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HIGHLIGHTS

» Neurons of the medial septum are affected by 3 amyloid 1-40.
» Excitotoxicity contributes to septal degeneration in neurons.
» Memantine protects against 3 amyloid 1-40.
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The medial septal region (medial septum and diagonal band of Broca, MS/DB) controls hippocampal
excitability and synaptic plasticity. MS/DB cholinergic neurons degenerate early in Alzheimer’s disease
(AD). The presence of MS/DB glutamatergic neurons that project to the hippocampus and are vulnerable
to AP suggests that excitotoxicity plays a role in AD septal degeneration and hippocampal dysfunction.
To demonstrate the presence of excitotoxicity in AB-induced septal damage, we compared rats injected
with AB1-40 into the MS/DB with animals treated with memantine prior, during and after A1_4 injec-
tions. Controls were injected with phosphate buffered saline (PBS). MS/DB cholinergic, glutamatergic and
GABAergic neurons were immunochemically identified. The number of MS/DB neurons was estimated
using stereology. Our results show that memantine blocks AP_40-induced septal damage and suggest
that excitotoxicity plays a role in basal forebrain neurodegeneration.

Published by Elsevier Ireland Ltd.

1. Introduction

Alzheimer’s disease (AD) is a progressive and devastating
neurological disorder that leads to dementia and subsequent
death. The basal forebrain, including the septum, is affected by AD
with a severe reduction of cholinergic neurons [2,8,23]. The MS/DB
region of the septum projects to the hippocampus. By controlling
the excitability and synaptic plasticity of hippocampus, the MS/DB
plays an important role in learning and memory [4]. The MS/DB
was previously thought to exclusively contain cholinergic and
GABAergic neurons. However, our laboratory has characterized
a third population of MS/DB neurons that uses glutamate as
neurotransmitter and projects to the hippocampus [3]. Thus,
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glutamatergic neurons are well posed to play an important role in
septo-hippocampal functions and their damage may contribute to
AD brain dysfunction.

Medial septal cholinergic and glutamatergic neurons are vulner-
able to both medial septal and hippocampal injections of amyloid
{3 peptides (AB) [5,6]. Thus, excitotoxicity triggered by AB-induced
septal glutamatergic neuronal damage may contribute to both
cholinergic and glutamatergic neuronal degeneration. Memantine
an uncompetitive N-methyl-p-aspartate (NMDA) receptor antag-
onist improves both cognitive and behavioral symptoms of AD
[7,10,14,16,21]. Our work is dedicated to determine whether exci-
totoxicity contributes to the AP-induced septal lesions. While
AB1_42 is the most fibrillogenic [26] AR form and a major com-
ponent of the neuritic plaques, Af1_40 is the most common Af3
variety in the brain [20]. Since plaques are not present in the basal
forebrain until advanced AD stages, and degeneration of basal fore-
brain cholinergic neurons occurs earlier in this disorder, we decided
to use APq_49 for this study. Our results show that memantine
effectively protects against the damage produced by intraseptal
administration of AB1_40.
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Fig. 1. (A-1) A deflection AFM image of AB1-4 showing predominantly fibrillar form with some oligomers (white arrows). (A-2) A height AFM image of the AB;_40 fibrils.
The fibrillar form covers about 97% of the total surface (scale bar: 550 nm). (B-1) Diagram depicting medial septum injection site. (B-2) Fluorescent image of thioflavine S in
medial septum verifying presence of A 1-40 (scale bar =100 pm). (C) Graph comparing the estimated number of glutamatergic, cholinergic, and GABAergic labeled neurons
in the MS/DB from control, AB1-40 and memantine + AP1-40, rats. The graph shows AB;_4 significantly reduced the medial septal glutamatergic and cholinergic neurons
(p<0.05.) compared to PBS and memantine treated rats. In contrast, GABAergic neurons did not show significant alterations.
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Fig. 2. Bright field photomicrographs of ChAT (A-F) glutamate (G-L) and GAD67 (M-R) immunoreactive neurons in medial septum. Left columns (5x), right columns (40x)
in AB1-40 + memantine group, AB1-49, and PBS treated groups. In (D and ]) notice a reduction in ChAT and glutamate immunoreactive neurons in the Af31_49 group. (P) GAD67
immunoreactivity shows no evident changes in AB1-49 injected group or memantine treated group (scale bar=50 wm in R).

2. Materials and methods

Twelve male Sprague Dawley rats weighing 300-400g were
divided into three groups. Two experimental groups were injected
with 4 pl ABq_40 (Bachem) dissolved in distilled water [11,22]
concentration of 2 g/l into the medial septal [5,12] (coordi-
nates: AP=-0.5, L=2, V=6.5). One of the experimental groups
was treated with a bolus of memantine hydrochloride (Sigma, St.
Louis, MO) 20mg/kg in a volume of 1ml of saline solution sub-
cutaneously injected 12 h prior intraseptal injections of A@ and the
implantation of osmotic pumps (Alzet,2ML2). Memantine was con-
tinuously delivered subcutaneously through the osmotic pumps for
eight days (20 mg/kg/day) [8]. Control animals were injected with
equal amounts of a PBS solution (4 l). One week after injection
of AB1_40 or PBS, animals were perfused intracardially with a fixa-
tive solution. Brains were removed, cryoprotected and 50 wm slices
prepared. Cholinergic neurons were labeled with goat anti-ChAT
antibody (1:200, Chemicon), glutamatergic neurons with a mouse
anti-glutamate antibody (1:2000, Immunostar) and GABAergic
neurons with a mouse anti-GAD67 antibody (1:500, Chemicon).
Slices were then incubated with their respective biotinylated
secondary antibodies (1:200, Vector). Finally, slices were incu-
bated with avidin-biotin complex (ABC) and neurons visualized
using the chromogen 3,3’-diaminobenzidine. Two sections of each
brain were incubated without the primary antibody to determine
staining specificity. No immunostaining was observed in these
cases.

Thioflavine S method was used to confirm the AP injection
site and detection of fibrillary forms (Fig. 1). A sample of the
AB1_40 was analyzed with atomic force microscope (AFM) (Dig-
ital Instruments, Veeco, Santa Barbara, CA) to determine the
AB1_40 conformation. AR peptide adopted mostly a fibrillar form.
The width of single fibrils was about 5nm with variable length.
Some oligomers coexist with the fibrillar form (Fig. 1). Neu-
ronal numbers were estimated using stereological approaches
(Stereolnvestigator software, MicroBrightField, Williston, VT, USA)
[24]. All numerical data were expressed as t value (t), means
and standard error of the mean (SEM). Student’s t-tests were
used to assess statistically significant differences among neu-
ronal populations. Differences were considered significant at
p<0.05.

3. Results

The number of MS/DB ChAT immunoreactive neurons was
reduced from 10,021 4 664 in PBS injected animals to 6469 + 122
in AB1_40 injected rats (t=6.134, df3) (p=0.009). The number of
ChAT immunoreactive neurons in memantine/A3 treated animals
was similar to the one found for the control animals 9209 4339
(p=0.25) (and significantly different from Af,_49 treated ani-
mals 6469 +122 (t=-11.879, df3) (p=0.001) (Figs. 1 and 2).
Thus, memantine treatment was able to protect against AB1_49-
induced toxicity (Figs. 1 and 2). Similarly, ABq_40 reduced the
number of glutamate immunoreactive neurons from 19,421+ 1216
to 14,1184+579 (t=4.671, df3) (p=.019). Here also, meman-
tine treatment was able to protect against Af;_go-induced
toxicity and the number of glutamate immunoreactive neu-
rons in memantine/AB1_40 treated (Figs. 1 and 2) animals was
(20,052 +1118) and significantly different from ABq_4 treated
rats/no treatment 14,118 £579 (t=-3.522, df3) (p=.039). The
number of glutamate immunoreactive neurons in memantine/A(3
treated animals was similar to the one found for the control ani-
mals 19,421+1216 (p=0.75) (Figs. 1 and 2). In contrast, APB1_40
did not significantly reduce the number of GABAergic neurons and
memantine treatment did not modify their numbers (Figs. 1 and 2).

4. Discussion

The toxicity caused by excessive neuronal stimulation (excito-
toxicity), with subsequent calcium entry into the neuron, may occur
in any brain region containing NMDA receptors (or other calcium
permeable glutamate receptors)[1]and axon terminals with capac-
ity to release glutamate. A} administration disrupts neuron-glia
signaling and glial glutamate uptake, increasing glutamate con-
centrations in the extracellular space that surround neurons. Via
this mechanism, AP induces noxious glutamatergic stimulation of
neurons. In fact, excessive activation of NMDA receptors has been
postulated to play a critical role in AD neurodegeneration [9,13].
Furthermore, AP increases the firing rates of MS/DB glutamatergic
neurons by blocking specific K* conductances [15]. This network
activity intensification may also activate excitotoxic mechanisms.

Memantine has been shown to protect neurons against Ap-
induced toxicity in several brain regions [10,14,17,18]. This
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protective effect is thought to occur by selective blockade of the
excitotoxicity associated with abnormal glutamatergic transmis-
sion, while allowing for the physiological transmission associated
with normal neuronal functioning [19]. The presence of a major
population of glutamatergic neurons in the MS/DB that participates
in local circuits [3,4,25], suggests that excitotoxic mechanisms par-
ticipate in the AB-induced damage of this basal forebrain region.
Nevertheless, up to the present study, memantine effects on limited
APB-induced septal lesions have not been investigated. Our work
demonstrates that memantine protects against A;_40-induced
MS/DB neuronal damage [5,6] and that local excitotoxic mecha-
nisms may significantly contribute to AD basal neurodegeneration.
Neuronal network activity and intracellular calcium changes need
to be investigated to determine the molecular mechanisms under-
lying the memantine protective effect.
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