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We  performed  joint  independent  component  analysis  (jICA)  to structural  MRI  data.
Three  joint  grey–white  matter  sources  showed  significant  volume  reductions  in  AD.
The  combined  source  best  predicted  the  AD/NC  group  membership.
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a  b  s  t  r  a  c  t

Alzheimer’s  disease  (AD)  is  a neurodegenerative  disease  concomitant  with  grey  and  white  matter  dam-
ages.  However,  the  interrelationship  of  volumetric  changes  between  grey  and  white  matter  remains
poorly  understood  in  AD.  Using  joint  independent  component  analysis,  this  study  identified  joint grey
and white  matter  volume  reductions  based  on  structural  magnetic  resonance  imaging  data  to  con-
struct  the  covariant  networks  in twelve  AD patients  and  fourteen  normal  controls  (NC).  We found
that  three  networks  showed  significant  volume  reductions  in  joint  grey–white  matter  sources  in AD
patients,  including  (1) frontal/parietal/temporal-superior  longitudinal  fasciculus/corpus  callosum,  (2)
temporal/parietal/occipital-frontal/occipital,  and  (3)  temporal-precentral/postcentral.  The correspond-
tructural MRI
oxel-based morphometry

ing expression  scores  distinguished  AD  patients  from  NC with  85.7%,  100%  and  85.7%  sensitivity  for  joint
sources  1,  2  and  3, respectively;  75.0%,  66.7%  and  75.0%  specificity  for joint  sources  1,  2  and  3,  respec-
tively.  Furthermore,  the  combined  source  of  three  significant  joint  sources  best  predicted  the  AD/NC
group  membership  with  92.9%  sensitivity  and  83.3%  specificity.  Our  findings  revealed  joint  grey  and
white  matter  loss  in  AD  patients,  and  these  results  can  help  elucidate  the  mechanism  of  grey  and  white

devel
matter  reductions  in  the  

. Introduction

Alzheimer’s disease (AD) is a well-known neurodegenerative
isease. Numerous structural magnetic resonance imaging (sMRI)
tudies reported widespread grey matter (GM) reductions; more
pecifically, the medial temporal structures are involved primarily
t the initial phase of the disease, and the parietal and frontal lobes
re affected as the disease advances [13,20,21,28].  The patholog-
cal processes in AD also include white matter (WM)  alterations

8,10,11,24]. A recent study reported AD-associated volume reduc-
ions in many gyral WM,  including the parahippocampal, inferior
arietal and middle frontal regions [24].

∗ Corresponding author at: College of Information Science and Technology, Beijing
ormal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, China.
el.: +86 10 58807727; fax: +86 10 58807727.

E-mail address: yaoli@bnu.edu.cn (L. Yao).

304-3940/$ – see front matter ©  2012 Elsevier Ireland Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.neulet.2012.10.038
opment  of  AD.
© 2012 Elsevier Ireland Ltd. All rights reserved.

WM volume changes are most likely related to GM atrophy that
produces cognitive impairment in AD patients [7,26]. However,
many sMRI studies investigated GM or WM separately [6,17].  As
a result, the interrelationship of volumetric changes between GM
and WM remains poorly understood in AD. Thus, it is imperative to
document the joint contributions of both GM and WM using sMRI.

Voxel-based morphometry (VBM) is an objective technique
[3–5] and has been widely utilized to detect differences in brain
tissue in various populations [7,17,21]. However, most reported
VBM findings are based on a univariate approach. The univariate
VBM can detect brain abnormalities related to AD [7,13,21], but
it is unable to identify the anatomical interrelationships in those
brain areas. Multivariate methods consider multiple voxels simul-
taneously based on the view that the overall brain structure is

interconnected and covaried as a network [2,9,18,19,30].  Moreover,
multivariate methods emphasize on the covariance information of
imaging data and generate interrelated morphological features and
a network pattern representation. Again, multivariate approaches

dx.doi.org/10.1016/j.neulet.2012.10.038
http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:yaoli@bnu.edu.cn
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ay  capture the subtle changes and have greater sensitivity in
xamining the regional differences [2,9]. Recently, Xu et al. pro-
osed a multivariate method referred to as joint source based
orphometry (jSBM). Unlike VBM, jSBM using joint indepen-

ent component analysis (jICA) grounds the statistical outcome of
source” by including a set of regions which carry similar covari-
nce information and exhibit inter-subject and group differences
30]. Xu et al. applied jICA to detect differences in GM and WM
n schizophrenia, suggesting that jICA is a potentially efficient
pproach to examine brain anatomical changes due to a specific
isease [30].

Using multivariate jICA, this study identified joint GM and WM
olume reductions in sMRI data to construct the covariant networks
n AD patients and normal controls (NC). In addition, a multiple
inear regression model was performed with the components that
ignificantly discriminated AD patients from NC to attain the inte-
rated network. We  expect that combining multiple sources will
est predict the AD/NC group membership.

. Materials and methods

.1. Participants

Twelve AD patients (mean age: 71.8 ± 6.7 [rang 58–81], 5 males)
ith a mean Mini-Mental State Examination (MMSE) score of

8.3 ± 11.7 [range 12–23], and 14 NC (mean age: 70.4 ± 3.5 [range
1–82], 6 males) with a mean MMSE  of 28.5 ± 0.6 [27–29],  were
ecruited from the memory clinic at Xuanwu Hospital of Capital
edical University in Beijing, China. Written informed consent was

btained from each participant. This study was approved by the
edical Research Ethics Committee of Xuanwu Hospital. The diag-

osis of probable AD was made according to the NINCDS-ADRDA
riteria. NC had no cognitive complaints and did not have neuro-
ogical or psychiatric disorders. The AD group did not significantly
iffer from the NC in sex ratio (�2

(1) = 5.79E − 4, p = 0.981) or age
t(24) = 0.57, p = 0.573), but had significantly lower MMSE  scores
t(24) = −10.93, p = 4.23E − 11).

.2. Structural MRI  scanning

For each participant, 3D sMRI data were acquired using a
PRAGE sequence at 3.0 T (TR = 1900 ms,  TE = 2.2 ms,  TI = 900 ms,

A = 9◦, FOV = 224 mm  × 256 mm,  matrix size = 448 × 512 and voxel
ize = 0.5 mm × 0.5 mm × 1 mm).

.3. Preprocessing of structural MRI  Data

The preprocessing of sMRI data was performed using the
BM8 Toolbox (http://dbm.neuro.uni-jena.de/vbm8) implemented

n SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The two  main out-
omes of the VBM8 procedure are segmentation and normalization.
he segmentation approach applied adaptive Maximum a poste-
ior [23] and partial volume estimation [29] to segment the native
pace images into a rigid-body aligned GM and WM images in the
ontreal Neurological Institute (MNI) space. Subsequently, two

enoising methods, including a spatially adaptive nonlocal means
enoising filter [22] and a classical Markov random field approach,
ere utilized to improve the segmentation [23]. We  employed a dif-

eomorphic anatomical registration using exponential Lie algebra
DARTEL) protocol for normalization [4].  DARTEL utilizes the large
eformation parameterized by a single constant velocity field to
enerate diffeomorphic and invertible deformations. The template

reation and image registration were iteratively implemented, and
he brain tissue maps for each subject were warped to new tem-
lates at each iteration. The initial registration worked on the
verage templates from the rigidly aligned images of all subjects,
ers 531 (2012) 136– 141 137

separately for GM and WM.  The flow field encoding the warping
information was generated for each subject, and finally GM  and WM
tissue maps were deformed to their own  increasingly crisp aver-
age templates and further normalized to MNI space. Afterwards,
the registered GM and WM partitions were separately multiplied
by the Jacobian determinants from the deformations to preserve
the total amount of tissue. Lastly, the grey and white maps were
smoothed separately with a 12 mm Gaussian kernel.

2.4. Joint ICA and statistical analysis

The jICA was  implemented using the Fusion ICA toolbox
(http://icatb.sourceforge.net). Akaike’s information criterion (AIC)
was  used to determine the number of joint sources [1].  The SPM
default brain mask was used to exclude the non-brain voxels sep-
arately for the registered and smoothed GM and WM  partitions.
The initial data matrix was formed by combining horizontally GM
and WM data (a row vector) for each subject. Spatial ICA using an
infomax algorithm decomposed the initial data matrix (subjects
by voxels; the number of voxels was the sum of the dimension
of GM and WM maps) into a mixing matrix (subjects by sources)
and a source matrix (sources by voxels) [30]. Each column of the
mixing matrix (ICA weights) indicates the degree to which each
subject expresses the joint source differences between two groups.
The source matrix comprises of a GM source matrix and a WM
one. Each row of the source matrix represents a joint source that
includes both GM and WM maps that share the same covariance
patterns. Such joint sources are maximally independent spatial
components.

The jICA used the mixing coefficients for statistical inferences.
A two sample t-test was  performed on each column of the mixing
matrix to detect AD/NC group differences at a statistical thresh-
old of p ≤ 0.05. The rows of the source matrix corresponding to
the significant set of mixing coefficients were converted to Z-
scores with unit standard deviation. The significant joint sources
were reshaped into two 3D maps that individually depicted GM
and WM with a threshold of Z ≥ 3.0 to reflect the related brain
regions involved in the joint source networks. Such statistical
tests are free of multiple comparison correction for multivari-
ate jICA. Furthermore, the significant mixing coefficients were
entered into a multiple linear regression model. Based on the
multiple-regression results, the AD-related integrated network
pattern was created as a linear combination of the corresponding
components.

3. Results

Six joint sources were extracted according to AIC. Among those
six sources, three of them expressed significant differences in the
AD/NC group relationship. The positive weighted coefficient in the
joint source maps illustrated decreases in GM and WM volumes in
AD patients (Fig. 1).

For joint source 1, GM volume reductions were detected mainly
in the middle/inferior/superior frontal gyrus, supramarginal gyrus,
anterior cingulate gyrus, hippocampus and parahippocampal
gyrus, whereas WM volume reductions in the superior longitudi-
nal fasciculus (SLF), corpus callosum (CC) and corona radiata in AD
patients (Fig. 1A). Table 1 shows the specific localization informa-
tion for three sources.

For joint source 2, AD patients showed reduced GM volumes
mainly in the inferior/middle/superior temporal gyrus, supra-

marginal gyrus, inferior parietal lobule (IPL), precuneus and
inferior/middle occipital gyrus as well as reduced WM volumes in
the superior/middle/inferior frontal gyrus, inferior occipital gyrus
and IPL (Fig. 1B).

http://dbm.neuro.uni-jena.de/vbm8
http://www.fil.ion.ucl.ac.uk/spm
http://icatb.sourceforge.net/
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Fig. 1. Significance maps illustrating covariant decreases in grey (left) and white matter volumes (right) in AD patients compared with NC for joint sources 1 (A), 2 (B) and 3
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C).  Left of the plane is the left of brain. The colour bar represents Z-scores.

For joint source 3, less GM was found in the inferior/
uperior/middle temporal gyrus, hippocampus and parahip-
ocampal gyrus, whereas less WM was found mainly in the
recentral/postcentral gyrus in AD patients (Fig. 1C).

The expression of covariance patterns was significantly lower in
D patients than NC for joint source 1 (t(24) = −3.64, p = 6.48E − 4)

Fig. 2A1), joint source 2 (t(24) = −3.09, p = 0.0025) (Fig. 2B1) and
oint source 3 (t(24) = −2.60, p = 0.0079) (Fig. 2C1). The receiver
perating curve (ROC) analysis determined discrimination with
5.7% sensitivity and 75.0% specificity (area under curve = 0.857,
E = 0.074, p = 0.002) for joint source 1 (Fig. 2A2), 100% sensi-
ivity and 66.7% specificity (area under curve = 0.786, SE = 0.099,

 = 0.014) for joint source 2 (Fig. 2B2), and 85.7% sensitivity and
5.0% specificity (area under curve = 0.768, SE = 0.100, p = 0.021) for

oint source 3 (Fig. 2C2).
For the combined source from significant joint sources 1–3,

he brain regions with decreased volumes in AD broadly involved
hese three sources but mainly involved sources 1 and 2, such as
M in the middle frontal gyrus, putamen, thalamus, hippocampus
nd parahippocampal gyrus, and WM in the SLF, corona radiata,
C and the superior/middle/inferior frontal gyrus. Analysis of the
ombined source and joint sources 1–3 showed that the over-
apping regions ratios were 38.3%, 34.1% and 17.7% for GM and
7.2%, 36.9% and 10.7% for WM.  The expression of covariance pat-

erns was significantly lower in AD patients compared with NC
t(24) = −4.89, p = 2.73E − 5) (Fig. 3). ROC analysis demonstrated the
iscrimination with 92.9% sensitivity and 83.3% specificity (area
nder curve = 0.917, SE = 0.057, p = 3.18E − 4) (Fig. 3).
4. Discussion

This study performed jICA analysis of sMRI data to capture AD-
related network patterns. AD patients showed volume reductions
in both GM and WM in three significant joint sources, and they
had lower expression scores of covariance patterns compared with
NC. In addition, ROC analysis determined the discrimination with
high sensitivity and specificity. Furthermore, the combined source
constructed from three sources best predicted AD/NC group mem-
bership.

For joint source 1, the expression of covariance patterns was
the most significant among three sources, with the maximum
discriminability between AD patients and NC (Fig. 2A1 and A2).
Joint source 1 revealed GM reductions mainly in the frontal,
parietal and temporal areas (Fig. 1A), similar to previous stud-
ies [6,17,21,28]. Interestingly, AD patients exhibited regions of
GM atrophy in joint source 1, including the middle/superior
frontal gyrus, cingulate gyrus, supramarginal gyrus, hippocam-
pus and parahippocampal gyrus from the default mode network
(DMN) investigated in resting-state studies [14]. Greicius et al.
found that DMN  activity distinguished AD from healthy ageing
and confirmed that resting-state functional connectivity reflected
structural connectivity [15,16]. In addition, Seely et al. found
concordance between AD-affected atrophy patterns and intrinsic

connectivity networks corresponding to the DMN  [25]. He et al.
also reported correlated variations among several “default” regions
in AD [19]. The GM alterations in joint source 1 indicate that
these regions possibly may  be in the same structural network
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Table 1
Locations of joint grey and white matter volume reductions in AD patients compared with NC for joint sources 1–3.

Brain regions Peak coordinates (X, Y, Z) Z Cluster size (mm3)

Joint source 1, grey matter
L middle frontal gyrus −36 49 −2 5.18 9494
R  middle frontal gyrus 40 26 19 6.34 9812
L  inferior frontal gyrus −39 21 20 5.75 4182
R  inferior frontal gyrus 42 21 20 7.53 6686
L  superior frontal gyrus −33 51 −3 5.04 3304
R  superior frontal gyrus 21 33 44 4.96 5920
L  thalamus/putamen −6 −20 8 10.20 7989
R  thalamus/putamen 6 −19 8 9.59 10,223
L  supramarginal gyrus −58 −22 22 6.06 2774
R  supramarginal gyrus 58 −16 24 5.89 2015
L  anterior cingulate gyrus −3 26 19 4.49 1603
R  anterior cingulate gyrus 7 34 15 3.98 1991
L  hippocampus/parahippocampal gyrus −21 −11 −17 6.29 5947
R  hippocampus/parahippocampal gyrus 22 −10 −17 6.75 3287

Joint  source 1, white matter
L superior longitudinal fasciculus −31 −39 28 12.85 45,914
R  superior longitudinal fasciculus 30 −42 30 7.01 40,352
Splenium  of corpus callosum −18 −36 29 10.63 7945
Body  of corpus callosum −18 −28 30 9.07 3959
Genu  of corpus callosum 21 20 21 5.67 405
L  posterior corona radiata −27 −38 28 13.41 3581
R  posterior corona radiata 22 −44 30 8.38 3210
L  superior corona radiata −24 −25 34 8.75 6669
R  superior corona radiata 25 14 26 6.71 4961
L  anterior corona radiata −24 39 −2 6.20 4023
R  anterior corona radiata 25 19 25 7.21 4145

Joint  source 2, grey matter
L inferior temporal gyrus −46 −67 −2 8.04 9349
R  inferior temporal gyrus 46 −68 1 8.15 15,174
L  middle temporal gyrus −48 −67 3 8.33 4796
R  middle temporal gyrus 46 −68 8 9.61 9474
L  superior temporal gyrus −45 −36 17 6.70 3564
R  superior temporal gyrus 45 −25 16 7.46 2720
L  angular gyrus −34 −49 36 9.43 2589
R  angular/supramarginal gyrus 42 −58 36 6.46 6652
L  inferior parietal lobule −36 −49 36 9.32 1829
L  cuneus −15 −63 21 6.55 4820
R  cuneus/precuneus 19 −60 21 6.71 6706
L  inferior/middle occipital gyrus −45 −67 2 8.87 16,835
R  inferior/middle occipital gyrus 46 −70 8 9.61 7702

Joint  source 2, white matter
L superior frontal gyrus −18 58 3 4.99 19,295
R  superior frontal gyrus 18 31 37 3.83 14,475
L  middle frontal gyrus −30 41 12 4.48 7044
R  middle frontal gyrus 36 20 43 5.81 17,456
L  inferior frontal gyrus −42 35 −2 5.57 14,084
R  inferior frontal gyrus 42 24 10 5.15 11,573
L  inferior/middle occipital gyrus −15 −93 −2 9.43 7121
L  inferior parietal lobule −27 −58 40 5.89 5812

Joint  source 3, grey matter
L inferior temporal gyrus −36 3 −35 10.45 14,438
R  inferior temporal gyrus 39 6 −36 7.34 9484
L  superior temporal gyrus −52 4 −12 5.63 13,784
R  superior temporal gyrus 59 −12 −7 4.87 10,287
L  middle temporal gyrus −34 1 −37 10.15 5306
R  middle temporal gyrus 39 13 −31 7.47 6929
L  hippocampus/parahippocampal gyrus −22 −7 −19 8.53 6311
R  hippocampus/parahippocampal gyrus 24 −5 −19 7.05 7276
L  amygdala −22 −5 −19 8.55 1502
R  amygdala 24 −4 −19 6.90 1164

Joint  source 3, white matter
L precentral gyrus −18 −16 49 5.57 5414
R  precentral/postcentral gyrus 30 −42 53 10.58 18,771
L  middle cerebellar peduncle −22 −58 −32 9.24 4847

3 

L

e
i

t
a
a
e

L  middle frontal gyrus −28 2

, left; R, right; coordinates in Talairach space.

mbodying episodic memory and executive function impairment
n AD.

The majority of WM alterations in joint source 1 involved

he bilateral SLF and CC (Fig. 1A), in accordance with sMRI
nd diffusion tensor imaging studies [8,11,17,27]. The SLF is an
nterior–posterior longitudinal fibre that connects the frontal, pari-
tal, temporal and occipital cortices. A reduction in this tract
32 4.35 4138

suggests that the connection of the frontal, parietal and tem-
poral GM in joint source 1 was  interrupted [27]. Volume or
fractional anisotropy reductions in CC were associated with neu-

ronal loss in AD; for example, the splenium of CC was  found to
be responsible for neuronal loss involving parieto-temporal neo-
cortical regions and the anterior callosal portions of the prefrontal
regions [8,11].
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ig. 2. The effects of discrimination from ICA weights in AD patients and NC for joi
A1),  2 (B1) and 3 (C1). The below panel shows the ROC of the discriminability for jo

For joint source 2, the expression of covariance patterns showed
 higher discriminability, and ROC analysis had a sensitivity of 100%
Fig. 2B1 and B2). Joint source 2 showed GM loss in the tempo-
al, parietal and occipital lobes (Fig. 1B), congruent with previous
eports [17,20,21,28]. GM atrophy patterns could explain the dif-
erential involvement of the parietal regions in the development
f AD [20]; furthermore, our results support the idea that the IPL
nd precuneus are likely the first regions to show atrophy within
he parietal lobe [20]. Correspondingly, WM loss occurred in the
PL within joint source 2.

Previous neuroimaging research indicated that WM integrity
amage due to normal ageing and AD started mainly in the late

yelinating regions such as the frontal lobes [24,27].  Salat et al.

ound that the inferior parietal and rostral middle frontal WM
egions showed the largest AD-associated volume reductions [24].
imilar to Salat et al. study, joint source 2 demonstrated apparent

ig. 3. The effects of discrimination from ICA weights in AD patients and NC for the com
hows the ROC of the discriminability.
rces 1–3. The above panel shows the scatterplot of ICA weights for joint sources 1
urces 1 (A2), 2 (B2) and 3 (C2).

degeneration in the bilateral superior/inferior/middle frontal gyri
WM,  possibly contributing to the deterioration of the execu-
tive functional network in AD. In addition, our data showed
reductions in both GM and WM in the inferior/middle occipital
gyri. These results, however, are in contrast to the early sMRI
studies that reported relatively spared changes in the occipital
lobe [21,28].

For joint source 3, the significance level of the covariance pat-
terns expression was the lowest; however, joint source 3 did have a
significant discriminability with reliable sensitivity and specificity
(Fig. 2C1 and C2). GM atrophy of the temporal lobe and its medial
regions (Fig. 1C), is one of the most concurrent AD-associated

findings in sMRI studies [6,13,17,21,26]. Volume decreases in the
hippocampus and parahippocampal gyrus are considered to be the
most valuable sMRI biomarker of AD pathology for prediction and
early diagnosis [12].

bined source. The left panel shows the scatterplot of ICA weights. The right panel
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Stoub et al. found significant WM volume decreases in the
arahippocampal gyrus in individuals at risk for AD [26]. In con-
rast, we detected WM reductions in the inferior longitudinal
asciculi in our recent report using univariate VBM [17], and we
eport now a lack of related WM changes in the temporal lobe
nd its medial structures in joint source 3. A possible explana-
ion is that the myelin breakdown of WM had already occurred
n our AD patients; subsequently, there may  have been timing dif-
erences relative to the adjacent GM reductions in the temporal
obe. Joint source 3 consisted of WM changes mainly in the pre-
entral/postcentral gyrus in AD patients. These findings seem to be
iscrepant with the literature [7,27].  Our findings should be further

nvestigated in longitudinal sMRI studies.
The combined source represented three joint sources but mainly

onsisted of sources 1 and 2. As we expected, the combined source
ad the highest statistical power of distinguishing AD patients from
C and had the optimal degree of sensitivity and specificity com-
ared with each joint source (Fig. 3). It is worth noting that there
re some overlapping regions among the various joint sources. For
xample, the hippocampus and parahippocampal gyrus are in both
oint sources 1 and 3, and the supramarginal gyrus and genu of CC
re in both joint sources 1 and 2. These three joint sources are spa-
ially independent, but this does not mean that they cannot overlap
30]. The overlapping brain regions may  indicate their distinctive
elevance to specific functional networks.

Multivariate techniques have been increasingly utilized to elu-
idate neural networks in different populations [2,9,18,19,25,30].
n contrast to univariate approaches such as VBM, multivariate
ICA integrates the joint information and simultaneously identifies
M and WM changes across the whole brain while the univariate
pproaches can only examine differences in peak voxels; more-
ver, the jICA mixing coefficients need no multiple comparison
orrection while the statistics based on univariate approaches do.

Using jICA, we have shown a comprehensive network pattern
f GM and WM reductions in AD patients. These network-based
ndings contribute to the understanding of the mechanism behind
rain tissue changes in the development of AD. Although the sam-
le size was relatively small in our study, the results suggest that

ICA can detect group differences with reliable statistical power.
t should be mentioned that jICA brings out the covariation pat-
erns of GM and WM,  but it could not tell us what the specific
elationship among various brain regions was. It is necessary to
urther explore the linear or nonlinear associations among core AD-
ffected brain regions using other multivariate methods, such as
ayesian network.
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