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Neurons  of  the medial  septum  are  affected  by  �  amyloid  1–40.
Excitotoxicity  contributes  to  septal  degeneration  in  neurons.
Memantine  protects  against  �  amyloid  1–40.
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a  b  s  t  r  a  c  t

The  medial  septal  region  (medial  septum  and  diagonal  band  of  Broca,  MS/DB)  controls  hippocampal
excitability  and  synaptic  plasticity.  MS/DB  cholinergic  neurons  degenerate  early  in Alzheimer’s  disease
(AD). The  presence  of  MS/DB  glutamatergic  neurons  that  project  to  the  hippocampus  and  are vulnerable
to  A�  suggests  that  excitotoxicity  plays  a  role  in  AD  septal  degeneration  and  hippocampal  dysfunction.
To  demonstrate  the  presence  of  excitotoxicity  in A�-induced  septal  damage,  we  compared  rats  injected
eywords:
eptum
xcitotoxicity
lzheimer’s disease
cetylcholine
lutamate

with  A�1–40 into  the  MS/DB  with  animals  treated  with  memantine  prior,  during  and  after  A�1–40 injec-
tions.  Controls  were  injected  with  phosphate  buffered  saline  (PBS).  MS/DB  cholinergic,  glutamatergic  and
GABAergic  neurons  were  immunochemically  identified.  The  number  of  MS/DB  neurons  was  estimated
using  stereology.  Our  results  show  that  memantine  blocks  A�1–40-induced  septal  damage  and  suggest
that  excitotoxicity  plays  a  role  in  basal  forebrain  neurodegeneration.
ABA

. Introduction

Alzheimer’s disease (AD) is a progressive and devastating
eurological disorder that leads to dementia and subsequent
eath. The basal forebrain, including the septum, is affected by AD
ith a severe reduction of cholinergic neurons [2,8,23]. The MS/DB

egion of the septum projects to the hippocampus. By controlling
he excitability and synaptic plasticity of hippocampus, the MS/DB
lays an important role in learning and memory [4].  The MS/DB
as previously thought to exclusively contain cholinergic and

ABAergic neurons. However, our laboratory has characterized

 third population of MS/DB neurons that uses glutamate as
eurotransmitter and projects to the hippocampus [3].  Thus,
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glutamatergic neurons are well posed to play an important role in
septo-hippocampal functions and their damage may  contribute to
AD brain dysfunction.

Medial septal cholinergic and glutamatergic neurons are vulner-
able to both medial septal and hippocampal injections of amyloid
� peptides (A�)  [5,6]. Thus, excitotoxicity triggered by A�-induced
septal glutamatergic neuronal damage may  contribute to both
cholinergic and glutamatergic neuronal degeneration. Memantine
an uncompetitive N-methyl-d-aspartate (NMDA) receptor antag-
onist improves both cognitive and behavioral symptoms of AD
[7,10,14,16,21]. Our work is dedicated to determine whether exci-
totoxicity contributes to the A�-induced septal lesions. While
A�1–42 is the most fibrillogenic [26] A� form and a major com-
ponent of the neuritic plaques, A�1–40 is the most common A�
variety in the brain [20]. Since plaques are not present in the basal
forebrain until advanced AD stages, and degeneration of basal fore-

brain cholinergic neurons occurs earlier in this disorder, we decided
to use A�1–40 for this study. Our results show that memantine
effectively protects against the damage produced by intraseptal
administration of A�1–40.

dx.doi.org/10.1016/j.neulet.2013.02.010
http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:Luis.colom@utb.edu
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L.V. Colom et al. / Neuroscience Letters 541 (2013) 54– 57 55

Fig. 1. (A-1) A deflection AFM image of A�1–40 showing predominantly fibrillar form with some oligomers (white arrows). (A-2) A height AFM image of the A�1–40 fibrils.
The  fibrillar form covers about 97% of the total surface (scale bar: 550 nm). (B-1) Diagram depicting medial septum injection site. (B-2) Fluorescent image of thioflavine S in
medial  septum verifying presence of A� 1–40 (scale bar = 100 �m).  (C) Graph comparing the estimated number of glutamatergic, cholinergic, and GABAergic labeled neurons
in  the MS/DB from control, A�1–40 and memantine + A�1–40, rats. The graph shows A�1–40 significantly reduced the medial septal glutamatergic and cholinergic neurons
(p  < 0.05.) compared to PBS and memantine treated rats. In contrast, GABAergic neurons did not show significant alterations.



56 L.V. Colom et al. / Neuroscience Letters 541 (2013) 54– 57

Fig. 2. Bright field photomicrographs of ChAT (A–F) glutamate (G–L) and GAD67 (M–R) immunoreactive neurons in medial septum. Left columns (5×),  right columns (40×)
in  A�1–40 + memantine group, A�1–40, and PBS treated groups. In (D and J) notice a reduction in ChAT and glutamate immunoreactive neurons in the A�1–40 group. (P) GAD67
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mmunoreactivity shows no evident changes in A�1–40 injected group or memantin

. Materials and methods

Twelve male Sprague Dawley rats weighing 300–400 g were
ivided into three groups. Two experimental groups were injected
ith 4 �l A�1–40 (Bachem) dissolved in distilled water [11,22]

oncentration of 2 �g/�l  into the medial septal [5,12] (coordi-
ates: AP = −0.5, L = 2, V = 6.5). One of the experimental groups
as treated with a bolus of memantine hydrochloride (Sigma, St.

ouis, MO)  20 mg/kg in a volume of 1 ml  of saline solution sub-
utaneously injected 12 h prior intraseptal injections of A� and the
mplantation of osmotic pumps (Alzet, 2ML2). Memantine was con-
inuously delivered subcutaneously through the osmotic pumps for
ight days (20 mg/kg/day) [8].  Control animals were injected with
qual amounts of a PBS solution (4 �l). One week after injection
f A�1–40 or PBS, animals were perfused intracardially with a fixa-
ive solution. Brains were removed, cryoprotected and 50 �m slices
repared. Cholinergic neurons were labeled with goat anti-ChAT
ntibody (1:200, Chemicon), glutamatergic neurons with a mouse
nti-glutamate antibody (1:2000, Immunostar) and GABAergic
eurons with a mouse anti-GAD67 antibody (1:500, Chemicon).
lices were then incubated with their respective biotinylated
econdary antibodies (1:200, Vector). Finally, slices were incu-
ated with avidin–biotin complex (ABC) and neurons visualized
sing the chromogen 3,3′-diaminobenzidine. Two sections of each
rain were incubated without the primary antibody to determine
taining specificity. No immunostaining was observed in these
ases.

Thioflavine S method was used to confirm the A� injection
ite and detection of fibrillary forms (Fig. 1). A sample of the
�1–40 was analyzed with atomic force microscope (AFM) (Dig-

tal Instruments, Veeco, Santa Barbara, CA) to determine the
�1–40 conformation. A� peptide adopted mostly a fibrillar form.
he width of single fibrils was about 5 nm with variable length.
ome oligomers coexist with the fibrillar form (Fig. 1). Neu-
onal numbers were estimated using stereological approaches
StereoInvestigator software, MicroBrightField, Williston, VT, USA)
24]. All numerical data were expressed as t value (t), means

nd standard error of the mean (SEM). Student’s t-tests were
sed to assess statistically significant differences among neu-
onal populations. Differences were considered significant at

 < 0.05.
ted group (scale bar = 50 �m in R).

3.  Results

The number of MS/DB ChAT immunoreactive neurons was
reduced from 10,021 ± 664 in PBS injected animals to 6469 ± 122
in A�1–40 injected rats (t = 6.134, df3) (p = 0.009). The number of
ChAT immunoreactive neurons in memantine/A� treated animals
was  similar to the one found for the control animals 9209 ± 339
(p = 0.25) (and significantly different from A�1–40 treated ani-
mals 6469 ± 122 (t = −11.879, df3) (p = 0.001) (Figs. 1 and 2).
Thus, memantine treatment was able to protect against A�1–40-
induced toxicity (Figs. 1 and 2). Similarly, A�1–40 reduced the
number of glutamate immunoreactive neurons from 19,421 ± 1216
to 14,118 ± 579 (t = 4.671, df3) (p = .019). Here also, meman-
tine treatment was  able to protect against A�1–40-induced
toxicity and the number of glutamate immunoreactive neu-
rons in memantine/A�1–40 treated (Figs. 1 and 2) animals was
(20,052 ± 1118) and significantly different from A�1–40 treated
rats/no treatment 14,118 ± 579 (t = −3.522, df3) (p = .039). The
number of glutamate immunoreactive neurons in memantine/A�
treated animals was similar to the one found for the control ani-
mals 19,421 ± 1216 (p = 0.75) (Figs. 1 and 2). In contrast, A�1–40
did not significantly reduce the number of GABAergic neurons and
memantine treatment did not modify their numbers (Figs. 1 and 2).

4. Discussion

The toxicity caused by excessive neuronal stimulation (excito-
toxicity), with subsequent calcium entry into the neuron, may  occur
in any brain region containing NMDA receptors (or other calcium
permeable glutamate receptors) [1] and axon terminals with capac-
ity to release glutamate. A� administration disrupts neuron-glia
signaling and glial glutamate uptake, increasing glutamate con-
centrations in the extracellular space that surround neurons. Via
this mechanism, A� induces noxious glutamatergic stimulation of
neurons. In fact, excessive activation of NMDA receptors has been
postulated to play a critical role in AD neurodegeneration [9,13].
Furthermore, A� increases the firing rates of MS/DB glutamatergic

neurons by blocking specific K+ conductances [15]. This network
activity intensification may  also activate excitotoxic mechanisms.

Memantine has been shown to protect neurons against A�-
induced toxicity in several brain regions [10,14,17,18]. This
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rotective effect is thought to occur by selective blockade of the
xcitotoxicity associated with abnormal glutamatergic transmis-
ion, while allowing for the physiological transmission associated
ith normal neuronal functioning [19]. The presence of a major
opulation of glutamatergic neurons in the MS/DB that participates

n local circuits [3,4,25], suggests that excitotoxic mechanisms par-
icipate in the A�-induced damage of this basal forebrain region.
evertheless, up to the present study, memantine effects on limited
�-induced septal lesions have not been investigated. Our work
emonstrates that memantine protects against A�1–40-induced
S/DB neuronal damage [5,6] and that local excitotoxic mecha-

isms may  significantly contribute to AD basal neurodegeneration.
euronal network activity and intracellular calcium changes need

o be investigated to determine the molecular mechanisms under-
ying the memantine protective effect.
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