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A B S T R A C T   

Chemotherapy-induced peripheral neuropathy (CIPN) is a somatosensory axonopathy in cancer patients 
receiving any of a variety of widely-use antitumor agents. CIPN can lead to long-lasting neuropathic pain that 
limits the dose or length of otherwise life-saving cancer therapy. Accumulating evidence over the last two de
cades indicates that many chemotherapeutic agents cause mitochondrial injury in the peripheral sensory nerves 
by disrupting mitochondrial structure and bioenergetics, increasing nitro-oxidative stress and altering mito
chondrial transport, fission, fusion and mitophagy. The accumulation of abnormal and dysfunctional mito
chondria in sensory neurons are linked to axonal growth defects resulting in the loss of intraepidermal nerve 
fibers in the hands and feet, increased spontaneous discharge and the sensitization of peripheral sensory neurons 
that provoke and promote changes in the central nervous system that establish a chronic neuropathic pain state. 
This has led to the propose mitotoxicity theory of CIPN. Strategies that improve mitochondrial function have 
shown success in preventing and reversing CIPN in pre-clinical animal models and have begun to show some 
progress toward translation to the clinic. In this review, we will review the evidence for, the causes and effects of 
and current strategies to target mitochondrial dysfunction in CIPN.   

1. Introduction 

Chemotherapy-induced peripheral neuropathy that leads to a long- 
lasting bilateral neuropathic pain state (CIPN) is a common adverse 
side effect that develops in patients receiving treatment with first-line 
anticancer drugs for breast, gastrointestinal, lung, ovarian and testic
ular cancers and multiple myeloma [30,93]. These agents include tax
anes (e.g., paclitaxel and docetaxel) [30,93] that disrupt microtubule 
depolymerization [38,75], vinca alkaloids (e.g., vincristine) [30,93] 
that disrupt microtubule polymerization [6], platinum-based antineo
plastic agents (e.g., cisplatin and oxaliplatin) [30,93] that disrupt DNA 
replication [43], proteasome inhibitors (e.g., bortezomib) [30,65,93] 
and targeted monoclonal antibody therapies (e.g., brentuximab and 
trastuzumab) [93]. However, despite their diverse mechanisms of action 
in cancer, these agents induce a somatosensory axonopathy hallmarked 
by reductions in the density of intraepidermal nerve fibers (IENF) of 
axon terminals that innervate the cutaneous layer of glabrous skin 
[88,102,108], which may or may not be accompanied by axonal atro
phy, axonal demyelination and/or neuronal degeneration of sensory 

neurons in the dorsal root ganglia [7,36]. An increase in the incidence of 
low frequency, irregularly-patterned spontaneous discharges in the 
sensory neurons [100,103] also develops with this axonopathy and is 
thought to initiate and contribute to changes in the processing and 
amplification of pain sensations that lead to the transition to a chronic 
pain state [7,50]. 

Evidence over the last two decades has shown that these features are 
associated with abnormal and dysfunctional mitochondria in peripheral 
sensory neurons (Fig. 1). Mitochondria play an essential role in neuronal 
bioenergetics, calcium buffering, lipid and protein biosynthesis and 
antioxidant status that drive the health, growth and synaptic function of 
neurons [16,20,45]. Strategies discussed in this review that improve or 
prevent mitochondrial abnormalities in peripheral sensory neurons have 
shown effectiveness in preclinical studies in reducing pain symptoms 
during CIPN or preventing the development of CIPN altogether. This has 
led to a propose hypothesis that chemotherapeutic agents are mitotoxic 
in the peripheral sensory neurons and the ensuing mitochondrial 
dysfunction drives the development and maintenance of CIPN [7]. 
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2. Evidence for mitochondrial dysfunction in CIPN 

2.1. Abnormal mitochondrial morphology. 

A greater incidence of abnormal swollen and vacuolated mitochon
dria in peripheral nerve sensory axons was first noted in myelinated A- 
fibers and unmyelinated C-fibers in the saphenous nerves of rats treated 
with paclitaxel treatment prior to the development of CIPN and at peak 
hypersensitivity, but not during the resolution of CIPN [29]. Abnormal 
mitochondria have been observed in the saphenous nerves [39,41,71], 
sciatic nerves [99] and the sensory axons of the dorsal root [103] in 
rodents treated with paclitaxel. Moreover, direct paclitaxel treatment of 
mouse sciatic nerve explants increased axonal mitochondrial swelling as 
early as one day after treatment [74]. Similar increases in abnormal 
mitochondria have been reported peripheral sensory axons in animal 
models of vincristine- [15,17,104], oxaliplatin- [102], cisplatin- [61] 

and bortezomib- [108] induced painful peripheral neuropathy. 
Increased abnormal mitochondria in small distal cutaneous nerves have 
also been reported in skin biopsies of female non-diabetic patients 
receiving treatment with the microtubule-stabilizing epothilone 
chemotherapy, ixabepilone [25]. 

The occurrence of abnormal mitochondria morphologies following 
chemotherapeutics is largely restricted to the sensory axons [99,103] 
with little evidence of abnormal mitochondria associated with paclitaxel 
in motor axons [103], Schwann cells [99,103] or in the spinal cord [99]. 
This has led to the suggestion that abnormal mitochondrial morphol
ogies are largely a sensory axon phenomenon during the development of 
CIPN [7]. However, increased numbers of swollen and vacuolated 
mitochondria have been reported in the dorsal root ganglia (DRG) cell 
bodies following paclitaxel [5] or cisplatin treatments [61,77] and in 
Remak Schwann cells during ixabepilone treatment [25]. 

Fig. 1. Mitochondrial dysfunction in chemotherapy-induced neuropathy. A. In the peripheral sensory neurons, chemotherapeutic agents can cause direct or indirect 
(e.g., through Ca2+ influx or p53 accumulation) injury to mitochondria that include damage to mitochondrial DNA, loss of mitochondrial morphology and disruption 
of oxidative phosphorylation and mitochondrial membrane potential. This leads to reduced ATP production and increased reliance on glycolysis that result the net 
reduction of cellular bioenergetic capacity to respond to increase cellular activity and potential activation of nociceptive receptors and channels. Moreover, mito
chondrial dysfunction also leads to increased production of SO and PN to drive nitroxidative stress that initiate protein, lipid and nucleic acid modifications. This 
reinforces nitro-oxidative stress and mitochondrial dysfunction as well as contribute to neuronal signaling pathways and inflammation. Collectively this leads to 
reduced axonal growth, loss of IENFs, increased spontaneous discharge and neuronal hypersensitivity that contribute to establishment of the chronic neuropathic 
pain state. B. Chemotherapeutics also contribute to mitochondrial dysfunction by altering the axonal transport of mitochondria to the axon terminals, depriving the 
axonal terminals of bioenergetics support. C. The health of mitochondria is maintained in part by mitochondrial fission and fusion processes that allow healthy 
mitochondria to fuse and mix with damage mitochondria, then sort the damaged areas for removal (mitophagy). In addition to altering transport, chemotherapeutics 
may down-regulate the expression of mitochondrial fusion (mitofusins and Opa1) and fission (Drp1) proteins to disrupt the renewal of mitochondria in the axonal 
terminals and prevent mitophagy resulting in the accumulation of abnormal, dysfunctional mitochondria. 
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2.2. Dysfunctional mitochondrial bioenergetics. 

Mitochondrial swelling and vacuolization disrupts the maintenance 
of the proton gradient and impairs mitochondrial ATP production [31]. 
Ex vivo preparations of sciatic nerve axons from rats with CIPN following 
paclitaxel, oxaliplatin, or bortezomib treatment exhibited significant 
reductions in the oxygen consumption rates (OCR) and ATP production 
after maximal stimulation of Complex I-mediated and Complex II- 
mediated respiration prior to the development of CIPN (day 7) and 
lasting at least three weeks after the last dose of chemotherapy 
[39,103,108]. This suggested functional impairment of mitochondria 
during CIPN. Recent studies by Maj et al. in mice with cisplatin-induced 
neuropathy confirmed compromised OCR, indicating compromised 
respiration, in isolated DRG cells and tibia nerves at baseline, during the 
production of ATP and at maximal respiratory capacity [61]. The spare 
respiratory capacity, which indicates the ability of mitochondria to 
respond to energy demands, was reduced in DRG cells, but not tibial 
nerves [61]. That same year, Duggett et al., demonstrated DRG cells 
isolated from rats treated with paclitaxel had significant reductions in 
maximal respiratory capacity and spare respiratory capacity after 
paclitaxel, but only prior to the pain manifestation [23]. ATP formation 
and ion exchange in the mitochondria is determined by the trans
membrane potential energy established by the chemical hydrogen ion 
gradient (ΔpH) and charge gradient (mitochondrial membrane poten
tial; ΔΨm) resulting from the proton pumping activity of Complex I, II 
and IV proteins within the mitochondrial oxidative phosphorylation 
chain (OXPHOS) on the inner mitochondrial membrane [109]. In sciatic 
nerve mitochondria from rats with CIPN following oxaliplatin, protein 
levels and activities of the OXPHOS Complex I, II and IV were reduced 
and the ΔΨm and ATP production was compromised [1,3]. Similar re
ductions of ΔΨm have recently been reported in DRG neurons isolated 
from mice treated with one dose of cisplatin [61] and in segmental 
motor neurons of Drosophila larvae treated with cisplatin [78]. 

Much of a neuron’s bioenergetics expenditure is in maintaining 
membrane potential, neurite growth and the formation and stability of 
synapses [84]. Impairment of mitochondrial ATP production in the pe
ripheral sensory neurons has been posited as one mechanism by which 
mitochondrial dysfunction contributes to CIPN [7] (Fig. 1A). This has 
been supported by findings that treatments supporting mitochondrial 
function attenuate CIPN, whereas, mitochondrial toxins exacerbate 
CIPN. For example, acetyl-L-carnitine (ALCAR) administration in 
paclitaxel-treated rats prevents and reverses mechano-hypersensitivities 
[29,41]. ALCAR is metabolized in the mitochondria to yield carnitine for 
fatty acid transport and acetyl-CoA production to generate nicotinamide 
adenosine dinucleotide (NADH) for ATP production via the oxidative 
phosphorylation [82]. ALCAR prevented swelling and vacuolation of 
mitochondria in primary afferent C-fibers, but not A-fibers, in paclitaxel- 
treated rats [41]. ALCAR also attenuated spontaneous discharge in rats 
treated with vincristine- [100], paclitaxel- [100] and oxaliplatin- [102] 
induced peripheral neuropathy. This was accompanied by reductions of 
sensory axonal Complex I & II respiration and ATP production and 
attenuated the development of mechano-hypersensitivity in rats treated 
with paclitaxel, oxaliplatin, or bortezomib [107,108]. In contrast, in
hibition of the ATPase with oligomycin increased spontaneous discharge 
in animals with CIPN following paclitaxel [101]. Moreover, nicotin
amide adenine nucleotide (NAD+) levels in the hind paw and sciatic 
nerves, but not the DRG, have been shown to be significantly reduced in 
animals treated with paclitaxel [53]. The depletion of NAD+ corre
sponded with mitochondrial dysfunction, reduced IENF and neuropathic 
pain, which was prevented by the stimulation of the NAD+ salvage 
pathway using a pharmacological activator of nicotinamide phosphor
ibosyl transferase (NAMPT) [53]. 

Other strategies that are thought to improve mitochondrial OXPHOS 
also show that ability to attenuate chemotherapy-induced neuropathic 
pain, IENF loss and spontaneous discharge. For example, deletion of the 
exchange factor directly activated by cyclic AMP 1 (EPAC1) prevented 

paclitaxel-induced reductions in mitochondrial OCR [89]. Its inhibition 
prevented the loss of IENF and the development of pain. The proposed 
mechanism of action is through EPAC1 translocation to the plasma 
membrane in response to increased cyclic AMP [89]. This is then 
thought to activate PKCε and cause its accumulation in mitochondria 
where it can inhibit OXPHOS [89]. 

The loss of mitochondrial ATP has been suggested to reduce the 
capacity of neurons to maintain the Na+/K+ ATPase to maintain mem
brane potential allowing a slow leak of Na+ to trigger spontaneous 
discharge [7,69,102]. However, quantitative measurements of ATP in 
brain neurons suggests that maintaining resting membrane potential for 
a neuron through the Na+/K+ ATPase is easily maintained by ATP 
produced through glycolysis [81]. Oxidative phosphorylation is then 
stimulated by neuronal activity to meet the additional bioenergetic 
burden associated with maintaining synaptic integrity, organelle trans
port and protein synthesis [81,84]. In animals treated with repeated 
paclitaxel, Duggett et al., found evidence of enhanced basal glycolysis 
and maximal glycolytic ATP production in peripheral sensory neurons 
during peak pain in absence of altered respiration or respiratory ca
pacity [23]. This suggests that sensory neurons switch from a reliance on 
oxidative phosphorylation to less efficient ATP production through 
glycolysis for their bioenergetics needs [23] (Fig. 1A). The implications 
of such a switch would be that glycolysis would no longer be sufficient to 
maintain basal Na+/K+ ATPase activity and facilitating spontaneous 
discharge as its ATP production would be directed to areas normally 
supplied by oxidative phosphorylation. Ludman and Melemedjian found 
a similar switch towards glycolysis in the DRG cells from animals with 
bortezomib-induced neuropathic pain [57]. However, in their model, 
they found that pyruvate dehydrogenase kinase 1 (PDHK1) and lactate 
dehydrogenase expression increased, which led to reduced pyruvate 
dehydrogenase-mediated conversion of pyruvate to acetyl-CoA and 
increased pyruvate conversion to its downstream metabolite lactate by 
lactate dehydrogenase [57]. Instead of CIPN being driven by a lack of 
ATP production due to glycolysis, they proposed that CIPN pain stem
med from the release of lactate and protons extracellular space that 
allowed lactate to potentiate voltage-gated sodium channels and im
mune signaling while the acidification of the extracellular space trig
gered proton-sensitive ion channels, such as acid-sensing ion channels, 
transient receptor potential cation channel subfamily V member 1 
(TrpV1) and ATP-gated P2X receptor cation channels that have been 
associated with nociception [57] (Fig. 1A). To support their model, 
pharmacological inhibition of PDHK1 and lactate dehydrogenase 
attenuated spontaneous bortezomib-induced pain behaviors in mice 
[57]. 

3. Mitochondrial dysfunction and nitro-oxidative stress. 

3.1. Evidence of mitochondrial nitro-oxidative stress in CIPN. 

Nitro-oxidative stress is the imbalance between the production of 
reactive oxygen species (ROS; e.g. superoxide and hydrogen peroxide) 
and reactive nitrogen species (RNS; e.g., peroxynitrite) and the cellular 
antioxidant capacity bolstered by a number of antioxidant enzymes that 
include glutathione peroxidases (Gpx), catalase, cytosolic copper/zinc 
superoxide dismutase (Cu/Zn-SOD) and the mitochondrial manganese 
superoxide dismutase (MnSOD) [9,40,70,80]. This imbalance leads to 
uncontrolled release of ROS/RNS that can undergo oxidative, nitro
sylative and nitrative reactions with proteins, lipids and nucleic acids 
[9,40,70,80]. Nitro-oxidative stress has been implicated in the devel
opment of CIPN (Fig. 1A). For example, increased levels of lipid per
oxidation and protein oxidation products have been found in plasma, 
sciatic nerves and spinal cord in animals with oxaliplatin-induced 
neuropathic pain [21]. Increased lipid peroxidation products have also 
been reported in the sciatic nerve of animals with vincristine- [68], 
cisplatin- [85] and oxaliplatin- [2] induced neuropathic pain. The DNA 
oxidation product 8-OH-dG increased in animal sciatic nerve and spinal 
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cord with oxaliplatin treatment [21]. In neuronal cell cultures, oxali
platin increased cellular ROS and mitochondrial superoxide production 
[1,3], lipid peroxidation [2] and nitrite [2] formation. Cisplatin also 
induced cellular and mitochondrial production of ROS/RNS in SH-5Y5Y 
neuroblastoma [18] and N2a cells [79]. Direct measurements of ROS/ 
RNS are difficult to do in vivo; however, studies using indicator dyes 
have reported increased ROS/RNS in the DRG of animals with 
paclitaxel-induced neuropathic pain [24,94]. Moreover, when nitro- 
oxidative stress was augmented in rats using auranofin, an inhibitor of 
the mitochondrial antioxidant thioredoxin (Trx)-thioredoxin reductase 
(TrxR) system, paclitaxel- and oxaliplatin-induced neuropathic pain in 
rats was exacerbated [101]. 

Mitochondria are a major source of superoxide production, which is 
primarily generated by electron leak at complex I and complex III of 
oxidative phosphorylation chain [92]. Platinum-based chemothera
peutics form DNA adducts in nuclear and mitochondrial DNA causing 
intrastrand nucleotide adducts that impact protein production [49,51]. 
In the nucleus, these adducts can be efficiently repaired by the nuclear 
excision repair mechanisms [49]; whereas, little or no repair of these 
adducts occurs in mitochondria [49,51]. This may lead to inadequate 
levels of oxidative phosphorylation proteins that exacerbates superoxide 
production [70]. Paclitaxel also causes disruptions in the mitochondrial 
ΔΨm through changes in mitochondrial structure, mitochondrial cal
cium flux and/or mitochondrial permeability transition pore [13]. 
However, once superoxide is formed in the mitochondria, it will undergo 
a dismutation reaction by MnSOD to hydrogen peroxide that then oxi
dizes reduced glutathione via glutathione peroxidases or degraded by 
catalase to generate water and oxygen [37,40,59]. Reductions in the 
levels of glutathione have been reported in the sciatic nerve of rats with 
vincristine-induced neuropathic pain [68]. Once superoxide exceeds 
these antioxidant mechanisms, it can cause lipid peroxidation, protein 
and DNA oxidation or undergo diffusion-limited reaction with nitric 
oxide to form peroxynitrite [9,40,70,80]. Peroxynitrite will nitrate 
tyrosine-34 on MnSOD via a Mn-catalyzed process that reduces its ac
tivity by 80% and impairing antioxidant capacity [59,60]. In CIPN 
models, we have found significant increases in tyrosine nitrated MnSOD 
in saphenous nerves of rats treated with paclitaxel, oxaliplatin or bor
tezomib [39]. Reductions in MnSOD have been reported by others in the 
sciatic nerve of paclitaxel-treated rats and N2a cells [2]. Such reductions 
in MnSOD activity and other mitochondrial antioxidant systems can lead 
to reinforcement of superoxide and peroxynitrite formation by further 
impairing ATP synthesis [80] or indirectly via protein kinase C activa
tion and subsequent triggering of the cellular nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase complex, which will produce 
a burst of cellular superoxide [4,14]. 

3.2. Targeting chemotherapy-induced mitochondrial nitro-oxidative 
stress. 

Strategies that target nitro-oxidative stress have been successful in 
animal and cellular models in combating chemotherapy-induced 
neurotoxicity. In addition to their metabolic functions, ALCAR [97], 
α-lipoic acid [73], ascorbic acid [54] and α-tocopherol [54] can also act 
as antioxidants. Intravenous and intradermal injections of ALCAR, 
α-lipoic acid, or ascorbic acid dose-dependently reversed oxaliplatin- 
induced hyperalgesia [44]. Alpha-tocopherol and the plant-based 
polyphenolic flavonoid, silibinin, reduced oxaliplatin-induced lipid 
peroxidation and protein oxidation products in the plasma and sciatic 
nerves of rats and attenuated the formation of 8-OH-dG in the sciatic 
nerve [21]. Other studies used the mitochondrial-targeted alpha- 
tocopherol, MitoVitE, to attenuate paclitaxel-induced neuropathic pain 
[64]. Rosmarinic acid is a plant polyphenol that has can act as an 
antioxidant or stimulate PPARγ signaling [35]. PPARγ activation in
creases mitochondrial function, mitochondrial biogenesis and the tran
scription of a number of antioxidant enzymes through action with 
retinoid X receptor or by stimulating the antioxidant response 

transcription factor nuclear factor E2-related factor 2 (Nrf2) [48]. In N2a 
cells, oxaliplatin-induced lipid peroxidation and nitrite formation were 
reduced and antioxidant Nrf2 and MnSOD levels increased with ros
marinic acid [2]. Rosmirinic acid also improved mitochondrial function, 
reduced inflammation in the sciatic nerves and blocked the development 
of oxaliplatin-induced pain in animals [2]. However, there has been 
limited success thus far in human CIPN clinical trials using these ap
proaches [83,105]. 

More directed antioxidant pharmacological strategies using ROS/ 
RNS scavengers, SOD mimetics and peroxynitrite decomposition cata
lysts have shown success attenuating chemotherapy-induced neurotoxic 
effects in cellular and animal models. For example, n-tert-Butyl-a-phe
nylnitrone (PBN), a global free-radical scavenger, and TEMPOL, a non- 
selective nitroxyl antioxidant [67], attenuated the development of and 
reverse established paclitaxel-induced neuropathic pain in rats [28]. In 
cisplatin-treated mice, PBN attenuated reductions in conductance ve
locity and increases in electro-stimulated action potential in the tibial 
nerve [87]. The active metabolite of amifostine, WR-1065, is a ROS/RNS 
scavenger [32] and activates MnSOD [66]. In neurons, WR-1065 
attenuated cisplatin-induced ROS, reduced neurite outgrowth and 
apoptosis. [79]. The SOD mimetic, MnL4, reduced superoxide produc
tion and lipid peroxidation in SH-SY5Y neuronal cells and attenuated 
decreased oxaliplatin-induced mechano-hyperalgesia and allodynia and 
cold allodynia in rats [22]. Mangafodipir, a manganese-based contrast 
dye, and its calcium-substituted derivative, calmangafodipir (PLEDOx), 
have SOD mimetic properties [12,19]. In animal models of oxaliplatin- 
induced neuropathic pain, mangafodipir reduced the level of oxidized 
proteins in the serum in mice. Both compounds prevented peripheral 
nerve damage and attenuated the development of mechanical and cold 
hypersensitivity in mice [12,19]. In Phase II trials with 22 cancer pa
tients whose oxaliplatin-treatment was ceased due to the development 
of grade 2 or greater CIPN, 77% patients that resumed at least 4 cycles of 
oxaliplatin therapy with a cotreatment of mangafodipir showed 
improved pain outcomes [19]. When compared to non-responding pa
tients, those with improved pain had reduced oxidized proteins products 
and increased SOD activity in their serum [19]. In Phase II clinical trials, 
calmangafodipir also appeared to provide favorable pain outcomes in 
patients with grade 2 or higher oxaliplatin-induced neuropathy [33] and 
is now currently in Phase III trials for CIPN (NCT03654729) [76]. In our 
own studies, we have found that using a compound with both SOD 
mimetic and peroxynitrite-decomposition catalytic activities prevented 
increased abnormal mitochondria in the saphenous nerves of paclitaxel- 
treated rats [39]. This compound also prevented MnSOD nitration and 
inactivation and protected ATP production in the saphenous nerves of 
rats treated with paclitaxel, oxaliplatin or bortezomib [39]. 

Other strategies attempt to address nitro-oxidative stress in CIPN by 
indirectly blocking the production of ROS/RNS. In DRG neurons treated 
with cisplatin, meclizine improved ATP production and neurite 
outgrowth by shifting the cells towards glycolysis and the pentose 
phosphate pathway to replenish depleted NADPH and antioxidant 
glutathione [34]. In mouse models of paclitaxel-induced neuropathic 
pain, matrix metalloproteases 9 (MMP9) levels increased in the DRG and 
intrathecal administration of a monoclonal antibody, MMP9 mAb, 
attenuated ROS/RNS production and stimulated Cu/Zn SOD in the DRG 
that resulted in reduced IENF loss and neuropathic pain [94]. The au
thors suggested that blocking MMP9 attenuated inflammation that then 
led to reduced oxidative stress [94]. However, expression of matrix 
metalloprotease 9 is stimulated by oxidative stress and recent work 
shows that oxidative stress can drive MMP9 to translocate to mito
chondria and act on substrates such as connexin-43, hsp 60 and 70 and 
drive mitochondrial dysfunction [42]. In other studies, the Szeto–
Schiller (SS) peptides, SS-31 (Elamipretide) [95] and SS-20 [96] have 
been shown to attenuate pain and IENF loss in mice treated with oxa
liplatin. SS peptides interact with cardiolipin [10,98], which is a phos
pholipid of the inner mitochondrial membrane that maintains cristae 
structure and stabilizes cytochrome c for the OXPHOS [56]. Cardiolipin 
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peroxidation disrupts the OXPHOS, increases ROS/RNS generation, 
mitochondrial swelling and the release of cytochrome c [10,72,98]. SS- 
31 is in early and late phase clinical trials for cardiological, opthalmo
logical and neurological mitochondrial diseases (NCT02805790, 
NCT02976038, NCT02693119 and NCT03323749). 

Other studies targeting the oxidative stress-sensitive PARP/p53 
pathway have also reduced mitochondrial dysfunction and nerve injury. 
The selective serotonin and norepinephrine reuptake inhibitor, dulox
etine, attenuated peroxidation and PARP/p53-dependent apoptosis in 
primary DRG rat neurons after paclitaxel [55]. The p53 inhibitor, pifi
thrin α, in cisplatin-treated animals prevented the accumulation of p53 
in the mitochondria and preserved mitochondrial membrane potential, 
ATP production and normal morphology in the DRG [61]. This was 
associated with reductions in pain and loss of IENF [61]. 

4. Axonal mitochondrial transport and mitochondrial 
dysfunction. 

Axonal transport of protein, messenger RNA and mitochondria from 
the cell soma to the axonal end terminal and nodes of Ranvier are critical 
to maintaining healthy mitochondrial pools and energy supply neces
sary for proper neurotransmission, axonal growth and synaptic function 
[62,86]. Mitochondria will travel anterograde along axonal microtu
bules via kinesin motor complexes and anchor at a regions with high 
intracellular calcium concentrations detected by the Miro1 protein in 
the motor complex [62,86]. To maintain anchored mitochondria func
tion in the presence of increasing protein turnover, oxidative stress and 
accumulation of mitochondrial DNA errors, younger mitochondria 
traveling along the axon will fuse their outer and inner membranes via 
mitofusins and Opa1 proteins with older mitochondria, mix contents 
and sort regions of mitochondrial damage that then are removed by 
mitochondrial fission processes directed by Drp1 [62]. In damaged 
mitochondria fractions, the PTEN-induced kinase 1 (PINK1), which is 
usually translocated to and sequestered within the inner mitochondrial 
membrane, accumulates on the outer membrane to recruit the Parkin 
complex and ubiquitinate the damaged mitochondrial fraction for 
mitophagy [62,86]. Disruption along any of these pathways leads to 
mitochondrial dysfunction and nitro-oxidative stress [62,86]. 

There is growing evidence that dysregulated mitochondrial traf
ficking and fission/fusion may contribute to mitochondrial dysfunction 
and neuropathic pain during CIPN (Fig. 1B,C). Smith et al., demon
strated that microtubule-stabilizing chemotherapeutics (paclitaxel and 
ixabepilone) reduced anterograde mitochondrial movement in human 
neuroblastoma cells and mouse sciatic nerves [91]. In mice with 
cisplatin-induced neuropathic pain, the levels of mitofusin-2 have been 
found to be reduced in both the DRG and tibial nerves; implicating 
reduced anterograde trafficking. Moreover, the levels of fission/fusion 
mRNA, Opa1 and Drp1, were reduced in the tibial nerve [11]. Inhibiting 
mitochondrial fission with a Drp1 inhibitor was found to attenuate 
oxaliplatin-induced neuropathic pain [27]. 

In addition to abnormal trafficking and fission/fusion, mitophagy is 
also altered by chemotherapeutics. For example, cisplatin activated 
PINK1/parkin mitophagy, but blocked its late stages in PC12 cells. 
Reducing parkin in these cells increased cisplatin toxicity in mitochon
dria and drove further depletion of ATP levels; whereas increasing 
parkin expression increased neurite outgrowth [106]. Similar beneficial 
effects were observed in the Drosophila CIPN model when PINK1 was 
overexpressed [46]. Restoration of NAD+ production by overexpressing 
nicotinamide nucleotide adenylyltransferase 1 (Nmnat1) restored the 
fission/fusion rates in DRG neurons treated with vincristine [8]. This 
prevented the slowing of mitochondrial velocity down the axon, mito
chondrial fragmentation and neurodegeneration induced by vincristine 
[8]. 

Histone deacetylase 6 (HDAC6) deacetylates α-tubulin to destabilize 
microtubules necessary for mitochondrial trafficking [63,90]. The 
HDAC6 inhibitors, ACY-1083 [47] and ACY-1215 [58] have shown 

beneficial effects on mitochondrial function and CIPN in cisplatin- 
treated mice. ACY-1083 prevented and reversed the development of 
cisplatin-induced mechano-allodynia and IENF loss, while increasing 
mitochondrial mass and restoring mitochondrial bioenergetics in the 
tibial nerves [47]. Similar effects were observed with ACY-1215 [58]. 
This suggested that HDAC6 inhibition may have improved mitochon
drial trafficking [47,58]. However, HDAC6 has a number of mechanisms 
that could alter the development of CIPN [52]. When HDAC6 was spe
cifically knocked out in the DRG, it had little or no effect on CIPN [58]. 
When ACY-1215 was tested in Rag2 knockout mice that are T cell 
depleted, ACY-1215 lost its effects, suggesting that the beneficial effects 
of these compounds may be on inflammatory processes. 

5. Conclusions and future directions. 

A substantial body of evidence has accumulated over the last 30 
years to suggest a vital role of mitochondria in the development of CIPN. 
Mitochondrial dysfunction does occur in the sensory afferents and 
rectifying their function improves the health, axonal growth and regu
lation of neurotransmission of sensory afferents to prevent and reduce 
peripheral and central sensitization that leads to chronic neuropathic 
pain. This has opened new research for novel therapeutic pharmaco
logical approaches to treat CIPN for which there are currently limited 
options for clinicians and patients [26]. Moreover, several peripheral 
neuropathies of various etiologies (e.g., diabetes, human immunodefi
ciency virus and nucleoside reverse transcriptase inhibitors) share 
similar mitochondria defects with in the peripheral afferents [7]. 
Despite the rapid expansion in our knowledge of mitochondrial 
dysfunction and CIPN over the last decade, the limited success in clinical 
trials thus far for strategies that target mitochondrial dysfunction sug
gests that substantial gaps remain in our understanding of how 
chemotherapy triggers mitochondrial dysfunction and how that mito
chondrial dysfunction drives CIPN. Questions as to what triggers mito
chondrial dysfunction and whether these effects are due to 
chemotherapeutic agent on the mitochondria or due to pathological 
changes in the cell soma in the DRG are among the questions that still 
remain. Further understanding of how chemotherapeutics cause mito
chondrial dysfunction and the role of mitochondrial dysfunction has on 
CIPN is necessary for the development of strategies to combat this 
devastating adverse side-effect of otherwise life-saving therapies. 
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