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Highlights 

 Microcolumns stand for the uniform, stereotyped  cortical architecture. 

 Microcolumns might be arranged in guise of fullerene-like structures. 

 Neural computations take place on such structures, with precise mathematical rules  

 

 

 

 

 

ABSTRACT 

 

Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in 

logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully 

explain complex brain functions.  Here we show how nervous activity, other than logic circuits, could instead depend on 

topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the 

embryological, anatomical and functional basic unit of the brain.  Tubular microcolumns can be flattened in fullerene-

like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations 

take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a 
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barcode. Despite the fact that further experimental verification is required in order to validate our claim, different 

assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity.   

A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons’ 

activation, not just displays analogies with the real microcolumn’s microcircuitry and the neural connectome, but also the 

potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems.   

 

 

 

KEYWORDS:  

 

brain circuitry; cortical neuron; neural code; lattice; artificial neural system 

 

 

Current computational brain models, based on neural networks performing logic operations (Sporns 2013; Ursino et al., 

2014), are not able to fully elucidate a large repertoire of brain functions and mental faculties, such as attention and 

perception, emotions and cognition, memory and learning, decision making and goal-directed choice (Gazzaniga, 2009), 

mind wandering (Andrews-Hanna et al., 2014).  In order to build a versatile network able to simulate brain functions at 

micro-levels of observation, we introduce a cortical model, borrowed from fullerene’s geometry, able to evaluate 

symmetry constraints and topological indices for micro-structures (Koorepazan-Moftakhar et al., 2015).  Although its 

primary application concerns the description of carbon-networks in chemical compounds, fullerene networks can be used 

in order to rank topological invariants in neural networks’ assessment.  In particular, the method applies to description of 

microcolumns, i.e., the fairly uniform, stereotyped, vertical column-like architecture believed to be the basic 

embryological/anatomical module and the fundamental processing unit of cortical arrangement (Mountcastle 1997; Jones, 

2000; Ramaswamy et al., 2015).  Invariant, fullerene-like features are landmarks of microcolumnar modular connectivity.  

Indeed, minicolumns are characterized by translational symmetry across their central axis, rotational symmetry, transitive 

symmetry of morphometric relations and temporal symmetry during cortical maturation (Casanova et al., 2011; Opris and 

Casanova, 2014).  Therefore, it is feasible to evaluate tubular microcolumns in terms of three-dimensional cylinders 

equipped with exagonal and pentagonal fullerenic structures.  By flattening cylinders into two-dimensional rectangles, 

we attain lattices that make it possible for us to investigate brain microcuircuitry according to translational procedures 

other than ON/OFF neural firing.  A fullerene-like two-dimensional sheet might be compared to a barcode, where 

sequences of neuronal activations stand for mental specific functions.  This approach not only allows us to build a 

fullerene-like model that simulates the real brain, but also to assess the vibrancy and inner workings of neural 

computations in terms of topological relationships among firing neurons.  

 

 

MATERIALS AND METHODS 

 

Stone-Wales transformations in neural networks. Two-dimensional fullerenes are 3-regular cubic planar graphs, 

describable as meshes of twelve variously fused pentagons (Chuang et al., 2009; Schwerdtfeger et al., 2013; Graovac et 

al. 2014; Schwerdtfeger et al., 2015).   Signal propagation on fullerenic networks can be investigated via graph theoretical 

methods.  Among the possibile choices (Todeschini and Consonni, 2000), we focus on distance-based topological indices, 

able to describe long-range interactions involving all pairs of nodes.  Neuronal firing and electric signal propagation are 

investigated in terms of pure topological network modifications.   This assumption implies that the overall number of 

neurons (graph vertices) and connections among neurons (graph edges or bonds) are fully preserved, excluding neurons’ 

creation or destruction along the process.  The totally reversible topological permutations occurring on fullerene-like 

lattices’ polygonal surfaces can be assessed and calculated.  Methods based on vertex insertions or deletions and 

isomerisations on lattices have proven very useful, because they allow the formal derivation of one fullerene graph from 

another (Ori et al., 2014).  In particular, the so-called Stone-Wales (SW) transformations produce a rotated figure, with 

no changes in fullerene’s external connectivity and molecular topology outside the denoted region of the lattice surface 

(Babic et al., 1995).  In sum, SW mechanisms extend transformations in the fullerenic mesh as a wave.   They might play 

an important role in modifying not just the topology of carbon-based materials, like nanotubes and fullerenes (Ma et al., 

2009), but also of neuronal circuits. 

The general local Stone-Wales transformation SWq/r (Figure 1A) is associated with the isomeric transformation that 

modifies the internal connectivity of four adjacent rings with p, q, r, s  edges,  producing four new rings with p–1,q+1,r–

1,s+1  edges, leaving unchanged the surrounding lattice regions. SWp/r reversibly rotates the central bond bridging p and 

r rings, leaving unaffected both the total number of nodes k=p+q+r+s-8 and the total number of edges k+3.  Figures 1B-

1C illustrate the two most studied fullerenic forms, equipped with a rotation of a pentagon-hexagon double pair.  SW 

rotations are able to generate fullerene isomers with different symmetries.  In the case of the C60 fullerene, the pyracylene 

SW5/6 rearrangements group the 1812 isomers in 13 inequivalent sets (Figure 1C).  Such limitation has been solved by 
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using extended generalized SW transformations, in order to produce, starting from just one isomer, the whole C60 isomeric 

space (Ori et al, 2009). 

Ori et al. (2011), developed a convenient graphical tool, able to modify fullerene-like networks displayed as two-

dimensional graphs made by n vertices (carbon atoms or neurons), through the isomeric insertion of different r-rings with 

r>2.  The case r=5,6 stands for the regular fullerene. The graphical method’s efficiency relies on the dual-representation 

of the graph, achieved by transforming the rings in nodes, and their edges in bonds. Figures 1D-1E provide examples of 

the interplay between direct and dual representations.  The graphical tool allows, as a consequence of iterated SW 

rotations, the identification of a peculiar topological mechanism called the Stone-Wales wave (SWw) (Ori et al, 2011), 

e.g., the linear migration of the pentagon-heptagon 5|7 pair in the planar network. The first SW6/6 rotation of the connection 

shared by the two neurons creates two 5|7 pairs (Figure 1D). The second operator SW6/7, by inserting the 6|6 couple of 

shaded hexagons between the two original 5|7 pairs, turns the bond between the heptagon and the shaded hexagon (Figure 

1E).   This mechanism produces the overall effect of initiating the wave propagation along the dotted direction, because 

iterated SW6/7 rotations will successively propagate the topological defect 5|7.  For technical details, see Koorepazan-

Moftakhar, et al. (2015).   

 

Building a fullerene-like microcolumn.  Microcolumnar circuitry can be described in terms of biologically plausible 

fullerene-like two-dimensional lattices.  A cortical microcolumn comprises 80–120 neurons, except in the primary visual 

cortex where the number doubles.   About 80% are pyramidal neurons.  This basic unit circuit forms a series of repeated 

items across the horizontal extent of the cortex, independent of area specializations (Jones, 2000): in humans, the 

transverse diameter of each of the 2x107-2x108 microcolumns is about 28–50 µm (Sporns et al., 2005; Johansson and 

Lansner, 2007).   Our knowledge of microcolumn organization is still largely incomplete, due to difficulties related to the 

physiological recording methods, as well as to data interpretation.  However, despite few skeptical claims (Skoglund et 

al, 2004), several Authors (Peters and Kora, 1987, Cruz et al., 2008 Peters and Sethares, 1991, Gabbott, 2003) described 

microcolumnar exagonal arrangements in different cortical structures (neurons, dendritic bundles, myelinated axons 

packing) and in different areas and animals (monkeys, rats’ area 17, human medial prefrontal cortex) and in artificial 

neural networks (Yoder, 2010).     

According to connectomics, cortical/subcortical structures form a hierarchical network equipped with winner-takes-all 

mechanisms and preferential pathways for fast communication (Van den Heuvel and Sporns, 2010; Reese et al., 2012).  

The neural connectome is equipped with networks and energetic landscapes that can also be used for fullerene-like 

microcolumns’ description. In the next paragraph, we will show how to build a neural network that takes into account 

SW connections for the 3465 isomers of the C64 Fullerene, using Mathematica.  We will also assess fullerene-like neural 

networks in topological terms.   

 

 

 

RESULTS 

 

Here we provide simulations showing how it is feasible to generate a neural network equipped with countless alternative 

isomers, starting from a simple fullerene-like structure. Figure 2A depicts some topological transformations that might 

take place on microcolumns.  A cortical microcolumn stands for a three-dimensional tubular armchair. By slicing at an 

angle to an edge, we achieve a flattened two-dimensional fullerene-like grid, a 30 microns-width lattice equipped with 

hexagonal (or pentagonal) tiling and about 80 nodes (Figure 2A, left side).  Such nodes, standing for the microcortical 

pyramidal neurons, are linked by edges (or bonds), e.g., dendritic/axonal connections.  Every node is filled with a 

pyramidal neuron (activated or deactivated).  A preliminary activation of a pair of neurons in the 6-fold status takes place, 

followed by the creation of the “signal”, e.g. a topological defect of the hexagonal mesh, called SW defect.  Signal 

generation is then achieved through further rotations (Figure 2A, right side) that modify the local neuronal connections, 

by rotating the bond between the two activated elements.  Additional applications of the SW operator will split more and 

more the neuronal pairs, allowing the signal to travel in the neural network according to the typical SWw wave 

mechanism.  

In the nervous case, instead of SW flips on a fullerene surface, we assess changes in neuronal firing activation.  Here 

“permutation” means which ones of the 80 pyramidal neurons are sequentially activated or deactivated.  SW permutations 

may be regarded as a set of neurons which fire simultaneously.  Every group of neural “permutations” might stand for a 

barcode, each one corresponding to a peculiar mental activity.      

Our current lack of knowledge prevents us from assessing whether pyramidal neurons’assembly exhibits the required 

conformations. The Borsuk-Ulam theorem (BUT) from algebraic topology (Tozzi and Peters, 2016), helps us to solve 

this problem.  The BUT describes antipodal points with matching description on spatial manifolds in every dimension, 

provided the n-sphere is a convex structure with positive curvature (i.e., a ball).  However, BUT can be generalized to 

symmetries occurring either on flat manifolds, or on Riemannian hyperbolic manifolds of concave shape (i.e., a saddle) 
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(Mitroi-Symeonidis, 2015). Whether the system components are equipped with concave, convex, flat or “stretched” 

conformation, we may always find the points with matching description predicted by BUT. This means that 

microcolumnar’s neuronal activity can always be described in terms of transformations on two-dimensional lattices, 

although not perfectly arranged as a sterotyped fullerene-like structure (Figure 2B).   

 

We are allowed to build a 6-folded connectome-like network simulating microcolumns’ behaviour. Figure 3A provides 

the SW landscape of a fullerene-like microcolumn.  Every point, standing for a C64 fullerene isomer, is connected with 

the first neighbour throw a single SW rotation (of order 0).  In Figure 3A, every single point stands for a neuronal 

assembly in a given configuration (say F1), while his neighbor lies in another configuration, e.g., F1 plus other faces, 

melted through a SW rotation. Every group is connected with others via topological deformations, depending on specific 

neural signals.    

Figures 3B and 3C illustrate the application of a novel topological concept, the biReBUT, on fullerenes.  The details are 

provided in the Figure legend.   This application arises from the observation of the neuronal symmetrical distribution in 

the left and right cortical hemispheres.  That is, in brain with fullerene-like micro-structure, a pullback from each neuron 

to its corresponding antipodes might occur. 

 

 

1)  ( ) ( )f A f A  for some 2XA   

2) there is a pullback 
1 1( ) ( ) .f A f A A       

The proof of the first consequence of biReBUT is given in Peters (2016) and the second (pullback) consequence of this 

theorem results from the fact that the mapping f is a bijection (i.e., 1-1 and onto).    

 

 

DISCUSSION 

 

We achieved a two-dimensional fullerene-like lattice reproducing microcolumn’s microcircuitry. In analogy with the 

chess game, a fullerene network resembles a chessboard, SW transformations are analogous to moves that chess pieces 

can perform, and single chess pieces are the neurons.  When a piece moves on the chessboard, this is analogous to a 

neuron firing. Our results pave the way to answer to Mountcastle’s question: what are the transforming operations 

imposed in a cortical column, upon its input, to produce its targeted outputs (Mountcastle, 1997)?  Although our lattice 

looks like a classical neural network at first sight, nevertheless it is faster, less energy-consuming, more plastic and stabler.  

It is easy to parametrize, because information can be extracted from just a few parametrizing factors. e.g., the simple 

topological operations taking place on networks.  While other approaches emphasize macro- and meso- phenotype 

dynamics, our framework is grounded on operations occurring at nervous micro-levels.  We assume that simultaneous 

firing of different neurons and specific activation sequences give rise to different topological conformations, each one 

corresponding to a mental activity (perception, emotion, and so on).  The brain functional activity is not based on logic 

nodes as in conventional networks, but on topological transformations, e.g., functional changes in the firing neurons’ 

sites.  

Our model explains countless mental operations starting just from simple, stereotyped, highly preserved biological 

structures: the microcolumns.  Fullerene-like models, involving any pair of connected nodes (Maruyama and Yamaguchi, 

1998), unveil a very rich phenomenology, due to the almost infinite SW rotations that may take place.  This makes possible 

a limitless set of moves, merely dictated by applying SW rotations on its bonds. Ubounded sets correspond to the series 

of mental operations taking place in our brain. During the synthesis/growth process of a Cn fullerene, the isomers with 

isolated pentagons often udergo SW interconversion.  This may cause instability, because failures of some of its 

components are expected, in presence of high numbers of SW transformations.  Nevertheless, the artificial implementation 

of the model itself grants for its stability through a simple expedient: by using a given Cn isomer as a seed, a series of 

moves can be performed that give us the capability to build complete sets of fullerene isomers, by simple binding 

topological briges (Babic et al., 1994).  Therefore, both isomerization maps and complete isomer space’s description can 

be achieved from a single known conformation.  In the same way, the primal embryonal microcolumn gives rise to a huge 

amount of combinations in the mature individual’s microcircuitry.   Starting from the single vertical template of about 80 

pyramidal neurons that colonizes the whole cortex during embryonal life, countless barcodes might be built with time 

passing.  In touch with catalysts that promote fullerene transformations and stabilize its transitions states, we hypothesize 

that the habituation to repeated stimuli during the first months/years of life could give rise to more stable and permanent 

transformations in microcolumns barcodes.   
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Fullerene-like networks are very fast, because they use simple transformations.  Starting from each randomly built Cn 

fullerene structure, one may directly generate a certain number of new isomers using just SW flips, instead of searching 

for a new one.  This improves computational speed, because the number of steps required by every operation is reduced.  

A simple increase in the order of SW transformations allows us to connect more microcolumns: dual structures, given by 

the combination of many microcolumns, can be easily built by joining the reciprocal space.  As nanoparticle/substrate 

interaction’s tuning provides unique ways of controlling nanotube synthesis (Gomez-Ballesteros et al., 2015), fullerene-

like neural networks might provide the fine-grain functional barcode’s modularity required by different brain functions.   

Fullerene-like networks take time to become efficient, because SW transformations are less favoured by an energetic 

standpoint.  The building of novel barcodes is a slow, time-consuming process. By a biological point of view, this is in 

touch with the slow development of mental operations’ competence in young primates (Skeide and Friederici, 2016).  

Vice versa, a fullerene-like neural network gives to adult primates unvaluable advantages, in terms of energy sparing.  

Pentagons incorporation, occurring at an early stage of nucleation pathway for single-wall nanotubes, leads to a very 

efficient system, because the number of dangling bonds is reduced, so that changes towards more entropic curvatures are 

achieved (Fan et al., 2003).  To make an example, fullerenes produced by the overlap of 12 nanocones which no direct 

pentagon fusion display very high thermodynamic stability, steady topological configurations and minimized graph 

invariants (Vukicevic et al., 2011; Ori et al., 2014).  In mental terms, a fullerene-like microcolumnar structure might be 

associated with minimal wiring costs and fast synchronization/information transfer (Stam and Reijneveld, 2007).    

The concept of nervous connectome might be extended not just to the “classical” macro and meso- levels, but also to the 

microcolumnar level.  Our observations suggest that connectome’s nodes, hubs, energetic fluxes and trajectory paths are 

diffused along the entire neural pathway, including microcolumnar arrangement.  This is in touch with the recently 

described micro-commectome, i.e., neural netwoks at cellular scale (Schröter et al., 2017).   

In terms of age-related mental decline and of a broad spectrum of neurologic and psychiatric disorders (autism, 

schizophrenia, Alzheimer disease, drug addiction), the results so far available point towards a loss of regularity and 

changes in the structural coherence of the microcolumnar organization and/or connectome modularity (Cruz et al., 2009; 

Opris and Casanova, 2014).  These features could be assessed in term of fullerene-like microcolumns. Indeed, defects of 

graphene nucleation/growth modify physical/chemical features of carbon nanostructures, generating lattice functional 

failures (Hashimoto et al., 2004).   

In sum, we make available a novel approach that allows us to evaluate topological brain activity in terms of fullerenes’ 

graph properties.  This powerful method could be, in a near future, applied to the assessment of neural networks, in order 

to achieve a double task: improving our understanding of biological brain function in situ, and building computers that 

simulate cortical activities.   We would like to bring to an end with a methodological remark.  Once high density 

neurotechniques will be able of capturing the simultaneous activity of larger populations (Koster et al., 2014), we suggest 

to analyize microcolumnar activity in primate temporal cortex or other associative cortices (instead of the “classical” 

rodents’ barrel cortex or primates’ visual cortex), because they display a notable sterotypy (Jones, 2000), which may 

prove to be a better model. 
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Figures 1A-1C.  Examples of Stone-Wales transformation SWq/r.  Figure 1A: the general SWq/r rotation reversibly 

transforms four proximal polygons with p, q, r, s edges in four new rings with p–1, q+1, r–1, s+1 nodes.  Figure 1B: in 

the graphene p=q=r=s=6, which stands for the SW6/6 rotation normally encountered in carbon nanotubes, SW6/6 flips four 

hexagons in a 5|7 double pair.   Figure 1C: the so-called “pyracylene rearrangement SW5/6” displays a SW5/6 rotation. 

Figures 1D-E summarize the basic topological operations for generating and propagating SWw in lattices. Figure 1D: 

in the direct graph, SW6/6 originates two 5|7 pairs (gray), then SW6/7 splits them, by swapping one of the 5|7 two pairs 

with a pair of hexagons (shaded); the dotted SW6/7 propagates the SW wave in the dashed direction. Figure 1E illustrates 

the same transformations in the dual plane.  Hexagons, pentagons, heptagons are displayed by white, shaded, black circles 

respectively.   
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Figure 2A. Topological simulation of propagating signals on a fullerene-like grid, embedded in situ into a cortical 

micrococolumn.  The stained exagons, depicting SW transformations in lattice’s nodes, stand for activated pyramidal 

neurons. In this example, the flat hexagonal lattice, equipped with 72 nodes, 6-bonds each, stands for a cortical 

microcolumn containing 72 pyramidal neurons.  Starting from the totally inactive state of 6-fold nodes on 6x12 lattice, 

some nodes (neurons) get activated (Figure 2A, left side).  We may select whatever pair in the mesh. In Figure 2A, right 

side, signal propagation gives rise to a sequential activation of novel front nodes: the waves propagate steps further. 

Figure 2B. Every deformation in fullerene-like lattices leaves the relationships among the single elements (the firing 

neurons) unchanged, due to the BUT dictates.   
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Figure 3A.  Topological ranking of C64 isomers landscape. Signals can be connected by one up to 4 SW rotations.  Here 

we provide, as an example, the graph defining the isomers that are connected by SW transformations of order G0 (i.e., a 

single SW rotation).  Other graphs of different orders (G1, G2, G3) can be built.   

Figure 3B.  Region-based BUT (reBUT) results in a mapping of matching pyramidal neurons with matching descriptions 

(on a brain emisphere) to a single neuronal region   (on the other emisphere).   The neurons with matching description 

stand for activated neurons.   reBUT comes into play by observing fullerene pyramidal neuronal regions with matching 

descriptions, and mapping the observed fullerene regions to a corresponding neuron in the other emisphere.   For more 

about reBUT, see Peters (2016) and Peters, Tozzi (2016).  

Figure 3C.   The bijective version of reBUT (biReBUT) states that if : 2 2
kX Rf  is a continuous bijection from a 

collection of regions 2X
onto a collection of planar vectors 2

kR in a k-dimensional space 
kR , then:  

 


