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Neural correlates of decision making on
whole body yaw rotation: an fNIRS study

K.N. de Winkel, A. Nesti, H. Ayaz, H.H. Bilthoff
June 12, 2017

Prominent accounts of decision making state that decisions are made on
the basis of an accumulation of sensory evidence, orchestrated by networks
of prefrontal and parietal neural populations. Here we assess whether these
findings generalize to decisions on self-motion.

Participants were presented with whole body yaw rotations of different du-
rations in a 2-Interval-Forced-Choice paradigm, and tasked to discriminate
motions on the basis of their amplitude. The cortical hemodynamic response
was recorded using functional near-infrared spectroscopy (fNIRS) while par-
ticipants were performing the task.

The imaging data was used to predict the specific response on individual
experimental trials, and to predict whether the comparison stimulus would
be judged larger than the reference. Classifier performance on the former
variable was negligible. However, considerable performance was achieved for
the latter variable, specifically using parietal imaging data. The findings
provide support for the notion that activity in the parietal cortex reflects
modality independent decision variables that represent the strength of the
neural evidence in favor of a decision. The results are encouraging for the
use of fNIRS as a method to perform neuroimaging in moving individuals.

1 Introduction

Decision making is an essential mental process of intellectual functioning, and represents
a component of higher order cognition. According to prominent accounts of the decision
making process[l, 2], sensory evidence is accumulated over time to reduce noise and
evade ambiguity. Specifically, noisy information provided by our sensory modalities is
integrated into a decision variable (DV) incrementally. This DV reflects sensory evidence
in favor of particular hypotheses, and decisions are reached when the evidence reflected
in the DV crosses some internal bound.

Consistent with this notion, [3] found that decisions made by human participants on
heading of self-motion reflected an accumulation of evidence over time. Similarly, in
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previous work by our group [4], we obtained behavioral evidence that the Central Ner-
vous System (CNS) accumulates sensory evidence on rotatory self-motion over time. In
this study, participants seated on a motion platform were rotated in a sinusoidal fash-
ion around an Earth-vertical yaw axis, and instructed to discriminate two consecutive
motions on the basis of their amplitude. The results showed that the ability to tell two
consecutive rotations apart improves asymptotically as the duration of the individual
motion stimuli was increased from one to five seconds. Given that stimulus duration
was increased simply by increasing the number of cycles of rotation, while the frequency
of the motion profiles was kept constant, these results indicate that sensory evidence on
physical rotations is indeed accumulated over time.

Single cell recordings in rats and monkeys have yielded neural correlates of sensory evi-
dence and DVs in the prefrontal and parietal lobes [5, 6, 2, 7, 8, 9, 10], and electrophys-
iological recordings in humans have revealed a positivity in the Electro-Encephalogram
(EEG) that bears the characteristics of a modality-independent DV [11, 12]: the am-
plitude of this signal scales with the strength of the sensory evidence, and it exhibits a
threshold relationship to responses, which means a response is typically observed after
the signal exceeds a certain threshold. Moreover, the signal was identified regardless
whether a visual or auditory decision task was performed, suggesting that these reflec-
tions of DVs are modality-independent.

In the present study, we investigated whether the findings on neural correlates of DVs in
prefrontal and parietal cortical areas generalize to decision making based on perceptions
of self-motion.

Neuroimaging data on self-motion perception is scarce, because most imaging equipment
cannot be used with moving participants: rotatory motion of the head induces reflexive
eye-movements such as the vestibulo-ocular reflex that introduce artifacts in EEG signals,
thereby limiting the usability of the data [13]; and whole body motion in current fMRI
scanners is impossible. We therefore opted to use functional near-infrared spectroscopy
(INIRS, e.g., [14, 15, 16]). fNIRS makes use of the fact that tissues other than hemoglobin
are mostly transparent to near-infrared light. By locally applying near-infrared light of
two different wavelengths and measuring scattering and absorption, changes in the con-
centrations of oxygenated (HbO3) and deoxygenated (HbR) hemoglobin can be calcu-
lated, revealing changes in the blood volume in that area. Changes induced by exposure
to a stimulus are known as the hemodynamic response (HR, [17]). We looked for neural
correlates of decision making on self-motion in recordings of the HR measured over the
prefrontal and parietal areas. The experimental paradigm was adapted from [4]. Rather
than presenting experimental conditions in random order, we presented conditions in
blocks to accommodate requirements on the experimental design imposed by fNIRS.
Based on our previous behavioral findings, we hypothesized that the ability to discrim-
inate whole body yaw-rotations improves for longer duration motions. Furthermore,
we hypothesized that characteristics of the HR, as recorded over the prefrontal and/or
parietal lobes, reflect task performance, and that differences in performance for motions
of different durations are associated with differences in the characteristics of the HR.
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2 Methods

2.1 Ethics statement

The experiment was performed in accordance with the declaration of Helsinki. The
experimental protocol was approved by the ethical commission of the medical faculty of
the Eberhard-Karls University in Tiibingen, Germany, reference number 714/2016BO2.

2.2 Participants

Seventeen people took part in the experiment. 15 naive participants were recruited from
the institute participant pool; the two remaining participants were experimenters KW
and AN. For nine participants (three female), activity was recorded over the prefrontal
lobe (detailed below). The average age of these participants was 24.8 years, with a
standard deviation of 3.6 years. Activity was recorded over the parietal lobe for eight
other participants (three female). The average age in this group was 29.6 years, with a
standard deviation of 2.1 years.

In accordance with motion platform safety requirements, participation was limited to
people measuring at most 1.95m long, and weighing under 100kg; people with a (history
of) vestibular illness, spinal problems, heart or circulatory disease, a heart pacemaker,
and pregnant women were also excluded from participation.

2.3 Setup

Motion stimuli were presented using an eMotion 1500 hexapod motion system (Bosch
Rexroth AG, Lohr Am Main, Germany), capable of producing yaw rotations with a range
of 54°, and a maximum velocity of 41°/s. The platform was controlled using MATLAB
Simulink software (The MathWorks, Inc., Natick, Massachusetts, United States).
Participants were seated in an automotive style bucket seat (RECARO GmbH, Stuttgart,
Germany) that was mounted on top of the platform, and secured with a 5-point safety
harness (SCHROTH Safety Products GmbH, Arnsberg, Germany). To minimize head
movements, participants also wore a philadelphia type cervical collar.

To mask the sounds of the motion platform, participants wore earplugs with a 33dB
signal-to-noise ratio (Honeywell Safety Products, Roissy, France) as well as a wireless
headset (Plantronics, Santa Cruz, California, United States) that actively canceled out-
side noise, and that also played white noise during stimulus presentation.

The neuroimaging equipment (detailed in section: Neuroimaging) and the computer used
to control this equipment and record the data were mounted to the motion platform.
Participants provided their responses to the experimental task using an Xbox wireless
controller (Microsoft, Redmond, Washington, United States). A photograph of the setup
is provided in Figure 1.

Figure 1: Photograph of the motion platform. The fNIRS equipment is not pictured.
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2.4 Task

Participants performed a 2-Interval Forced Choice task (2IFC). On each experimental
trial, participants were presented with two successive full body rotations around a ver-
tical yaw-axis (i.e., stimuli), separated by a 2s break. One of these rotations had a fixed
amplitude of 15°/s and was designated reference; the other rotation had an amplitude
chosen from a range around the reference and was designated comparison. Reference
and comparison stimuli were presented in random order on individual trials. Partici-
pants were tasked with judging which stimulus of the pair had the larger amplitude (i.e.,
first’ or ’second’).

2.5 Stimuli

Each stimulus had the following profile in angular velocity w:

w = Asin(27 ft), (1)

with f = 0.5Hz. Experimental conditions were defined by varying the amplitude A of
the comparison stimulus and the duration of the motion stimuli. The comparison levels
were Acomparison = [10.00, 11.25, 12.50, 13.75, 16.25, 17.50, 18.75, 20.00]°/s. Duration of
the stimuli was varied by presenting either 0.5, 1, or 1.5 cycles (ncycles) Of the sinusoid,
corresponding to motions of one, two, and three seconds each, respectively. A schematic
illustration of experimental trials is available as Supplementary Material Figure S1.
In order to avoid floor-effects in the behavioral task, randomly generated heave vibra-
tions were added to the motion stimuli [18, 19, 20, 21]. Vibrations were in the range of
4-8 Hz and had a Root Mean Square (RMS) value of approximately 0.1m/ 52, comparable
to rumble experienced driving a car on a bumpy road. These vibrations were present
from 1s prior to the onset of the first motion stimulus to 1s after the offset of the last
stimulus.
Fach experimental condition was presented 15 times. In total, each participant com-
pleted 3(ncycles) X 8(Acomparison) % 15(repetitions) = 360 experimental trials.

2.6 Neuroimaging

We recorded the HR using a Brain Products NIRSport Model 88 mobile imaging system
(Brain Products GmbH, Gilching, Germany). The NIRSport performs continuous-wave
near-infrared diffuse tomographic measurements on wavelengths of 760 and 850nm, with
a sampling rate of 7.8125Hz. The device features eight near-infrared LED sources and
eight detectors. Sources and detectors are arranged in a grid to form ’optodes’; the signal
from each optode reflects hemodynamic activity centered between the corresponding
source-detector pair. As a rule of thumb, measurements reveal activity at a tissue
depth of about half the source-detector distance. We used the international 10-10 EEG
system (e.g., [22]) as a reference for source-detector placement, which allowed us to space
sources and detectors approximately 30mm apart. Given that the human cranium has
a thickness of 5.4-8.2mm[23], arrangements using this reference system should provide

Page 4 of 16



sufficient depth to reveal cortical hemodynamics.

The HR was measured over two regions of interest: over the prefrontal area for nine
participants, and over the parietal area for eight others (Figure 2). A headband provided
with the NIRSport-88 was used to record over the prefrontal area; a NIRScap (Brain
Products GmbH, Gilching, Germany) was used to set up a grid over the parietal area.

(a) (b)

Figure 2: Illustration of frontal (left panel) and parietal (right panel) recording layouts.
White dots illustrate the optodes formed by a certain source (red) and detector (green),
as they are defined in the main text.

The 22 prefrontal optodes on the headband correspond, approximately, to the following
locations of the 10-10 EEG system: ’FC3-F5’, 'FC3-F1’, "AF7-F5’, "AF7-Fpl’, "AF3-
F5,’AF3-F1’, ’AF3-Fpl’, 'AF3-AF7z’, 'Fz-F1’, 'Fz-AF7’, 'Fz-F2’, '"Fpz-Fpl’, 'Fpz-AFz’,
'Fpz-Fp2’, "AF4-AF7z’, ’AF4-F2’, ’AF4-Fp2’, ’AF4-F6’, 'FC4-F2’, ’FC4-F6’, ’AF8-Fp2’,
"AF8-F6’. The layout is visualized in Figure 2a
The parietal-layout provided the following 23 optodes: 'C1-CP1’, 'C1-Cz’, 'CP3-CP1’,
'CP3-P3’, 'P1-CP1’, 'P1-P3’, 'P1-PO3’, 'P1-Pz’, 'CPz-CP1’, 'CPz-Pz’, ’CPz-Cz’, 'CPZ-
CP2’, 'POz-PO3’, 'POz-Pz’, 'POz-PO4’, 'P2-Pz’, 'P2-P0O4’, 'P2-CP2’, 'P2-P4’, ’C2-Cz’,
'C2-CP2’, "CP4-CP2’, "CP4-P4’. The layout is visualized in Figure 2b.

2.7 Procedure

In previous work, task related changes in HbR and HbO» concentrations in response to
task specific conditions, have been shown to become apparent from analysis of prolonged
recordings rather than brief intervals (e.g., [24]). We therefore decided to present the
15 trials from each specific condition in three blocks: of four, five and six trials. This
procedure allowed us to keep the task requirements constant for a prolonged length
of time, and thereby allow both a trial and block based analysis. The blocks were
presented in a random order, with the constraint that blocks of any specific condition
were not presented directly after another, which would essentially result in a longer
block. The median duration of the blocks was 68.2,64.4,85.7s for blocks of four, five,
and six trials respectively. Variability in block-duration was due to participants pacing
trial presentation themselves.

The experiment was divided into two separate sessions, performed on two consecutive
days. The sessions were approximately equal in the number of trials presented (180 =+ 2,
due to block length) and overall duration, lasting between 1.5 — 2 hours, including 15-30
minutes set-up time of the neuroimaging equipment.
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2.8 Data analyses
2.8.1 Analyses of behavioral data

The probability that a participant judges the comparison stimulus to be more intense

than the reference stimulus varies as a function of comparison stimulus amplitude Acomparison -

This was modeled by fitting the binary response variable R with a cumulative normal
distribution function (®):

P(R) _ )\s + (1 _ 94 )\s)q) (Areference - Acomparison) (2)
Oncycles
Here oy, are slope parameters that reflect discriminatory ability for the different
levels of the number of cycles factor, neycles = 0.5,1.0,1.5. These parameters will be
referred to as Just-Noticeable Difference (JND) for consistency with the psychometric
literature (e.g., [25, 21]). Lapse rate parameters \s were also included in the model
to account for momentary lapses of attention[26]. The lapse rate was allowed to vary
between experimental sessions (s = 1,2), to allow for changes in attention between
consecutive days of experimental testing, and was limited to values between 0 and 0.05.
Fitting was performed for data of each participant individually, using the method of
Maximum-Likelihood[27].
Based on previous results[4], the value of the slope parameter was expected to decrease
as the number of cycles is increased, reflecting accumulation of evidence. This hypothesis
was tested by assessing whether the estimated JNDs differed between the levels of ncycles,
and if so, whether the JND decreased consistently as ncyces Was increased. Specifically,
we fitted the following mixed-effect model (in Wilkinson-notation[28]):

JND ~ 1+ Ncycles T (1|pp) <3)

here (1|pp) represents a random intercept for different participants. ncycles Was treated
as a categorical variable. All analyses were performed using MATLAB R2014b (The
MathWorks, Inc., Natick, Massachusetts, United States).

2.8.2 Analyses of neuroimaging data

For each participant, fNIRS recordings for the two different experimental sessions were
concatenated, and filtered using a 3rd order bandpass filter with cut-off frequencies of
0.01 and 0.3Hz to remove unwanted signals such as heart-rate (similar to e.g., [29]).
Two sets of epochs were cut. One set of epochs contained recordings from the beginning
until the end (the moment the last response was given) of each experimental block; the
other set contained epochs for each individual trial, from trial-onset to 12 seconds later.
This length was chosen because a typical HR lasts approximately this long[30]. It should
be noted that when the duration of a trial was under 12 seconds, the end of trial-epochs
partly reflects the HR associated with a subsequent trial. This procedure may introduce
additional noise into the trial-based analyses.

Fach epoch was baseline-corrected by subtracting the first measurement value from the
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entire epoch, and four metrics were calculated; the mean, maximum, Root Mean Square
(RMS), and the Area Under Curve (AUC). The metrics were calculated for HbTotal,
which was defined as the sum of the HbOy and HbR recordings.

A number of analyses was performed for each metric in both sets: first, we assessed
whether the value of either metric, for convenience denoted y, in any specific optode i
was affected by the experimental manipulations in a systematic way. To do so, we fitted
the following mixed-effect models for trial and block data, respectively:

Yy ~ 14+ Ncycles * Acomparison + (pr) <4)

and

Yi ~ 1+ Ncycles * Acomparison + Nplock : Ncycles + (1|pp)7 (5)

where ncycles and npjock represent fixed effects for the number of cycles and number
of trials in a block, and (1|pp) indicates a random effect (intercept) for participant pp.
The interaction between ncycles and npjoac was included in the block-based analyses to
account for potential confounding effects of differences in the length of epochs. All
independent variables were treated as categorical predictors. Bonferroni corrections for
multiple comparisons were performed.
Second, we assessed whether task performance was related to activity in any specific
optode, by calculating correlations between the JNDs and average values of each of the
metrics (averaged over participants), for each optode individually.
Lastly, we investigated whether the recorded activity in any (combination of) optodes
could predict responses on an individual basis. More specifically, we performed two
analyses: in the first analysis, logistic regression models were fitted to the binary response
variable (i.e., 'first’ or ’second’), with the mean-metrics calculated for each optode as
potential predictors; in the second analysis, the same type of models were fitted to the
binary variable reflecting that participants had judged the comparison stimulus to be
larger than the reference stimulus!. To determine which optode(s) contained information
on these variables, we fitted the models in a stepwise fashion, using the ’stepwiseglm’
routine in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States).
The algorithm starts out with a model containing only an intercept, and incrementally
adds/removes optodes based on improvement of the models Akaike Information Criterion
(AIC)-score. The algorithm terminates when no single step improves the AIC score.
The largest terms allowed were linear. To assess the performance of the fitted models,
we predicted the probabilities of positive responses for all trials using leave-one-out
cross validation procedures, and used these predictions to generate Receiver Operating
Characteristic (ROC) curves[31].

'For each trial, the models provide a prediction of the probability of a positive response, which we
defined as ’comparison larger than reference’, and ’second’, for the two different analyses. The
complement of the predicted probability is the model’s prediction on the alternative response (i.e.,
‘comparison is smaller than reference’, and ’first’)
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3 Results

The results of the experiment are presented in two parts. The first part summarizes
the analysis of behavioral data. We assessed whether the ability to discriminate yaw-
rotations on the basis of the motion’s amplitude varies with stimulus duration. The
second part consists of an analysis of the neuroimaging data, which was aimed at iden-
tifying neural correlates of the behavioral data.

3.1 Behavioral results

The ability to discriminate between motion stimuli was operationalized as the JND (see
section: Analyses of behavioral data). We tested whether the estimated JNDs differed
between the levels of ncycles, but a statistical analysis did not reveal any difference
between the levels of neycles (F(2,48) = 2.34,p = 0.11). A summary of the JNDs for the
different levels of ncycles is presented in Supplementary Material Figure S2.

3.2 Neuroimaging results

Recordings over the parietal cortex yielded HRs that closely resembled the typical re-
sponse reported in the literature[30]; recordings over the prefrontal cortex generally
yielded less distinctive peakedness. Figures showing the HR to all experimental con-
ditions are provided as Supplementary Material Figures S3-S5 for frontal sites and in
Figures S6-S8 for parietal sites.

Apart from the difference in shape of the signal, the HR was also stronger over the pari-
etal area than over the prefrontal area: the mean, maximum, RMS, and AUC metrics of
the trial-epochs were all larger for the parietal recordings (respectively, F(1,1.37x10°) =
[18.28,15.94,7.07,18.33],p = [1.91 x 1075,6.53 x 107°,7.83 x 1073,1.86 x 107°]). The
average values of the metrics per location are presented in Supplementary Material Table
S1. We tested whether experimental manipulations affected the HR in prefrontal and/or
parietal locations in any consistent fashion by modeling the mean, maximum, RMS, and
AUC metrics as functions of the experimental manipulations. These analyses were run
for the set of epochs corresponding to blocks of trials, as well as for the set of epochs
corresponding to individual trials (see section: Analyses of neuroimaging data). There
were no significant effects that were consistent among metrics, and/or that held up after
correction for multiple comparisons.

Task-performances, operationalized as JNDs, did not correlate with metrics recorded in
specific optodes. These results were not different depending on whether analyses were
performed on trial or block data.

Tables with the results of the statistical tests and correlations presented above are avail-
able as Supplementary Material Tables S2-S5.

Finally, we fitted logit-models on an individual basis to assess whether the fNIRS record-
ings from idiosyncratic subsets of optodes could predict specific responses (i.e., 'second’
or reciprocally, 'first’), and/or whether the response reflected that the comparison stim-
ulus had been judged more intense than the reference (see section: Analyses of neu-
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roimaging data). To evaluate model performance, we constructed ROC curves. ROC
curves show how the true vs. false positive rate of predictions based on model output
varies as the criterion for a positive response varies from liberal to conservative. The area
under the ROC curve (AUROCC) is an indicator of model performance, where values of
0.5 indicate that the model does not perform any better than chance, and a value of 1
indicates perfect classification. An exemplary ROC curve is presented in Supplementary
Material Figure S9.

The results of the fitting procedure for the prediction of specific responses (first’ or
'second’) are presented in Table 1. Models using frontal optodes performed better than
chance for five out of nine participants; models using parietal optodes did so for seven out
of eight participants. There was considerable variability between participants in which
specific optodes were included in the final models by the stepwise regression procedure
(see Supplementary Material Document S1). A comparison of AUROCC values using
a Mann-Whitney rank-sum test indicated no difference in model performance between
recording sites (W=41, p = 0.673).

Table 1: Evaluation of logit models for the binary response variable. n, represents the
number of optodes included in the final model, p is the probability of an intercept-only
model over the final model (significant fits are boldfaced), and the AUROCC is the area
under the ROC curve.

prefrontal parietal
participant ng D AUROCC participant  n, P AUROCC

1 1 0.051 0.542 1 3 0.001 0.604
2 1 0.066 0.536 2 3 0.004 0.535
3 2 0.121 0.536 3 1 0.146 0.512
4 5 0.002 0.613 4 2 0.015 0.551
5 1 0.083 0.511 5 2 0.001 0.593
6 2 0.024 0.552 6 3 0.004 0.578
7 2 0.034 0.557 7 6 0.000 0.603
8 5 0.003 0.590 8 1 0.040 0.529
9 1 0.036 0.514

median 2 0.036 0.542 median 2.5 0.004 0.565

For predictions on whether the comparison stimulus would be judged larger than the
reference, the model fitting results are presented in Table 2.

Here, the models performed better than chance in all cases. Again, there was consider-
able variability between participants in which specific optodes were included in the final
models (see Supplementary Material Document S1). A comparison of AUROCC values
using a rank-sum test indicated better performance for models using parietal recording
sites as predictors than for models using frontal recording sites as predictors (W=59,
p = 0.027). Pairwise Wilcoxon signed-rank tests revealed that the observed AUROCC
values were significantly higher when predicting whether the comparison stimulus would
be judged more intense than the reference, than when predicting specific responses, for
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Table 2: Evaluation of logit models for responses reflecting that the comparison stimulus
was judged more intense than the reference. n, represents the number of optodes (and
interactions) included in the final model, p is the probability of an intercept-only model
over the final model (significant fits are boldfaced), and the AUROCC is the area under
the ROC curve.

prefrontal parietal
participant n, P AUROCC participant n, P AUROCC

1 6 0.002 0.591 1 7 0.000 0.710
2 4 0.004 0.589 2 6 0.003 0.598
3 6 0.002 0.578 3 8 0.000 0.707
4 5 0.003 0.598 4 5 0.000 0.632
Y 6 0.004 0.556 ) 2 0.013 0.592
6 8 0.000 0.643 6 7 0.000 0.645
7 4 0.001 0.622 7 3 0.000 0.627
8 8 0.000 0.623 8 6 0.000 0.620
9 5 0.002 0.596

median 6 0.002 0.596 median 6 0.000 0.629

both frontal (V=44, p = 0.008) and parietal recordings (V = 35, p = 0.016).

4 Discussion

The present study was designed to assess whether neural correlates of decision mak-
ing on self-motion could be extracted from fNIRS recordings of cortical hemodynamic
activity. Based on the literature, we identified two regions of interest: the prefrontal
cortex, which has been attributed a central role in decision making[32, 33, 34], reflecting
for example specific decisions[9] and the quality of the decision making process under
ambiguity and risk[35, 36, 37, 38]; and the parietal cortex, which is thought to reflect
the sensory evidence gathered on alternative decisions[7, 12, 8, 9, 10]. On the basis of
previous behavioral results[3, 4], we hypothesized that decision making would improve
for longer duration stimuli due to an accumulation of evidence. Moreover, we hypoth-
esized that characteristics of the hemodynamic response would reflect decision making
and an accumulation of evidence.

A substantial literature exists on what is known as path integration, which refers to an
ability to navigate through the environment purely on the basis of inertial information
(i.e., vestibular and somatosensory). This ability has been demonstrated to be present
in many animals, including humans (e.g., [39, 40, 41, 42]). The presence of this ability
in an animal indicates that the animal is able to update a position estimate by inte-
grating transient inertial information, thus accumulating sensory evidence. In contrast
to the findings of a previous study by our group[4], accumulation of evidence was not
apparent from the present behavioral data. This is surprising, because the present study
employed essentially the same experimental paradigm, with the exception that trials

10
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of specific conditions were presented in three blocks per condition instead of in a com-
pletely randomized order. This difference however does not readily explain the difference
in findings: none of the participants noticed that trials were presented in blocks, and
the presentation order of comparison and reference stimuli within trials was random.
We do not contend that sensory evidence on self-motion is not accumulated over time;
this is unlikely given that many animals are able to perform path integration. Rather,
we speculate that any benefits of an accumulation of evidence were negated by the need
to keep a fleeting internal representation of a longer duration stimulus in short-term
memory for longer.

In line with the absence of effects in the behavioral data, recordings of hemodynamic
activity in neither prefrontal nor parietal optodes were affected by stimulus duration,
regardless whether the existence of such effects was assessed from epochs corresponding
to individual trials or experimental blocks. The HR also did not vary with the amplitude
of the comparison stimulus in any consistent fashion. It is interesting to note that given
the absence of behavioral effects of the motion characteristics, the absence of effects of
the motion characteristics on the neuroimaging data allows us to exclude the possibility
that the motions introduced systematic noise in the fNIRS data. Moreover, the absence
such effects indicates that the present neuroimaging data do not reflect processing of a
motion characteristic per se, for which the parietal cortex has been implicated previously
(e.g., [43, 44]).

In further evaluation of relations between the behavioral and neuroimaging data, we
assessed whether the JNDs correlated to the value of the metrics in specific channels,
but found this not to be the case. However, this approach only assesses whether there
are commonalities between participants in how the value of metrics in specific optodes
affect performance; it is not suitable to assess whether there is a relationship between
the pattern of activity in subsets of optodes and characteristics of the choices made
on individual trials. We therefore also assessed whether metrics obatined from subsets
of optodes could be used simultaneously to predict the specific response on individual
trials and/or whether or not this response reflected that the comparison stimulus had
been judged to be more intense than the reference. More specifically, we used a step-
wise approach to fit logistic regression models that predicted the probability of positive
responses, respectively corresponding to: ’second stimulus is more intense’, and ’com-
parison is larger than reference’.

With respect to the prediction of specific responses, the performance of the fitted models
could not be distinguished from guessing for five out of seventeen participants, and could
be considered poor in the other cases, given that the AUROCC was generally below 0.6.
These results did not differ between recording sites.

Better results were achieved when predicting whether or not the comparison stimulus
was judged larger than the reference. Here, the models performed significantly better
than guessing in all cases, and AUROCC values were significantly higher than the values
observed for prediction of specific responses, for both recording sites. Moreover, mod-
els using parietal recordings provided significantly better predictions (median AUROCC
= 0.629) than models using prefrontal recordings (median AUROCC = 0.596). This lat-
ter finding is consistent with the finding that signals recorded over the prefrontal cortex

11
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were weaker.

Although it should be noted that only a small group of participants were tested, the
findings of this study provide support for the notion that activity in the parietal cortex
reflects modality independent DVs that represent the strength of the evidence in favor
of a decision[7, 12, 8, 9, 10]. Overall, the present results are encouraging for the use
of fNIRS as a modality to perform neuroimaging in moving individuals. fNIRS might
prove useful to experimentally test the notion that visual and inertial information on
self-motion perception are merged in the ventral-intraparietal area (e.g., [43, 44]) in hu-
mans, and as a tool to monitor, for example, workload and vigilance[24] for humans
operating in extreme environments.
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Prefrontal and parietal areas are thought to orchestrate decision making
We investigate whether this applies to decisions on self-motion using fNIRS
Parietal activity predicts judgments on whole-body yaw rotation intensity

Results suggest parietal activity reflects modality-independent decision variables

Page 16 of 16



