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Diazoxide and dimethyl sulphoxide alleviate experimental cerebral
hypoperfusion-induced white matter injury in the rat brain
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Abstract

Aging and dementia are accompanied by cerebral white matter (WM) injury, which is considered to be of ischemic origin. A causal link
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etween cerebral ischemia and WM damage has been demonstrated in rats; however, few attempts appear to have been made to
rugs for the alleviation of ischemia-related WM injury.
We induced cerebral hypoperfusion via permanent, bilateral occlusion of the common carotid arteries of rats. A mitochondrial ATP

otassium channel opener diazoxide (5 mg/kg) or its solvent dimethyl sulphoxide (DMSO) was administered i.p. (0.25 ml) on 5 co
ays after surgery. Sham-operated animals served as control for surgery, and non-treated rats as controls for treatments. Thirtee
urgery, the animals were sacrificed and astrocytes and microglia were labeled immunocytochemically in the internal capsule,
allosum and the optic tract.
The astrocytic proliferation was enhanced by cerebral hypoperfusion in the optic tract, and reduced by diazoxide in DMSO,
MSO alone in the corpus callosum. After carotid artery occlusion, microglial activation was enhanced two-fold in the corpus call

our-fold in the optic tract. DMSO decreased microglial activation in the optic tract, while diazoxide in DMSO, but not DMSO alone,
icroglial activation to the control level in the corpus callosum.
In summary, the rat optic tract appeared to be particularly vulnerable to ischemia, while the effect of diazoxide was restricted to

allosum. We conclude that diazoxide dissolved in DMSO can moderate ischemia-related neuroinflammation by suppressing glial
elective cerebral WM areas.
2004 Elsevier Ireland Ltd. All rights reserved.
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erebral white matter lesions have been associated with the
rogression of aging and cognitive impairment[2,4]. Further,

hese lesions have been suggested to originate from a vari-
ty of vascular causes ranging from hypertension to cerebral
icroinfarcts and ischemia[5,7]. To support the ischemic the-
ry of white matter injury, experimental animal models have
een employed, such as bilateral occlusion of the common
arotid arteries of rats[8,17,18]. The findings of such studies
ave compellingly demonstrated that chronic cerebral hypop-
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erfusion can initiate a wide array of neuropathological w
matter changes. For instance, axonal degeneration, m
and oligodendrocyte damage, astrogliosis and microglia
tivation have been identified in the optic tract and the co
callosum of rats with occluded carotid arteries[8,17,18]. Our
own results emphasized the specific involvement of the
tract in ischemic white matter damage in the rat brain,
pointed to the marked proliferation of the astrocytes an
the activation of the microglia in the region[8].

A number of pharmacological compounds have been
sidered to alleviate neuronal damage after ischemic in
in the brain, but not too much is known about the p
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sible means of limiting ischemia-related white matter in-
jury. A couple of studies have demonstrated that nimesulide,
a cyclooxygenase-2 inhibitor, and ibudilast, a phosphodi-
esterase inhibitor succesfully limited white matter injury in
the ischemic rat brain shortly after carotid artery occlusion
[19,20].

We have recently demonstrated the neuroprotective effect
of diazoxide and its solvent dimethyl sulphoxide (DMSO) in
chronic experimental cerebral hypoperfusion[9]. Diazoxide
is a putative, mitochondrial ATP-sensitive potassium channel
opener[1] that has proved to be neuroprotective in several
ischemia models. For example, pretreatment with diazoxide
reduced infarct size after middle cerebral artery occlusion
in experimental animals[12,16], and preserved the neuronal
viability in cell cultures after glucose–oxygen deprivation
[11]. Our previous study has predominantly demonstrated
that diazoxide cannot only act on neurons but also pre-
vents ischemia-induced, long-term microglial activation
[9]. On the other hand, its solvent DMSO is itself also
known to possess vascular and neuroprotective properties
[9,14].

In the present study, we set out to evaluate the poten-
tial protective effects of diazoxide and DMSO on the glial
compartments of the cerebral white matter in a rat model of
chronic cerebral hypoperfusion.
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ically for glial fibrillary acidic protein (GFAP) to visual-
ize astrocytic proliferation. The samples were incubated
in a primary antibody solution containing mouse anti-
GFAP antibody (Sigma), 1:200, 1% normal sheep serum,
and 0.3% Triton X-100 in 0.01 M PBS. The secondary
antibody solution consisted of sheep anti-mouse biotiny-
lated IgG (Jackson), 1:200, and 0.3% Triton X-100 in
0.01 M PBS. Finally, the sections were incubated in HRP-
Streptavidine (Zymed), 1:200, and the color reaction was
conventionally developed with diaminobenzidine (DAB)
and H2O2.

Microglial activation was visualized over the white mat-
ter areas with the cell surface marker CD11b (OX-42). The
sections were incubated in a primary antibody solution con-
taining biotinylated mouse anti-CD11b antibody (OX-42,
Serotec), 1:500, 20% normal swine serum (NSS), and 0.03%
merthiolate in 0.01 M PBS. Next, the sections were incubated
in a solution of STA-PER (Jackson), 1% NSS, and 0.03%
merthiolate in 0.1 M Tris buffer. Finally, the color reaction
was developed by nickel-DAB and H2O2.

The percentage surface area of GFAP-positive astrocytes
was quantified in the medial corpus callosum and the in-
ternal capsule; in the optic tract, relative optical density
was computed instead of the percentage area, since the ho-
mogenous labeling did not permit area measurements. As
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The experiments were approved by the ethical comm
f the University of Szeged, Hungary. Fifty-one male Wi
ats (210± 10 g) were anesthetized with 400 mg/kg chlo
ydrate i.p., followed by 0.05 ml atropine i.m. Experimen
erebral hypoperfusion was induced by permanent, bila
cclusion of the common carotid arteries (2VO) in 26 anim

9]. The same surgical procedure was performed in the co
roup (SHAM), but without the actual ligation. The survi
ate was 78.4%.

Both groups were divided into three subgroups (n= 6) on
he basis of the postsurgical treatment, as described e
9]. The first set of animals was treated with 5 mg/kg diaz
de given in 0.25 ml DMSO, i.p. (SHAM-DMSO + DZ, 2VO
MSO + DZ). The second set of animals of both SHAM
VO groups received 0.25 ml DMSO, i.p. (SHAM-DMS
VO-DMSO, respectively). The last set of animals rece
o postoperative treatment and served as controls (SH
on-treated, 2VO-non-treated). The animals were inje
n 5 consecutive days in the initial phase of cerebral
operfusion. The first injection was applied directly a
urgery.

Thirteen weeks later, the animals were anesthetized
n overdose of pentobarbital, and perfused transcardially
00 ml saline, followed by 400 ml 3.5% paraformaldeh
nd 0.5% picric acid in 0.1 M phosphate buffer (PB, pH 7
he brains were removed, and one hemisphere was post

n the fixative solution for up to 1 h.
Immunocytochemical staining was performed as

cribed earlier[8]. Briefly, free-floating coronal sectio
t Bregma−3.14 mm were cut at 20�m thickness on
ryostat microtome. Slices were stained immunocytoch
egards the OX-42 labeling, the percentage surface are
easured for all three regions of interest (Olympus BX
P50, software: ImagePro Plus, Media Cybernetics). A
ur previous protocol[8], three consecutive coronal sectio
ere selected for analysis. Regions of interest were d
ated manually at 10× magnification. The area covered
FAP-or OX-42-positive glia was computed as a perc
ge of the total area delineated. The measured resu

he three sections per animal were averaged and the
ge values were used for further statistical analysis. The
ere analyzed by a two-way ANOVA model of the softw
PSS.
The internal capsule was unaffected by either cerebra

operfusion or the pharmacological treatment.
In the medial corpus callosum, astrocyte proliferation

ot enhanced by cerebral hypoperfusion, but the posts
al treatment, particularly with diazoxide, reduced the
overed by GFAP-positive processes by 33% in both SH
nd 2VO groups (Fig. 1A–C). The microglial activation i

he corpus callosum displayed a tendency to be elevate
o cerebral hypoperfusion; this was manifested as a 56
rease in the non-treated 2VO group compared with the
reated SHAM group. The solvent DMSO did not cha
his tendency; however, diazoxide treatment restored th
roglial activation in the 2VO animals to the control le
Fig. 1D–F).

The optic tract was the most clearly affected by c
ral hypoperfusion. The astrocytic proliferation was c
istently increased by about 20% in the 2VO group
ompared with their respective SHAM controls, regard
f pharmacological treatment (Fig. 2A–C). Similarly, the
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Fig. 1. Corpus callosum: photomicrographs and quantitative data on GFAP-
positive astrocytic proliferation and OX-42-positive microglial activation.
Panels A and B: Representative microscopic images of GFAP immunola-
beling; original magnification: 10×. Panel C: Quantitative data on astrocytic
proliferation;** P< 0.01. Panels D and E: Representative microscopic images
of OX-42 immunolabeling; original magnification: 10×. Panel F: Quanti-
tative data on microglial activation. Abbreviations: 2VO: bilateral carotid
artery occlusion, am: amygdala complex, cc: corpus callosum, ctx: cerebral
cortex, DMSO: dimethyl sulphoxide, DZ: diazoxide, hpc: hippocampus,
SHAM: sham-operated control, th: thalamus.

microglial activation was markedly enhanced in the non-
treated 2VO group as compared with the corresponding
SHAM group, but both DMSO and diazoxide restored the
microglial activation in the 2VO animals to the SHAM level
(Fig. 2D–F).

Thus, both cerebral hypoperfusion and the pharmacolog-
ical treatment elicited region-specific changes in astrocyte
proliferation and microglial activation. The optic tract was
predominantly vulnerable to cerebral hypoperfusion, while
diazoxide dissolved in DMSO preferentially exerted an ef-
fect in the corpus callosum.

The findings reported here primarily confirm our previous
observation that chronic cerebral hypoperfusion leads to as-
trocytic proliferation and microglial activation, specifically
in the optic tract[8]. As noted earlier, the varying degree of
blood supply to the different white matter areas in the rat brain
may be responsible for the regional specificity, the optic tract
receiving a direct branch of the internal carotid artery orig-
inating bellow the level of the circle of Willis[15], which

Fig. 2. Optic tract: photomicrographs and quantitative data on GFAP-
positive astrocytic proliferation and OX-42-positive microglial activation.
Panels A and B: Representative microscopic images of GFAP immunola-
beling; original magnification: 10×. Panel C: Quantitative data on astrocytic
proliferation;*P< 0.05. Panels D and E: Representative microscopic images
of OX-42 immunolabeling; original magnification: 10×. Panel F: Quanti-
tative data on microglial activation;*P< 0.05, ** P< 0.01. Abbreviations:
2VO: bilateral carotid artery occlusion, am: amygdala complex, ctx: cere-
bral cortex, DMSO: dimethyl sulphoxide, DZ: diazoxide, hpc: hippocampus,
ic: internal capsule, SHAM: sham-operated control, th: thalamus.

makes flow compensation to the optic tract after common
carotid artery occlusion improbable.

The pharmacological treatment applied here also ap-
peared to exert region-specific effects. Diazoxide dissolved
in DMSO reduced the astrocytic proliferation in the corpus
callosum, but not in the optic tract, regardless of the degree
of cerebral perfusion. Diazoxide in DMSO also decreased
the ischemia-induced microglial activation specifically in the
corpus callosum, but not in the optic tract. The pattern of mi-
croglial activation in the corpus callosum, with or without
drug treatment, appeared to be very similar to that previously
seen in the adjacent hippocampus[9].

There can be many reasons why diazoxide detectably at-
tenuated the glial reaction only in the corpus callosum of
the three white matter areas investigated. In the case of mi-
croglial activation, DMSO could possibly obscure the effect
of diazoxide in the optic tract, but not in the corpus callosum,
and it could be DMSO rather than diazoxide that differen-
tially affected the various white matter areas. Conversely, the
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different reactions of the astrocytes in the examined white
matter regions to diazoxide treatment may stem from the
region-specific sensitivity/composition of the mitochondrial
and surface cation channels of the astrocytes, as detailed be-
low.

The mechanism behind the action of diazoxide on the as-
trocytes is a matter of debate. When cultured astrocytes were
incubated with diazoxide, loss of mitochondrial membrane
potential, an elevated free radical production, and protein ki-
nase C activation were observed. These results suggested that
mitochondrial ATP-sensitive potassium channels served as
the target for diazoxide in the astrocytes[13]. On the other
hand, another recent investigation has revealed the possibil-
ity that ATP-sensitive non-selective cation channels on the
surface of reactive astrocytes could be regulated by sulfony-
lurea receptor-1, which is the site of action of diazoxide[3].
These data suggest that diazoxide can target both mitochon-
drial and surface cation channels on the astrocytes, thereby
modulating the astrocytic function, which could explain our
present data.

Very little is known about the effect of diazoxide on
the microglia. We published the first report that diazox-
ide dissolved in DMSO may suppress ischemia-related mi-
croglial activation in the rat hippocampus[9]. Our present
data reveal a similar tendency in the corpus callosum. Al-
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