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Rolipram, an inhibitor of phosphodiesterase 4 (PDE4) proteins that hydrolyze cAMP, increases axonal
regeneration following spinal cord injury (SCI). Recent evidence indicate that rolipram also protects
against a multitude of apoptotic signals, many of which are implicated in secondary cell death post-SCI.
In the present study, we used immunohistochemistry and morphometry to determine potential spinal
cord targets of rolipram and to test its protective potential in rats undergoing cervical spinal cord contu-
sive injury. We found that 3 PDE4 subtypes (PDE4A, B, D) were expressed by spinal cord oligodendrocytes.
. 0X-42 immunopositive microglia only expressed the PDE4B subtype. Oligodendrocyte somata were quan-
Phosphodiesterase 4 . . . . . . i . .
White matter tified within the cervical ventrolateral funiculus, a white matter region critical for locomotion, at varying
APC time points after SCI in rats receiving rolipram or vehicle treatments. We show that rolipram significantly
0X-42 attenuated oligodendrocyte death at 24 h post-SCI continuing through 72 h, the longest time point exam-
Microglia ined. These results demonstrate for the first time that spinal cord glial cells express PDE4 subtypes and
that the PDE4 inhibitor rolipram protects oligodendrocytes from secondary cell death following contu-
sive SCI. They also indicate that further investigations into neuroprotection and axonal regeneration with

Keywords:
cAMP

rolipram are warranted for treating SCI.
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Spinal cord injury (SCI) consists of an irreversible primary injury
followed by a secondary injury cascade that promotes additional
cell death further reducing the chance for functional recovery. The
secondary injury is a manifestation of many processes including
excitotoxicity [42], calcium overload [51], oxidative stress [1], and
inflammation [23], all which lead to apoptosis and the unnecessary
death of potentially viable cells. Recent evidence suggests that inhi-
bition of phosphodiesterase 4 (PDE4), a protein family responsible
for cAMP hydrolysis [31], with the drug rolipram [55] provides pro-
tection against a multitude of apoptotic insults including reduction
of caspase-3 activity, a downstream mediator of multiple apoptotic
cascades [10]. While earlier studies targeting PDE4 inhibition with
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rolipram have demonstrated its success in aiding axonal regenera-
tion following SCI[17,38,44], the protective effects of this treatment
are largely unknown.

Spared axon demyelination occurs in human and experimen-
tal SCI [15,52]. A previous study using rolipram revealed increased
numbers of oligodendrocyte-myelinated axons in the adult rat
spinal cord white matter months after contusive SCI [44]. This could
have been due to decreased oligodendrocyte death since they are
highly vulnerable to secondary injury processes [11,12]. In particu-
lar, excitotoxicity [22,34] and tumor necrosis factor-a (TNF-a), a
pro-inflammatory cytokine [26,50] are highly toxic to oligoden-
drocytes. Coincidentally, both have been implicated in augmenting
PDE4 expression [16,32]. Furthermore, rolipram decreased TNF-a
production [21,44,57] as well as protected a cell line of immortal-
ized, O-2A derived oligodendrocyte-like cells from excitotoxicity
[58,59], providing an additional benefit of rolipram treatment.
Thus, in the present study we addressed whether rolipram prevents
secondary death of oligodendrocytes in a rat model of contusive
cervical SCI [39], the most frequent type of human SCI [6]. Using
immunohistochemistry and morphometry, we show that oligo-
dendrocytes and microglia co-express PDE4 subtypes providing
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two potential targets of rolipram. Moreover, we demonstrate the
protective effect of rolipram on oligodendrocytes in the ventrolat-
eral funiculus (VLF), a white matter region critical for locomotion
[28,29].

All methods were approved by the Institutional Animal Care
and Use Committee at the University of Louisville. They were con-
ducted to minimize pain and discomfort as well as in accordance
with the Public Health Service Policy on Humane Care and Use of
Laboratory Animals and with the Policies on the Use of Animals and
Humans in Neuroscience Research. Twenty-eight (4 normal and 24
injured) adult (228 g to 267 g) female Sprague-Dawley rats (Charles
River Laboratories, Inc., Wilmington, MA) were housed individually
throughout the experiment and maintained on a 12-h light-dark
cycle.

The rats were anesthetized with sodium pentobarbital
(40-50 mg/kg, IP). The dorsal halves of the C3-C6 vertebrae were
exposed and transverse vertebral process supports [40] were placed
bilaterally at the C4-C5 vertebrae. Laminectomies were performed
to expose the dura overlying the dorsal surfaces of the C5-C6
spinal cord segments between the C5 and C6 dorsal root entry
zones. Contusive injuries of 180 + 7 actual kilodynes were produced
dorsal to ventral at the C5-C6 segments with a 3.7 mm diame-
ter tip and an Infinite Horizon Impactor [39,49]. Two model 2002
(0.5 pl/h) ALZET® mini-osmotic pumps (DURECT Corp., Cupertino,
CA) were inserted subcutaneously and bilaterally over the ribs
adjacent to the vertebral column following the injury. Animals
were randomly assigned prior to surgery to a group of 12 rats
that received rolipram (0.5 mg/kg/day, Sigma, St. Louis, MO) [44],
dissolved in DMSO (Sigma) or to a control group of 12 rats that
received only DMSO. The treatments were administered for the
duration of the experiment. Muscle and skin incisions were closed
with silk sutures and wound clips, respectively. Post-operative
care included Gentozen™ (10 mg/kg, IM, Schering-Plough Animal
Health, Omaha, NE) antibiotic, topical Bacitracin Zinc Ointment
USP (E. Fougera & Co., Melville, NY), and 5% dextrose in lactated
Ringer’s solution (5 ml, SC, Baxter Healthcare Corp., Deerfield, IL).
Allrats were largely immobile after SCI. For veterinary care, lactated
Ringer’s solution was injected subcutaneously plus Ensure® and
cereal were provided to maintain hydration and attenuate body-
weight loss. Bladders were emptied at least once daily with gentle
pressure and gastrointestinal function was monitored daily. One rat
was excluded from the rolipram-treated group due to morbidity
following injury.

All rats were anesthetized with sodium pentobarbital
(120 mg/kg, IP) 12, 24, or 72 h post-SCl. Transcardial perfusions
were performed with heparinized, oxygenated, and calcium-free
Tyrodes solution, followed by 0.1 M phosphate buffer, pH 7.4 (PB),
containing 4% paraformaldehyde, and lastly with PB. Cervical
spinal cords were removed and cryoprotected in PB containing 30%
sucrose at 4 °C for 3-4 days. They were sectioned at 20 wm in the
transverse plane with a cryostat. Sections mounted onto charged
microscope slides were stained with 0.5% cresyl violet (Sigma)
[39] to view the morphology of the SCI site or immunostained
[33] to visualize oligodendrocytes, microglia, PDE4 expression,
and cAMP-dependent phosphorylated PKA substrates. Following
rinses in Tris-buffer with 0.9% saline, pH 7.4 (TBS), sections were
blocked with TBS containing 0.05% Triton X-100 (TBST) and 10%
normal donkey serum (NDS, Jackson Immuno, West Grove, PA) for
1h at room temperature. They were next incubated overnight at
4°C with TBST containing 10% NDS and combinations of mouse
anti-adenomatus polyposis coli (APC, 1:150, Calbiochem, San
Diego, CA) to identify mature oligodendrocytes, mouse anti-OX-42
(1:200, BD Biosciences, San Jose, CA) to identify microglia, as well
as rabbit anti-PDE4A (1:100, FabGennix Inc., Frisco, TX), rabbit
anti-PDE4B (1:150, FabGennix Inc.), rabbit anti-PDE4D (1:150,
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Fig. 1. Acute pathology of contusive cervical SCI. Representative cresyl violet
stained, transverse sections of uninjured naive (A), 12 (B), 24 (C), and 72 (D)h
post-SCI. Shaded region in (A) indicates VLF. Scale bar=1 mm.

FabGennix Inc.), and rabbit anti-phospho-(Ser/Thr) PKA substrates
(pPKA, 1:200, Cell Signaling Tech., Danvers, MA). Following rinses,
sections were incubated for 1 h with TBST and 5% NDS containing
combinations of species-specific donkey IgG antibodies (Jackson
ImmunoResearch Laboratories Inc.) conjugated with flourescein
isothiocyanate (FITC, 1:200) or cyanine 3 (Cy3, 1:200). Lastly, the
sections were coverslipped with Mowiol mountant and stored at
4°C.

Confocal images of the VLF at each C5-C6 SCI site and at a similar
location in normal rats (Fig. 1A) were obtained using an Olympus
laser confocal microscope and digitized with an Olympus Optical
(Mellville, NY) laser Fluoview 500 software [33]. Adobe photo-
shop v9.02 (Adobe Systems Inc., San Jose, CA) was used to sharpen
the images, adjust brightness and contrast, and compose the final
images. Images of spinal cords from all rats were used to visualize
PDE4 co-expression with oligodendrocytes. For PDE4 co-expression
with microglia, images of sections from spinal cords at 3 days post-
injury were used to ensure that activated microglia were present
[24,46]. To quantify the numbers of oligodendrocyte somata in each
rat, randomly selected left or right side VLF in 2 [36] APC and
pPKA immunostained images that were 200 wm apart [7] at each
C5-C6 SCI site and at a similar location in the normal rats were
converted into black and white images then color inverted [27].
The total number of APC-immunopositive oligodendrocyte somata
with pPKA-immunopositive nuclei in each section was quantified
using Image] software (v.1.32j, National Institutes of Health) then
converted to cells/cm?. APC-immunopositive cells within the gray
matter were excluded from quantification [4]. The oligodendrocyte
numbers found in both sections of each rat were averaged. After
Levene’s test for equality of variances did not uncover significant
differences, oligodendrocyte cell counts of the groups were com-
pared using a 2x3 ANOVA followed by Tukey’s HSD post hoc t-tests
when appropriate with SPSS v.13.0 (SPSS, Chicago, IL) statistical
software.

To locate potential spinal cord targets of rolipram treat-
ment, we used double labeling with PDE4 sub-family-specific
and glia-specific antibodies. Immunofluorescence revealed that
APC-immunopositive oligodendrocytes throughout the cervical
spinal cord white matter co-expressed all three PDE4 subtypes
(PDE4A, B, D) (Fig. 2A-D). Additionally OX-42-immunopositive
microglia at 3 days post-SCI, which are a major source of the
pro-inflammatory cytokine TNF-a [2,45], expressed only the
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Fig. 2. Oligodendrocytes and microglia/macrophages in the adult rat cervical spinal cord VLF are co-labeled with PDE4 subtypes. Representative transverse sections of the 3-
day injured adult rat C5-C6 spinal cord VLF immunostained in combination for PDE4A (A, E), PDE4B (B, F), or PDE4D (C, G) and APC (A-C) or 0X-42 (E-G). APC-immunopositive
oligodendrocyteswere co-labeled with all three PDE4s, whereas OX-42-immunopositive microglia/macrophages only were co-labeled with PDE4B. Colocalization is confirmed

in orthogonal views of PDE4B with APC (D) and 0X-42 (H). Scale bar=100 m.

PDE4B subtype (Fig. 2E-H). Coincidentally, PDE4 knockout stud-
ies revealed that lipopolysaccharide induced TNF-a production
and secretion were dependent upon PDE4B, not PDE4A or PDE4D
[20,21]. By maintaining and elevating their cAMP levels after SCI,
rolipram may exert its effect directly in oligodendrocytes to reduce
intrinsic apoptotic signaling cascades and/or indirectly by attenu-
ating the inflammatory response of adjacent microglia, particularly
the reduction of pro-inflammatory cytokine, TNF-a.

To determine the protective potential of rolipram on oligoden-
drocytes, we assessed their survival in the cervical spinal cord
VLF at 12, 24, and 72h post-SCI (Figs. 1 and 3). At 12h post-
SCI, both rolipram-treated rats (156.6 +28.4) and DMSO-treated
rats (160.3428.7) had similar numbers of oligodendrocytes to
each other and to those of normal rats (167.1 +34.0). This pro-
vides evidence that these cells had survived for 12h after the
primary mechanical injury. There was a significant reduction
of oligodendrocytes in both rolipram-treated rats (125.1+12.6)
and DMSO-treated rats (101.14+13.1) at 24 h post-SCI. However,
rolipram treatment significantly attenuated the oligodendrocyte
death compared to DMSO-treated rats at this time point and
through 72 h post-SCI (140.0 & 24.1 vs. 98.6 + 12.1). These data pro-
vide evidence that rolipram significantly protects oligodendrocytes
from secondary injury following a contusive SCI.

Previous studies employing rolipram as a treatment have
indicated its effectiveness in promoting regeneration following
SCI through the inhibition of myelin associated glycoproteins
[17,38,44]. The present study examined the use of rolipram treat-
ment for oligodendrocyte protection following contusive cervical
SCIL It demonstrates that (1) all PDE4 subtypes are co-expressed
by oligodendrocytes, (2) OX-42 positive microglia co-express only
the PDE4B subtype, and that (3) rolipram attenuates secondary
oligodendrocyte death.

Similar to previous findings in rats after contusive SCI
[9,11,13,25,35,47,53], we report significant oligodendrocyte death
at 24 h post-SCI. Previous literature using a similar model reported
drastic reduction in spinal cord cAMP to ~60% that of nor-
mal levels at 24 h post-injury [44]. While the cause behind this
reduction has yet to be fully delineated, it has been proposed
that increased inflammation, particularly TNF-a-mediated [3,56],
results in decreased cAMP [43]. This decrease could be due to
changes in PDE4 expression or activity [20,21,32] since PDE4
expression levels were over 4-fold higher acutely post-SCI [8]. One

possible mechanism of increased PDE4 expression could be through
NF-kB activation after SCI [3,41], a known downstream target of
TNF-a [5] and promoter of PDE4 transcription [54].

In vitro analysis of excitotoxic oligodendrocyte death reveals
a protective role of maintaining and/or elevating cAMP levels
with rolipram and/or cAMP analogues [58,59]. While it is unclear
whether excitotoxicity has an effect on PDE4, it has been recently
proposed that low concentrations of NMDA produce increased
PDE4 protein expression and activity [16]. Consistent with this
notion, experimental decreases in CAMP augment excitotoxic cell
death [19,58]. Moreover, TNF-« also exacerbates excitotoxicity [37].

Thus, it could be hypothesized that the PDE4-mediated reduc-
tion in cAMP as a result of inflammation and/or excitotoxicity
increases the vulnerability of oligodendrocytes. To test this hypoth-
esis, we administered the PDE4 inhibitor rolipram after contusive
cervical SCI at a dose previously demonstrated to maintain basal
levels of cAMP [44]. We found increased numbers of oligodendro-
cytes at 24 h post-SCI persisting through 72 h (the longest time
point examined). This suggests thatin addition to facilitating axonal
regeneration [17] there is also a protective effect of maintaining
cAMP levels.

A myriad of events occur after SCI that lead to secondary cell
death. In addition to inflammation and excitotoxicity, PDE4 may
also be affected by other processes including increased oxidative
stress [18] and p75™ regulated cell death [48]. Likewise, oligoden-
drocytes are not the only cell types affected by apoptosis. Neurons
are also vulnerable [14] and are thought to undergo similar events
leading to apoptosis [13]. We observed expression of PDE4s by
ventral horn motor neurons (data not shown). Whether rolipram
plays a protective role on neurons following SCI warrants further
investigation.

Our results demonstrate two potential targets of rolipram
treatment, oligodendrocytes and microglia. Secondly, we provide
evidence that rolipram treatment attenuates secondary death of
oligodendrocytes within the VLF, a white matter region critical
for locomotion. Additional protection might be obtained using
larger doses of rolipram or combinatorial approaches, such as with
neurotrophin-3 which when combined with cAMP elevating agents
was shown to be beneficial in aiding axonal regeneration [30]. Also,
further investigations into the mechanism(s) behind rolipram-
mediated protection are essential for this, and newly developed
PDE4 inhibitors, to effectively treat SCI.
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Fig. 3. Oligodendrocytes are spared after SCI by rolipram treatment. Representative transverse sections show APC (red)-and PKA (green)-immunopositive oligodendrocytes
in the C5-C6 spinal cord VLF of a normal rat (A) and of both DMSO-treated rats (B-D), and rolipram-treated rats (E-G) 12 (B, E), 24 (C, F), and 72 (D, G) hours post-contusive
cervical SCI. Comparisons between the numbers of APC- and pPKA-immunopositive oligodendrocyte somata in the C5-C6 spinal cord VLF of normal rats (n=4) and injured
rats (n=4 for each group at each time point except that n=3 for rolipram-treated rats at 72 hours) revealed a significant reduction in both treated groups at 24 and 72, but
not at 12, hours post-SCI (H). In contrast to DMSO, rolipram treatment significantly attenuated this loss. Significantly more oligodendrocyte somata continued to be seen in
rolipram-treated rats’ VLF at 72 hours post SCI compared to DMSO-treated rats. 'p<0.05, "p<0.01, “"p<0.001. Error bars represent standard deviations. Scale bar =50 pwm.
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