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a b s t r a c t

We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persis-
tent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs)
originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial
nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important
in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated
by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on
responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist
ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a
rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflamma-
pinal
escending

tion of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered
5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin
were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal
cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuat-
ing spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude
that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive
pathways that contribute to persistent pain-like states.
everal studies in pain research have focused on the role of spinal
-HT3 receptors (5-HT3Rs), which unlike all other subtypes of
-HTRs, is the only known subtype comprising a ligand-gated

on channel [3,15]. Spinal 5-HT3Rs are located on the termi-
als of glutamate-releasing myelinated primary afferent fibers as
ell as excitatory interneurons and some NK1 projection neu-

ons in lamina I/III [6]. In the formalin test, pre-treatment with
single intrathecal (i.t.) dose of the selective 5-HT3R antagonist

ndansetron administered directly to the exposed spinal cord has
een shown to attenuate neuronal hyperexcitability predominately

n the second phase of the test, highlighting the peripheral and
entral effects of 5-HT3R activation in neuronal hyperexcitabil-
ty in pain-like states [8,21]. In accordance with these studies is a
tudy showing that ondansetron attenuates second phase formalin-

nduced behavioral hypersensitivity when administered 15 min
rior to formalin injection [24]. Also, in rats with spinal nerve liga-
ion (SNL, a model of neuropathy), a low dose of ondansetron was
ound to be effective in attenuating responses evoked by mechani-
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cal stimuli, yet was ineffective on measures of neuronal excitability
in sham rats, [22]. Furthermore, in a model of osteoarthritic pain,
ondansetron administered i.t. has been shown to be effective at
inhibiting responses evoked by innocuous mechanical stimuli [18].

Substantiating the role of 5-HT3Rs in pain maintenance further,
KO mice lacking the A subunit of the 5-HT3R, which is required for
functionality of the receptor, have been shown to display normal
acute pain-like responses, but attenuated ongoing hypersensitivity
produced by formalin-induced inflammation [28]. Taken together,
these results show that 5-HT facilitates persistent pain-like states
via activation of 5-HT3Rs most likely due to an increased descend-
ing serotonergic drive from higher centres in the brain and in
particular, the rostral ventromedial medulla (RVM) [23]. In accor-
dance with these findings is a small randomized double-blind study
showing that a single intravenous bolus of ondansetron alleviates
the overall pain experienced by neuropathic pain patients [14].

Interestingly, not all persistent pain models involve altered
descending serotonergic activity at spinal 5-HT3Rs. Carrageenan-

induced inflammation has been shown to produce mechanical
and behavioral hypersensitivity as well as significant neuronal
plasticity [12,20]. However, electrophysiological approaches have
shown that when ondansetron is administered i.t. to rats with
carrageenan-induced inflammation, stimulus-evoked neuronal

dx.doi.org/10.1016/j.neulet.2010.08.024
http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:curtisasante@googlemail.com
mailto:anthony.dickenson@ucl.ac.uk
dx.doi.org/10.1016/j.neulet.2010.08.024


roscie

r
c
t
s

p
t
r
t
i
t
s
r
t

a
a
R
r
O
t
i
t
s
t
p
t

b
M
f
o
r
t
C
m
u
s

r
(
2
a
c
p
i
n
fi

i
t
d
fi
T
a
t
t
C
i
M
w
T
(
6

n

C.O. Asante, A.H. Dickenson / Neu

esponses are inhibited to the same degree in both naive and
arrageenan-injected rats [19]. Therefore, in this model, spinal plas-
icity and behavioral hypersensitivity do not require descending
erotonergic activity at spinal 5-HT3Rs.

Our previous results [1,2] clearly demonstrate a link between
ersistent pain-like states and rapamycin-sensitive pathways at
he level of the spinal cord, an area that as well as peripheral
apamycin-sensitive pathways, has gained much interest in recent
imes [16]. Since the persistent pain-like states we previously
nvestigated are known to involve a descending facilitatory sero-
onergic drive that acts at spinal 5-HT3Rs, the aim of the current
tudy was to investigate a possible link between spinal 5-HT3Rs and
apamycin-sensitive pathways using in vivo electrophysiological
echniques.

In vivo electrophysiology studies were carried out according to
well-established protocol [25]. All studies were carried out in

ccordance with the UK Animals (Scientific Procedures) Act, 1986.
ats were initially anesthetized in an induction box with 4% isoflu-
ane in a mixture of nitrous oxide (66%, v/v) and oxygen (33%, v/v).
nce the rats had lost consciousness and were completely areflexic,

he trachea was exposed and isolated and a cannula was inserted
nto the trachea and fastened with 3-0 silk threads. This was used
o maintain anesthesia throughout the recording period. At this
tage, the isoflurane was reduced to 2.5% (v/v) (areflexia was main-
ained). Rats were then secured in a stereotaxic frame and a rectal
robe attached to a heating blanket was used to maintain a core
emperature of 37 ◦C.

An incision was made through the skin along the length of verte-
rae and the skin was then separated from the underlying muscle.
uscle, connective tissue and vertebrae were specifically removed

rom lumbar vertebral segments to expose lumbar segments L4–L5
f the spinal cord. Muscle and connective tissue immediately sur-
ounding L4–L5 was however, kept intact, creating a well on top of
he exposed spinal cord into which, drug solutions could be added.
lamps were used to stabilize and straighten the cord. The dura
ater was also removed to aid drug penetration. When the set

p was complete, the isoflurane was reduced to 1.8% (v/v), a level
ufficient for anesthesia, whilst maintaining areflexia.

Extracellular neuronal recordings were obtained with an AC
ecording system (NeuroLog system, Digitimer). An electrode
parylene insulated tungsten microelectrode, 125 �m diameter,
M�, A-M systems Inc.) inserted into a head stage attached to
3-axis manipulator was manually lowered into the exposed

ord (L4–L5) to a depth of 500–1000 �M. This is an area occu-
ied by wide dynamic range (WDR) neurons that are important

n pain processing. An oscilloscope was used to isolate single
eurons and a number of stimuli were applied to the receptive
eld.

Electrical stimuli were delivered by inserting two stimulat-
ng electrodes intradermally into the most sensitive part of
he receptive field. Firstly, A�- and C-fiber thresholds were
etermined depending on their latencies to respond to stimuli (A�-
bers ≤ 20 ms post-stimulus; C-fibers = 90–300 ms post-stimulus).
he stimulator was then set to three times C-fiber threshold and
train of 16 stimuli (0.5 Hz, 2 ms pulse width) was delivered

o the receptive field to determine the number of action poten-
ials attributable to A�-fibers (0–20 ms); A�-fibers (20–90 ms);
-fibers (90–300 ms) and post-discharge (300–800 ms) which

s attributable to the repeated stimuli of nociceptive C-fibers.
echanical stimuli (von Frey filaments ranging from 1 to 60 g force)
ere applied to the most sensitive part of the receptive field for 10 s.
his was also the case with thermal stimuli, where increasing heat
ranging from 35 to 50 ◦C) was applied using a jet of water from a
0 ml syringe attached to a needle.

When determining the effect of drug or vehicle on baseline
euronal responses, only stable cells where 3 consecutive stimulus-
nce Letters 484 (2010) 108–112 109

evoked responses were within 10% of the previous result for the
same test were selected for further pharmacological study, i.e., a
minimum of 3 control tests were carried out prior to saline or drug
administration. A ‘test’ comprising electrical, mechanical and ther-
mal stimuli was carried out every 20 min. Saline or drug was usually
administered 20 min prior to the first non-control test apart from
the ondansetron pre-treatment study. In this case, ondansetron
(ZofranTM, Glaxo-Wellcome) or saline was administered to the
spinal cord 10 min prior to rapamycin administration. Maximum
changes in neuronal activity (positive or negative, raw values) from
control were used for data analysis.

All drugs were administered via the i.t. route to the exposed
spinal cord in a volume of 50 �l. In the studies using ondansetron to
study the interactions between 5-HT3Rs and rapamycin-sensitive
pathways, the spinal cord was first pre-treated with high dose
ondansetron (100 �g in 50 �l saline) or saline (50 �l) 10 min prior
to rapamycin (sirolimus, LC laboratories, 250 nM or 11.43 ng in
50 �l saline/DMSO, total DMSO concentration of 25%) which was
also on the cord for 10 min prior to the first set of non-control
tests. In separate experiments, we administered the rapamycin
analogue CCI-779, which shows improved water solubility (250 nM
or 12.88 ng in 50 �l saline) or a low dose of ondansetron (10 �g in
50 �l saline) to the exposed spinal cords of rats with carrageenan-
induced inflammation (100 �l 2% w/v injected into the hind paw)
for 20 min prior to the first set of non-control tests.

Student’s t-tests were used to compare differences in A�-,
A�- and C-fiber firing and post-discharge. Two-way ANOVA with
repeated measures and Bonferroni post-tests were used to deter-
mine significance between groups for natural graded stimuli, i.e.,
graded mechanical and thermal stimuli.

In our first set of experiments, we studied the effects of
rapamycin on neuronal responses after saline and ondansteron pre-
treatment. We used rapamycin rather than the ester analogue since
we had previously shown in naive animals, that this compound
significantly inhibited measures of neuronal excitability includ-
ing graded mechanical and thermal stimuli [1]. We also used a
dose of 100 �g of ondansetron since earlier studies had shown
that half this dose (50 �g) significantly inhibited mechanically- and
thermally-evoked neuronal responses from naive animals [19]. We
reasoned that since these neuronal responses are mediated at least
in part by activity at 5-HT3Rs, the response profile produced by the
administration of rapamycin in the presence of physiological saline
should change when rapamycin is administered in the presence of
ondansetron.

Following their physiological characterization, deep dorsal
horn neurons (7 and 6 in saline and ondansetron pre-treatment
groups, respectively) were randomly chosen for pharmacological
investigations. Pre-drug characterizations revealed no significant
differences between the neurons selected for each treatment
(Table 1). We found that the inhibitory effects of rapamycin for
graded mechanically- and thermally-evoked neuronal responses
were significantly reduced when the spinal cord was pre-treated
with the selective 5-HT3R antagonist ondansetron compared to
pre-treatment with saline (Fig. 1A and B). In other words, the
response profile produced by rapamycin in the presence of saline
changed in the presence of ondansetron. These results imply
that descending serotonergic facilitation acting at 5-HT3Rs engage
rapamycin-sensitive pathways and also that baseline descending
facilitatory action of serotonergic pathways at 5-HT3Rs are permis-
sive for the inhibitory action of rapamycin. We are confident that
this represents an interaction between 5-HT3Rs and rapamycin-

sensitive pathways rather than the vehicle into which rapamycin
is dissolved since we have previously shown that compared to
vehicle, rapamycin significantly inhibits stimulus-evoked neuronal
responses as well as formalin-induced neuronal hyperexcitability
[1].
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Table 1
Characterization of WDR neurons selected for ondansetron or saline pre-treatment
prior to rapamycin.

Saline (n = 7) Ondansetron (n = 6)

Depth (�M) 620 ± 30 636 ± 27
Aß-fiber threshold (mA) 0.87 ± 0.06 0.66 ± 0.11
C-fiber threshold (mA) 1.60 ± 0.18 1.23 ± 0.19
Aß-fiber spikes 102 ± 25 154 ± 10
A�-fiber spikes 55 ± 15 70 ± 20
C-fiber spikes 235 ± 28 215 ± 38
Post-discharge spikes 140 ± 26 194 ± 64
1 g spikes 46 ± 24 27 ± 18
6 g spikes 256 ± 74 210 ± 48
8 g spikes 360 ± 115 314 ± 49
15 g spikes 457 ± 125 506 ± 75
26 g spikes 593 ± 142 669 ± 70
60 g spikes 707 ± 151 945 ± 95
35 ◦C spikes 248 ± 79 333 ± 93
40 ◦C spikes 313 ± 103 430 ± 94
45 ◦C spikes 547 ± 141 802 ± 95
48 ◦C spikes 724 ± 144 987 ± 122
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50 ◦C spikes 858 ± 128 1120 ± 133

ata are presented as mean ± S.E.M. All responses were comparable in the two
roups.

In our second set of experiments, the permissive action by
escending serotonergic activity at 5-HT3Rs for the inhibitory
ction of rapamycin was further investigated in a persistent pain-
ike state where descending serotonergic activity at 5-HT3Rs is
naltered (at least on our neuronal measures) i.e., carrageenan-
nduced inflammation. We used CCI-779 rather than rapamycin
ince we had already shown in our most recent study that in ani-
als which had undergone SNL to produce a neuropathic pain-like

tate, this compound significantly inhibits measures of neuronal

ig. 1. Pre-treatment of the spinal cord with 100 �g ondansetron 10 min prior
o 11.43 ng rapamycin (Ond–Rap, n = 6) resulted in significantly less inhibition of
oxious mechanically-(A) and thermally-evoked (B) responses compared to saline
re-treatment (Sal–Rap, n = 7, *P < 0.05, **P < 0.01).
Fig. 2. There were no effects from the administration of 12.88 ng CCI-779 (n = 10)
to the spinal cord after 3 h establishment of carrageenan-induced inflammation
(control).

excitability including graded mechanically- and thermally-evoked
neuronal responses [2]. We reasoned that since carrageenan-
induced inflammation is not largely dependent on activity at
5-HT3Rs whereas the inhibitory effects of rapamycin are, then
the pre-drug response profile of neurons from the carrageenan-
induced inflammation animals should be similar to the response
profile produced after administration of the rapamycin analogue
ester CCI-779.

Although the carrageenan-induced inflammation model has
been shown to present behavioral hypersensitivity at 3 h post-
carrageenan injection [10] that is partly due to an increase in
spinal inflammatory mediators such as prostaglandins [27], in
vivo electrophysiology has revealed that in this pain-like state
at this specific time point, descending serotonergic activity at
5-HT3Rs is unaltered [19]. In our experiments, CCI-779 was
ineffective in attenuating stimulus-evoked neuronal responses
to mechanical (Fig. 2A) and thermal stimuli (Fig. 2B) at 3 h
post-carrageenan administration. Likewise, low dose ondansetron
(10 �g) was also ineffective in attenuating neuronal responses to
mechanical (Fig. 3A) and thermal stimuli (Fig. 3B). For these exper-
iments, we used a lower dose of ondansetron (10 �g) compared
to our first set of experiments (100 �g) because this low dose
of ondansetron is known to have inhibitory effects on stimulus-
evoked neuronal responses from rats with SNL [22] compared to
sham rats, indicating increased activity by descending facilitation
acting at spinal 5-HT3Rs [2]. Taken together, these data therefore
confirm that a descending serotonergic drive acting at spinal 5-
HT3Rs increases in magnitude in rats with SNL but not in rats

with carrageenan-induced inflammation. Interestingly, in the same
model a very recent study reveals a role of rapamycin-sensitive
pathways in behavioral threshold responses after injection of car-
rageenan into the hind paw [9]. It is therefore possible that in this
model, the decreased threshold responses observed in fully awake
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ig. 3. There were no effects from the administration of 10 �g ondansetron (n = 9)
o the spinal cord after 3 h establishment of carrageenan-induced inflammation
control).

nimals are regulated by rapamycin-sensitive pathways whereas
he suprathreshold neuronal responses that we obtain from our
n vivo electrophysiology set up in anaesthetized animals, are
ot.

In a previous study [1] we showed that rapamycin produces
nhibitory effects on C-fiber activity, mechanically- and thermally-
voked responses in naive animals. We also showed that spinally
dministered rapamycin attenuates formalin-induced hyperex-
itability, a finding which was first shown by Price et al. [17].
n a separate, more recent study, we did not observe inhibitory
ffects by CCI-779 in control animals [2]. In our present study,
CI-779 has no effect on neuronal responses from animals with
arrageenan-induced inflammation. Given that CCI-779 is an ana-
ogue of rapamycin, we would expect to see similar effects of
CI-779 on neuronal responses in animals with carrageenan-

nduced inflammation compared to the effects of rapamycin in
aive animals because even if descending serotonergic activity is
naltered in this persistent pain-like state, there should still be
n active descending serotonergic activity at spinal 5-HT3Rs that
ill activate rapamycin-sensitive pathways. However, as alluded to
reviously [2], although CCI-779 shows improved water solubility,
ubtle changes in pharmacokinetics which, are dependent upon the
olution into which the compounds are diluted, may mean that the
nhibitory effects are altered in non-pathological states and states

here descending facilitation acting at spinal 5-HT3Rs is unaltered,
uch that 250 nM rapamycin is more efficacious than 250 nM CCI-
79, at least in our hands. Importantly, rapamycin and CCI-779

nhibit neuronal responses after formalin-induced inflammation

1] and spinal nerve injury [2], respectively—two states which are
ignificantly dependent on a descending serotonergic facilitation
ediated by spinal 5-HT3Rs.
Mechanistically, although 5-HT has been shown to be impor-

ant in engaging rapamycin-sensitive pathways [4,5,13,26], this
nce Letters 484 (2010) 108–112 111

is the first study using these approaches to show specifically
that 5-HT3Rs are important upstream modulators of rapamycin-
sensitive pathways. 5-HT3Rs are located on primary unmyelinated
glutamatergic afferent terminals, excitatory interneurons as well
as lamina I/III projection neurons [6,28]. We have most recently
shown that rapamycin-sensitive pathways are present in spinal
lamina II interneurons [2]. Identification of rapamycin-sensitive
pathways in the superficial dorsal horn (as well as deeper lam-
ina) has also been shown in other studies [7,9]. These pathways
have also been shown to be important in peripheral modulation
of pain processing at the level of the hind paw [11]. In contrast,
there is no evidence of the presence of rapamycin-sensitive path-
ways in the central terminals of peripheral nerves [7]. Therefore,
we propose the following: At afferent terminals in the spinal cord,
5-HT3R activation drives the excitability of spinal neurons via
excitatory neurotransmitter release from spinal afferent terminals.
Activation of spinal neurons and in particular, excitatory lamina II
interneurons and/or projection neurons in lamina I and III results in
increased activation of rapamycin-sensitive pathways within these
spinal neurons that enhance dorsal horn neuronal excitability via
as yet undiscovered mechanisms and these pathways are more
prominent in persistent pain-like states.

Taken together, these results confirm that rapamycin-sensitive
pathways are dependant at least in part upon descending sero-
tonergic facilitation mediated by 5-HT3Rs. It is important to note
that rapamycin-sensitive pathways could in theory, be activated
by descending modulation at other excitatory or inhibitory recep-
tors. However, persistent pain-like states involve shifts in neuronal
thresholds and neuronal excitability to comparatively more excita-
tory states. Given what is already known about the importance of
5-HT3Rs in this process, excitatory 5-HT3R activation at the spinal
level appears to be an important prerequisite for the activation of
rapamycin-sensitive pathways.
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