug-
gests the interesting possibility that BACE1 might modulate sodium
channel metabolism not only in AD but also other disease condi-
tions in which BACE1 levels are increased.

In summary, current data strongly suggest that BACE1 and PS/�-
secretase regulate Nav1 channel metabolism at multiple levels in
vitro and in vivo conditions. Further studies will be required to char-
acterize the exact molecular mechanism underlying this function
of Alzheimer’s secretases.
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