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The purpose of this study was to provide evidence that treadmill step training is capable of attenuat-
ing muscle atrophy and may regulate brain derived neurotrophic factor (BDNF) in soleus muscle after
complete spinal cord transection (SCT) at T8–T9 in rats. Five days after SCT, spinal animals started a
9-week step-training program on a treadmill with partial body weight support and manual step help.
The muscular trophism was studied by analyzing muscle weight and myofiber cross-sectional area of
pinal cord injury
readmill training
oleus muscle
uscular trophism

DNF expression

the soleus, while Western blot analysis was used to detect BDNF expression in the same muscle. Step
training, initiated immediately after SCT in rats, may partially impede/revert muscular atrophy in chronic
paralyzed soleus muscle. Moreover, treadmill step training promoted upregulation of the BDNF in soleus
muscle, which was positively correlated with muscle weight and myofiber cross-sectional size. These
findings have important implications for the comprehension of the neurobiological substrate that pro-

ffect
pinal
motes exercise-induced e
therapeutic approach in s

keletal muscle is a dynamic tissue that can adapt to mechani-
al stimulus such as reduced neural activity after nervous system
njuries and/or muscular training [24]. Spinal cord injury (SCI) is
devastating neurological condition that produces muscular pare-

es/paralyses caudal to the lesion level, leading to a pronounced loss
f muscle mass and severe muscle atrophy [9,31]. This paraplegia-
nduced muscle atrophy increases the risk of developing secondary
ealth problems such as cardiovascular disease and diabetes in
araplegic patients [7].

Though the muscle to body weight ratio, muscle and myofiber
ross-sectional area (CSA) and muscle function are reduced in sev-
ral muscles after SCI in animal models [9,22,23,25,31], the greatest
amage is mainly seen in postural muscles composed predomi-
antly of type 1 fibers [5,22].

Activity-based restorative strategies have been used in attempts

o restore muscle mass and preserve some muscle functions after
CI. Functional electrical stimulation employed after SCI has been
hown to capable of improving muscular trophism [12]. Body
eight-supported treadmill training (BWSTT) has been shown to
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s on paralyzed skeletal muscle and suggests treadmill training is a viable
cord injuries.

© 2011 Elsevier Ireland Ltd. All rights reserved.

be effective in restoring muscle mass and function. Using this proce-
dure, muscle atrophy was partially reversed and greater muscular
activation promoted [1,10,11]. Though these studies have shown
the promising beneficial effects of BWSTT in muscular trophism
after SCI, further research is needed in order to establish the bio-
logical mechanisms involved in this rehabilitation strategy [12].

Among other factors, muscular disuse severely reduces the
expression of brain-derived neurotrophic factor (BDNF) protein and
mRNA levels in both lumbar spinal cord and soleus muscle in acute
and chronic stages after SCI [15,33]. This trophic factor can activate
the rapamycin (mTOR), the protein that participates in mammalian
cell size control and plays an important role in muscular trophism
[6]. Furthermore, paraplegia-induced muscle atrophy in rats has
been associated with downregulation of the mTOR signaling path-
way [8].

Studies have shown that repetitive motor activity, such as
cycling exercise training accelerates muscle size restoration after
complete SCI in rats [9,25,26]. Furthermore, treadmill training has
been shown to diminish the extent of muscle atrophy [23,31] and
restores BDNF levels in both the lumbar spinal cord and soleus mus-

cles [15] in moderate SCI models. In contrast to the well reported
effects of treadmill training on several growth factors and muscular
trophism in intact and after moderate SCI models, few studies have
attempted to examine the effectiveness of this activity-based ther-
apy on the neuromuscular system after complete SCI. Since, mTOR
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http://www.sciencedirect.com/science/journal/03043940
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s the downstream effector of the action of BDNF on cell size, the
orrelation of the regulation of this growth factor and trophism in
aralyzed muscle may shed some light on the mechanism by which
readmill step training affects muscular tissue and promotes main-
enance/restoration of the muscle mass in spinal subjects. In this
ontext, the main aim of this study was to test the hypothesis that
readmill step training is capable of attenuating the loss of mus-
le mass and myofiber atrophy and modifying the BDNF content in
oleus muscle after SCT in rats.

Experiments were performed on 30 adult male Wistar rats (2.5
onths old) from a local breeding colony (ICBS, UFRGS, Brazil). The

ats were housed in standard plexiglass boxes (2 per cage), under a
2:12-h light/dark cycle, in a temperature-controlled environment
22 ± 1 ◦C), and given free access to food and water.

Animals were randomly divided into the following groups:
a) rats without spinal cord transection, sham-operated (control,
= 10); (b) untrained rats with spinal cord transection (untrained
CT, n = 10); and (c) step-trained rats with spinal cord transection
trained SCT, n = 10).

Procedures were in accordance with Brazilian laws and the
ecommendations of the Brazilian Society of Neurosciences and
he International Brain Research Organization. This study was
pproved by the Ethics Committee of our institution (Nr. 2007738).

Animals were anesthetized using pentobarbital (40 mg/kg, i.p.,
ristália, Brazil) and subjected to a vertebral laminectomy at tho-
acic levels T8–T9. Spinal cord transection was performed using
icroscissors, and the completeness of the transection was ensured

y passing a sickle probe (no. 3, White, Brazil) through the lesion
ite. The same surgical procedure, though without SCT was per-
ormed in the uninjured group (control). The surgical procedure
as concluded by suturing the muscle plane and skin (6–0 and 4–0
ylon sutures, respectively; Somerville, Brazil). The skin surface
as then disinfected with 2% iodine solution.

Following the surgery, rats were kept in a warm environment
nd monitored until they recovered from anesthesia. Animals were
hen returned to standard conditions. All animals were treated
or 14 days with Baytril (Enrofloxacin 2.5 mg/kg, subcutaneously;
ayer S.A., Brazil) to prevent urinary tract infections. Furthermore,
ladders were manually expressed twice a day until the bladder
as no longer distended and palpable, indicating that the animal
ad developed an automatic bladder voidance reflex (10–14 days).

nspection for general health, skin irritation, decubitus ulcers or
vidence of autophagia, was carried out daily throughout the post-
njury survival period.

The training program was performed on a treadmill designed
or human use (Runner, Brazil) and modified for use by rats. Before
he SCT, the animals were familiarized with the treadmill appa-
atus at 5 m/min for 5 min a day on three consecutive days and at
ost-operative day 6 the trained SCT animals started a 9-week step-
raining program. The training program consisted of step training
n a treadmill (band speed 6–7 m/min) with partial body weight
upport (BWS), once a day and 5 sessions per week. The first train-
ng day began with 5 min of step training. The training time was
rogressively increased every day up to 20 min on the second week
nd 30 min over the following 7 weeks. The design of this tread-
ill training regime took into account a previously published study

sing complete SCT in rats [34].
The step training was carried out using a manually adjustable

eight-supporting counterbalance system to provide weight sup-
ort assistance. Each rat was fitted with a Lycra vest that was closed
ith Velcro, and placed into a BWS harness, thereby supporting
he thorax, while the head, forelimbs and hindlimbs had full range
f movement. For step training, rats were placed in a quadripedal
osition, bearing ∼15% of their body weight on their hindlimbs (i.e.,
85% BWS). Each spinal animal was individually trained and the
indlimbs were manually moved in a step pattern by the researcher
ers 492 (2011) 170–174 171

holding the ankle region (as previously performed [20]). During the
step training, special care was taken to place the rats’ feet in a plan-
tar stepping position and to keep the toes extended to ensure the
footpad made contact with the treadmill band during the stance
phase.

The day after the last training session, five animals from each
group were deeply anesthetized with pentobarbital (100 mg/kg,
i.p.; Cristália, Brazil) and the right soleus muscles were carefully
dissected from the surrounding tissue and rapidly weighed. Results
are presented as a percentage of total body mass and were calcu-
lated by dividing the weight of the soleus muscle by the weight of
the animal. Additionally, samples of the central part of each mus-
cle were excised under ice and stored at −70 ◦C until processed for
biochemical analysis.

The soleus muscle was chosen for the purposes of this study
of muscular adaptations because it is predominantly composed of
slow-twitch muscle fibers (type 1), which makes it more vulnerable
to disuse atrophy after SCI (see review [5]). Moreover, the rat soleus
muscle is used during standing and locomotion and intensively
recruited during treadmill training [2].

Other five animals from each group were deeply anesthetized
with pentobarbital and transcardially perfused with 300 mL of
saline solution, followed by 400 mL of 0.5% glutaraldehyde (Merck,
Germany) and 4% paraformaldehyde (Reagen, Brazil) in 0.1 M phos-
phate buffer (PB, pH 7.4) at room temperature. The right soleus
was carefully dissected from the surrounding tissue. Small samples
(∼2 mm × 1 mm) from the central part of each muscle were selected
and post-fixed in 2.5% glutaraldehyde and 2% paraformaldehyde
in PB solution at room temperature for 1 h and at 4 ◦C until pro-
cessed. The samples were washed in PB and post-fixed in 1% OsO4
(Sigma, USA) in PB for 2 h. They were then washed with PB and
dehydrated in a graded series of alcohol and propylene oxide
(Electron Microscopy Sciences, USA), embedded in resin (Dur-
cupan, ACM-Fluka, Switzerland), maintained in vacuum for 24 h,
and, afterwards, polymerized for 72 h at 60 ◦C. Serial transverse-
semithin sections (1 �m) were obtained using an ultramicrotome
(MT6000-XL, RMC, USA).

Images of the muscles were captured (20×) using a Nikon Eclipse
E-600 microscope (Japan) coupled to a digital camera and Image Pro
Plus Software 6.0 (Media Cybernetics, USA). For soleus myofiber
morphometric evaluation, a set of 6 images was obtained for each
muscle using random sampling of one slice and the transverse
sectional areas of 120 muscle fibers, randomly chosen from the
6 digitalized images, were estimated. The area of each individ-
ual myofiber was estimated using a point-counting technique [24]
using grids with a point density of one point per 58.56 �m2 and the
equation: Â =

∑
p · a/p. Where Â is area, �p is the total of counted

areas/point and a/p is the area/point value (58.56 �m2). This is an
unbiased estimate of the area. The average of the cross-sectional
areas of each individual rat was based on the mean obtained for
the soleus myofiber areas measured per animal.

The muscle samples stored at −70 ◦C were homogenized and
equal amounts (30 �g) of proteins from each sample were boiled
in sample buffer (0.0625 M Tris–HCl, pH 6.8, 2% (w/v) sodium
dodecyl sulfate (SDS), 5% (w/v) �-mercaptoethanol, 10% (v/v) glyc-
erol, 0.002% (w/v) bromphenol blue) and electrophoresed in 10%
(w/v) SDS-polyacrylamide gel. The separated proteins were blot-
ted onto a nitrocellulose membrane. Equal loading of each sample
was confirmed with Ponceau S staining (Sigma, USA). Anti-BDNF
antibody (Santa Cruz Biotechnology, USA) was used at a dilution
of 1:200. After incubating with the primary antibody for 2 h at

room temperature, membranes were washed and incubated with
peroxidase-conjugated anti-rabbit immunoglobulin (IgG, Sigma,
USA) at a dilution of 1:2000 for 1 h. The chemiluminescence sig-
nal was detected using an ECL kit (Amersham, USA). The films were
digitally scanned and the optical density measured using Image Pro
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Fig. 1. Effects of treadmill step training on soleus muscle trophism. (A) Soleus muscle to body weight ratio. Soleus to body weight ratio was significantly reduced in the
untrained group when compared to controls. There was no significant difference between the step-trained spinal animals and controls. (B) Digitalized images showing soleus
muscle myofibers of the control and experimental groups. Untrained spinal animals showed myofiber atrophy compared with controls. Note that in the step-trained animals,
the soleus myofibers were larger when compared with the untrained rats. Toluidine blue-stained semithin sections. Scale bar = 50 �m. (C) Soleus myofiber cross-sectional
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reas. Myofiber size was significantly reduced in the untrained and trained group w
hen compared with untrained rats. Values in graphs (A) and (C) are expressed as

he control group and asterisk (*) marks significant differences (P < 0.05) when com

lus Software 6.0 and shown as a percentage of the control values.
he protein content was measured using Lowry’s method using
ovine serum albumin (BSA) as a standard.

To test for statistically significant differences, morphological
nd biochemical data were analyzed using one-way ANOVA and,

n the case of significant differences, the Tukey post hoc test was
pplied. Statistical significance was assumed at P < 0.05. Data were
xpressed as means ± S.E.M. Pearson’s Correlation was used to
etermine the relationship between BDNF expression with both
he soleus to body weight ratio and soleus myofiber size.
ompared to control rats. In the step-trained animals the myofiber sizes were larger
s ± S.E.M. Symbol “#” marks significant differences (P < 0.05) when compared with
with the step-trained group.

Analysis of the soleus muscle to body weight ratio revealed
that SCT significantly reduced the soleus muscle mass in untrained
animals compared with controls (0.056 ± 0.003 and 0.068 ± 0.002;
respectively; P < 0.05; Fig. 1A). There was no difference in terms of
the soleus muscle to body weight ratio between the step-trained

group (0.064 ± 0.001) and the controls (Fig. 1A).

In order to assess changes in the cross-sectional myofiber size,
transverse-semithin sections of the soleus muscle for each exper-
imental group are shown in Fig. 1B. Analysis of the morphometric
data revealed that soleus cross-sectional myofiber area was signif-
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Fig. 2. Effects of treadmill step training on soleus BDNF expression. Western blot
analysis with BDNF-stained bands to illustrate changes in muscular expression of
this protein in the trained SCT (Tr) compared to the untrained SCT (Untr) and control
(Con) groups are shown at the top of figure. Graph showing the quantification of the
BDNF in the control and experimental groups. BDNF expression was significantly
enhanced in the step-trained when compared with untrained spinal animals. Values
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tion of BDNF in the soleus muscle, which was positively correlated
re shown as a percentage of the control values and expressed as mean ± S.E.M.
sterisks (*) mark significant differences (P < 0.05) when compared with the trained
CT group.

cantly reduced with SCT in both the untrained and step-trained
nimals (1245.47 ± 34.08 �m2 and 1573.06 ± 131.69 �m2, respec-
ively) compared with controls (1960.23 ± 33.69 �m2; P < 0.05;
ig. 1C). The step-trained group showed an enhanced myofiber
ross-sectional area in the soleus muscle when compared with the
ntrained SCT group (P < 0.05).

Representative Western blot analyses with BDNF-stained bands
hat facilitate the examination of the changes in the expression of
his protein in the soleus for each experimental group are shown
t the top in Fig. 2. Although optical densitometry (OD) analysis
evealed that SCT reduced BDNF expression by about 31% in soleus
uscle, there was no statistically significant difference between the

ntrained SCT and control groups (Fig. 2). In the step-trained group,
oleus BDNF expression was enhanced by between/about 50%
nd 80% when compared respectively with control and untrained
pinal animals, and this value was significantly different from the
ntrained SCT group (Fig. 2).

In order to study the relationship between muscular expression
f BDNF and soleus trophism, we examined the correlation between
he expression of this protein and the soleus to body weight ratio
nd myofiber cross-sectional area in spinal animals. Pearson’s Cor-
elation showed that there is a strong positive relation between
uscular BDNF expression with the muscle to body weight ratio

r = 1; P < 0.001) and with the myofiber size (r = 0.959; P < 0.001) in
oleus muscle.

Muscle atrophy as detected by a reduction in muscle mass cau-
al to the site of the spinal lesion is an important hallmark of spinal
ord injury. In this study, the SCT caused a severe decrease in soleus
uscle weight and myofiber size. The untrained spinal animals

howed a greater loss of soleus weight compared with controls.
owever, the treadmill step training prevented and/or reverted this
uscle loss. Moreover, SCT lead to a reduction of ∼37% in soleus
yofiber size in the untrained spinal rats when compared with
ontrols. Additionally, the step training was effective in partially
aintaining and/or restoring muscle myofiber size, given that the

verage cross-sectional area of the soleus myofibers in the trained
pinal animals was ∼17% greater than that in the untrained group.
ers 492 (2011) 170–174 173

Severe muscle atrophy caused by the complete or incom-
plete SCI has been well documented in experimental studies
[21,23,25,26]. Five days of locomotor training, starting one week
after midthoracic contusion SCI, resulted in significant enlarge-
ment of the soleus cross-sectional myofiber area, with the trained
animals having muscle fiber sizes 23% larger than the untrained
[31]. Additionally, magnetic resonance imaging has shown that
long-term locomotor training enhances the cross-sectional area
and accelerates soleus muscle recovery in spinal cord contusion
injured rats [22,23]. While few studies have evaluated the effects of
treadmill training in fully spinalized rats, other exercise paradigms,
such as cycling exercises, when started 5 days after midthoracic
SCT restored skeletal muscle to body mass ratio and cross-sectional
myofiber area in soleus muscle to control values [25,26].

Skeletal muscle is known to be an important secretor of growth
factors. In our study, step training led to an increase of 80% in soleus
BDNF expression in the trained spinal animals when compared
with the untrained spinal animals. Other studies have shown that
motor training has an intrinsic potential to enhance the production
of neurotrophins. The expression of BDNF, neurotrophin-3 (NT-3),
and their tyrosine kinase receptors (TrkB and TrkC, respectively)
in both the spinal cord and soleus muscle of rats increases with
locomotor exercise training in the intact spinal cord [14,30,32].
Moreover, locomotor training has been shown to restore BDNF
levels in both the lumbar spinal cord and soleus muscle, which
were severely reduced in the acute and chronic stages after SCI
[15,33].

Muscular trophism in the soleus is correlated with muscle BDNF
expression in our study. We showed that both soleus muscle weight
and soleus myofiber size had a positive correlation with muscular
expression of the BDNF protein in step-trained and untrained spinal
animals 10 weeks after SCT. BDNF activates mTOR, the protein
that participates in mammalian cell size control, and the down-
regulation of this protein is associated with the muscle atrophy
after SCI [8,17,27,29]. Skeletal muscle trophism is controlled by
the regulation of cellular signaling pathways that involve muscle
protein synthesis, breakdown and cellular proliferation [13]. The
mTOR signaling pathway is capable of regulating translation ini-
tiation and cellular protein synthesis [18,19]. In this context, the
level of mRNA translation is the primary muscle protein synthesis
regulator [18,19]. Therefore, activation of mTOR by BDNF signaling
may be involved in beneficial exercise-induced effects that may
underlie the partial maintenance and/or recovery of the muscu-
lar trophism seen in the soleus from trained spinal animals in our
study.

Stepping-based rehabilitation programs, such as wheel running,
stationary bicycle or treadmill training, may activate a neural net-
work located within the lumbar spinal cord, the central pattern
generator (CPG), which is capable of generating rhythmic locomo-
tor activity without descending control. The sensorial stimulation
provided by Ia and Ib fiber groups during step training could
play an important role in the normalization of motoneuron elec-
trophysiological properties after SCI and reinforce the efficacy of
specific sensorimotor pathways in promoting neuromuscular activ-
ity [3,4,28]. This plasticity could result in a more selective and stable
network of neurons capable of controlling the limb muscles acti-
vated during locomotion in spinal rats [16].

In summary, our results provide evidence that step training in
rats, when started immediately after SCT, may partially impede
and/or revert the muscular atrophy in chronic paralyzed soleus
muscle. Moreover, the treadmill step training promoted upregula-
with muscle weight and myofiber cross-sectional area in our study.
We believe that the beneficial effects of treadmill training on soleus
muscle trophism could be promoted by BDNF-induced mTOR acti-
vation.
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