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HIGHLIGHTS

e Delay models representing viral infection and their simplified lysis-rate versions provide similar qualitative ecological results.

e Although they are interchangeably used to describe marine viruses, they show very different evolutionary behaviors.

e Phages with infection cycles represented by the lytic-rate model have ecological and evolutionary advantages over those described by the delay model.

e Evolutionary runaway observed for a standard form of the trade-off between released progeny and infection duration may prevent the rate model from
reliably predicting bacteriophage long-term behavior.

e New theoretical frameworks are needed to properly analyze the eco-evolutionary interactions of microbial systems beyond steady environments.
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ABSTRACT

Marine viruses shape the structure of the microbial community. They are, thus, a key determinant of the
most important biogeochemical cycles in the planet. Therefore, a correct description of the ecological and
evolutionary behavior of these viruses is essential to make reliable predictions about their role in marine
ecosystems. The infection cycle, for example, is indistinctly modeled in two very different ways. In one
representation, the process is described including explicitly a fixed delay between infection and offspring
release. In the other, the offspring are released at exponentially distributed times according to a fixed
release rate. By considering obvious quantitative differences pointed out in the past, the latter description
is widely used as a simplification of the former. However, it is still unclear how the dichotomy “delay
versus rate description” affects long-term predictions of host-virus interaction models. Here, we study
the ecological and evolutionary implications of using one or the other approaches, applied to marine
microbes. To this end, we use mathematical and eco-evolutionary computational analysis. We show that
the rate model exhibits improved competitive abilities from both ecological and evolutionary perspec-
tives in steady environments. However, rate-based descriptions can fail to describe properly long-term
microbe-virus interactions. Moreover, additional information about trade-offs between life-history traits
is needed in order to choose the most reliable representation for oceanic bacteriophage dynamics. This
result affects deeply most of the marine ecosystem models that include viruses, especially when used to
answer evolutionary questions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

nitrogen or phosphorus (Fuhrman, 1999). They are responsible
for more than 40% of marine bacterial mortality (Fuhrman, 1999),

Viruses are the most numerous organisms on Earth. They play
diverse roles in the biotic component of practically any ecosystem.
Especially remarkable is the case of marine ecosystems. Marine
viruses are important sources of mortality at every trophic level.
Potential hosts range from whales and commercial fish species to
zooplankton, heterotrophic bacteria and microbial autotrophs
(Suttle, 2007). Viruses are key components of the microbial loop
and, therefore, the biogeochemical cycle of elements such as
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contributing importantly to shaping the community (Suttle, 1994;
Winter et al., 2010; Wommack and Colwell, 2000). The relevance
of virioplankton stems not only from the “predatory” pressure they
exert, but also from the subsequent release of organic nutrients
(able to supply a considerable amount of the nutrient demand of,
e.g. heterotrophic bacterioplankton, Wilhelm and Suttle, 1999); or
their contribution to microbial genetic diversity in the ocean
through horizontal gene transfer (Wommack and Colwell, 2000;
Marston et al., 2012; Abedon, 2009).

The vast majority of these roles are assumed by marine viruses
that eventually kill the host cell (Wilcox and Fuhrman, 1994). The
standard lytic infection can be summarized in the following steps
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(Weinbauer, 2004): (i) free viruses diffusing in the medium
encounter and attach to cells at a certain adsorption rate; (ii) after
injecting its nucleic acid into the host cell, the virus takes control
of the host synthesis machinery in order to replicate its genetic
material (DNA or RNA, depending on the type of virus, Abedon,
2009) and produce the proteins that will form the components of
the viral offspring (eclipse period); (iii) during the maturation stage
(or rise period), the new virions are assembled; (iv) finally, the virus
synthesizes the holin protein, which perforates the plasma mem-
brane allowing viral endolysins (lysoenzymes) to reach and lyse
the cell wall, thereby releasing offspring and cellular organic
compounds to the medium.

The latent period (steps (ii)-(iv) above), controlled by the
so-called gene t (or holin gene) (Abedon et al., 2003), is one of
the most important viral life-history traits. So are the burst size
(offspring number, intimately related to the duration of the
infection) and the adsorption rate. The latent period is studied
intensively in the viral literature not only due to its ecological
importance, but also owing to the small pleiotropic effect that its
evolutionary change has on other phenotypic traits (Bull, 2006).

On the other hand, the latent period links ecological and
evolutionary change, as mutations in this trait influence the
demography of the population and the environment influences
which latent periods are favored by selection (Abedon et al., 2003;
Bull et al., 2006), closing in this way an eco-evolutionary feedback
loop (Pelletier et al., 2009). Furthermore, the short generation
times and numerous offspring of viruses facilitate rapid evolution
(Lennon and Martiny, 2008), and a possible overlap between
ecological and evolutionary timescales. All these factors provide
evidence for the importance of using a proper description of the
ecological interactions between virus and host in order to make
reliable evolutionary predictions.

In the theoretical literature for marine viruses, mostly centered
on viruses that infect bacteria (bacteriophages), host-virus inter-
actions are represented in two different ways. One approach
explicitly considers the latent period imposing a fixed delay
between the adsorption and the release of the offspring (Levin
et al,, 1977). In the other approach, new viruses are continuously
released at a certain lytic rate, with cells that are simultaneously
infected bursting at different post-infection times, exponentially
distributed (Beretta and Kuang, 1998; Middelboe, 2000). Thus, in
the delay model the survival of each and every infected cell is
ensured up to an infection age that equals the fixed latent period,
whereas survival responds to a probabilistic rule in the rate model.
The latter can actually be seen as a simplification of the former
that facilitates mathematical and computational analysis of the
interactions. Indeed, the ecological outcome of the two approaches
seems to be, a priori, qualitatively similar in spite of the obvious
difference in the timing of the infection (Weld et al., 2004). While
in the delay model progeny shows periods of no release (e.g. initial
stages of viral culture experiments), in the rate model viral
offspring are liberated at all times. However, little attention has
been paid to quantifying thoroughly how these differences affect
the long-term predictions by the two kinds of models. Here, we
aim to fill this gap.

In this paper, we focus on the eco-evolutionary differences
between the two approaches to the description of the lytic
infection cycle. This comparison may prove very useful to assess
the evolutionary consequences of the simplifying assumptions in
these models, and therefore the long-term reliability of a whole
group of different models for host-virus dynamics available in the
literature. The rate-based approach is used to model not only
diverse aspects of host-lytic virus interactions (Weitz et al., 2005),
but also other types of viral infection cycles such as lysogeny
(Evans et al., 2010) or shedding (Pearson et al., 2011). In the latter,
viruses continuously produce and release virions during the entire

infection period. Some examples include filamentous phages, and
viruses of an enormous importance for humans such as Ebola,
SARS, smallpox, varicella-zoster virus, and HIV (Nowak and
Bangham, 1996). In some retroviruses such as HIV, both burst
and continuous production modes have actually been suggested
(Pearson et al., 2011). Thus, this question transcends purely
technical matters such as model selection. Indeed, this study can
potentially serve to compare the evolutionary strategies of a wide
selection of viruses with very different infection cycles.

As a model case, we use bacteriophages, due to their impor-
tance for biogeochemical cycles; it also allows us to resort to the
extensive modeling bibliography available, in which the two
approaches to the infection cycle are used. On the other hand,
we consider mutations only in the holin gene, in order to isolate
the effects of evolution on the key differentiating trait for the two
strategies: the latent period (or, equivalently, lysis rate). Thus, we
first present the two models for lytic infection. After briefly
comparing them from an ecological perspective, we turn our
attention to their evolutionary divergences. Under this framework,
we discuss the ecological and evolutionary contrast between the
two forms for the life-history trade-off between latent period and
burst size that have been proposed in the literature. Finally, we
comment on the implications of all the above for the descriptions
of host-virus interactions in general, and marine bacteriophages in
particular. This study will contribute to the reliability of long-term
predictions regarding the interaction between a wide variety of
viruses and their hosts.

2. Modeling host-virus interactions
2.1. Environment

In order to compare the two approaches to the infection cycle,
we first set common idealized environmental conditions by using
two-stage chemostats (Husimi et al., 1982).

Two-stage chemostats are basically composed of a continuous
culture for bacterial hosts, coupled to a continuous culture of
co-existing bacteria and viruses. A flow of nutrients from a fresh
medium to the first chemostat facilitates bacterial growth, and a
flow of “fresh” hosts from the first chemostat to the second
chemostat allows for the development of the viral population.
Finally, both virus and bacterial cells are washed out from the
second chemostat at a certain rate. The described flows, which can
loosely resemble e.g. the continuous passage or migratory events
occurring in the mammalian gastrointestinal tract (Abedon, 1989),
enable a steady state for the overall system. From the perspective
of marine bacteriophages, quasi-stationary conditions may be
found in stratified waters where cyanobacteria, among the most
common targets for virioplankton, dominate.

Such a steady state is very convenient from the mathematical
standpoint, as is the continuous source of hosts, which helps
alleviate the oscillations that are frequently observed in standard
predator-prey models (Husimi et al., 1982) (see below). In addi-
tion, the continuous flow of uninfected hosts constitutes a relief
for the bacterial population from the evolutionary pressure of the
virus and, therefore, prevents bacteria from embarking on an
otherwise expected co-evolutionary arms race (Bull et al., 2006;
Weitz et al., 2005). This allows us to focus on viral evolution only.
Thus, two-stage chemostats provide a controlled environment
whose conditions are easily reproducible in the laboratory; they
also offer general results that can be adapted to other environ-
ments, as discussed below.

Lastly, the environmental parameters are chosen to avoid
multiple infections (see Table A1 in Appendix A), preventing in
this way any kind of intra-cellular competition among viruses.
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2.2. Ecological analysis of the delay model (DM)

Let us study first the approach to lysis in which the individuals
of the viral population release their offspring after exactly the
same latent period. The model describing this cycle implements
explicitly the delay between adsorption and burst. If [C] represents
the concentration of uninfected bacterial cells, [V] the concentra-
tion of free viruses, and [I] the concentration of infected bacteria,
the dynamics of the interactions between host and virus can be
modeled using the equations (Levin et al., 1977):

IO _ 101 gV~ wic) + wiCol M
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where p represents the growth rate of uninfected hosts; k the
adsorption rate; m the viral mortality or decay rate; w the washout
rate; L and b the viral latent period and burst size, respectively;
and the subscript t—L indicates that the term is evaluated a lytic
cycle (latent period) in the past.

We initially consider a monomorphic viral population (i.e. all
individuals share the same phenotype or trait values). Thus, the
first equation describes the dynamics of the host population as a
result of growth (first term), infection events (second term),
washout process (third term) and inflow of uninfected cells (fourth
term). The second equation considers the dynamics of infected
cells, whose number grows due to adsorption events (first term)
and decreases due to dilution (last term), and lysis of cells (second
term); the latter term is the result of correcting the number of cells
that were infected L time steps before, k[C],_;[V];_;, using the
probability for those cells to survive dilution during that time
(e~ term) (Levin et al., 1977). Likewise, the free virus population
grows owing to those lysed cells (first term, number of lysis events
times the burst size), and is reduced by adsorption (second term),
natural mortality (third term) or dilution (last term).

We assume a simple Monod formulation for the growth rate of
bacteria, given by the following:

."tmax[N]

H(AND) = N+ Ky’ €]
in which fmay is the maximum growth rate for the cell and Ky its
half-saturation constant (defined as the concentration at which
the growth rate of the cell equals half its maximum). See Table A1
for units. Note that we use here the standard assumption and that
infected cells effectively allocate all their resources to viral
production (i.e. y; ~0).

To these equations, we must add the dynamics of the nutrient:
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where [No] is the inflow of nutrient feeding uninfected host cells
and Y is a yield or efficiency parameter accounting for the
efficiency for bacterial cells to transform uptake into growth.

The equations above can be solved for the stationary state,
expected under chemostat conditions. Writing, for simplicity,
T = u([N]y;), we obtain a trivial solution for the virus-free config-
uration [V], = [I1;; = 0, [Cl,; = W[Co]/(w— ). This solution is always
feasible (see Appendix B). On the other hand, the non-trivial
steady state is given by the following expressions:
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feasible as long as L<In(b)/w and g >w(1—[Co]/[Cly) (see
Appendix B). The stability of the trivial solution is determined by
the basic reproductive number, Ry. This observable is the expected
number of secondary infections arising from a single individual in
an equilibrium susceptible population (Smith and Thieme, 2012).
Thus, Rg <1 indicates an eventual fall into the phage-free state,
whereas Ry > 1 points to the instability of this trivial state. From
Eq. (3), it is easy to find that Rg=b K[C],e " /(K[Cls +m+w).
Thus, the trivial equilibrium changes stability for Ro=1 or, in
other words, for a [C],; given by Eq. (6). Therefore, the latter
condition opens the possibility of a transcritical bifurcation
(Dercole and Rinaldi, 2008). However, the deduction of general
stability conditions for the non-trivial state is a highly nontrivial
task, beyond the scope of this paper. We refer the reader to the
extensive mathematical literature devoted to study the local and
global stability of host-virus systems similar to the one presented
here (Beretta and Kuang, 2001). On the other hand, oscillations are
a common outcome of predator-prey interactions, and frequently
seen in bacteriophage models (Weitz and Dushoff, 2008). For the
sake of mathematical tractability (especially for evolutionary
matters), we focus our analysis on the region of the parameter
space where stationarity can be found (but see Discussion).

With these words of caution, we assume hereafter that the
generic feasible steady state above fulfills those stability condi-
tions and proceed with the rest of the analysis. Indeed, Egs. (6)-(8)
prove to be stable for the realistic range of parameters used in this
study, as shown in our simulations below. The chosen parame-
trization represents generically marine lytic T bacteriophages and
a bacterial species (see Table A1).

Finally, the stationary growth rate for the viral population (per
capita change in the concentration of free virus) is given by the
following:

Hy = (be ™" — 1k[Clg. )

Because the average number of surviving offspring per cell is given
by the following:

(by=be ™", (10)
Eq. (9) indicates that stationary co-existence is possible (i.e.
#,=m+w) only when (b)=(m+w)/k[C]+1 (i.e. Rop=1), which

ensures that the average number of offspring per cell is larger
than one.

2.3. Ecological analysis of the rate model (RM)

Following the same notation above, infections in which the
offspring are released at a certain lysis rate k; =1/L can be
described by the equations:

UNO _ 161 V- wiCT+ wiCo] (b
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where the delay terms have been replaced by instantaneous terms
(i.e. evaluated at time t). In this way, there is unceasingly new
virions joining the free virus population, with host cells being
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lysed at a rate k;. Eqs. (4) and (5) complete the description of the
dynamics of the system.

The stationary states are described by the trivial configuration
[V1se = s = O, [Clss = W[Co]/(W—f7), always feasible (see Appendix
B), and the non-trivial steady state:

_ (w+m(k +w)

[Cls =Kk B-T)—w] (14
_(E=-ww+m) w[Co]

st = kikcb—1)—w] 'k +w (s)
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feasible for L < (b—1)/w and gz > w(1 —[C]/[Cl,). The definition of
the basic reproductive number, Rg = bk;[I];; /((K[C]+m+wW)[V],),
leads once more to a potential transcritical bifurcation for [Clg,
given by Eq. (14), which results from the condition R = 1. Also
similar to the previous model, our realistic parametrization is able
to yield stable solutions. Thus, we assume that the stationary state
fulfills the stability conditions and refer the reader to the existing
literature for a detailed study of these (Beretta and Kuang, 1998).
Lastly, we can deduce the viral growth rate as in the case of the
DM:

kb
Hy = (kL:_W_]>k[C]st> (17)
for which, by realizing that:
k]_b
b= (18)

we can conclude again that the nontrivial stationary state is
maintained thanks to the condition (b)=(m+w)/k[C]+1, again
equivalent to Rg=1.

2.4. The trade-off latent period - burst size

It is advisable to note that latent period and burst size are not
independent. The number of offspring is determined by the timing
of the lysis. Moreover, the time spent in producing new virions
increases the generation time (sum of extra- and intra-cellular
viral lifetime). This sets an obvious life-history trade-off realized in
the dichotomy “immediate but low reproduction” and “delayed
but larger offspring” that shapes the evolution of b and L.

Little information about life-history trade-offs is available for
marine viruses. However, two mathematical forms have been
suggested for this specific trade-off in the general bacteriophage
literature. One takes into account that the parental virus is
utilizing limited host resources to synthesize the virions (Wang
et al., 1996):

b=¥(l—e*7“*’f)), (19)

where M is the maturation rate, E represents the eclipse period,
and y is the decay rate for the bacterial resources. The other form
assumes that the time needed to deplete host resources is much
larger than the latent period, therefore simplifying the exponential
relationship above to a linear function (Wang, 2006):

b=M(L—E). (20)

Although the first option seems more mechanistic, most experi-
mental evidence points to the linear relationship as the more
frequently observed form for the trade-off (Wang, 2006). In spite
of the lack of information, and for the sake of concreteness, we
assume here that marine phages can potentially show any of these
two trade-offs. Thus, we perform all the calculations keeping in

Table 1

Summary of ESS calculated analytically for the delay model (DM) and the rate-
based model (RM) using the exponential and the linear forms for the trade-off
between burst size b and latent period L.

Model Trade-off Evolutionarily stable strategy

DM Exponential L*=1In(1+y/w)+E b* =M/(W+7)
Linear L*=1/w+E b*=M/w

RM Exponential L* :%]Wn(7e—y(EW+'l+W/y)/W)77;FTW b* :g(] ,e—r(L*_E))
Linear - -

mind that b is an increasing function of L, f{L), replacing later such
a function by each of the two forms mentioned above.

3. Evolutionary analysis

Aiming to gain some knowledge on the evolutionary conse-
quences linked to one or the other lytic descriptions, we now focus
our attention on invasion experiments. Invasion analysis provides
a unified framework with which we can reach some classic results,
together with novel ones (see Appendix B). As explained above, we
consider only alterations on the gene t, controlling the duration of
the latent period. Thus, mutants and residents differ only in L (and,
therefore, in b as well). We consider that the form of the trade-off,
f(L), is the same for both viral populations.

3.1. An evolutionarily stable strategy (ESS) for the delay model

If we assume that the invading mutant (subscript M) perturbs
the otherwise stable state of the resident population (subscript R),
the possibility for invasion is decided by the sign of the invasion-
matrix eigenvalue (see Appendix B):

/1=Liwn(k[cR]sthLMe—““Qﬂv+m>LM)—(k[cR]5t+w+m), @1
M

where W,(z) is the so-called Lambert function, defined as the
solution to Wy (z)e""® =z (Corless et al., 1996). The analysis of the
sign of A provides the condition for strategy L* to resist any
invasion:

fL)=wfI®. (22)

As shown in Appendix B, the solution to this equation minimizes
[Cl: (Eq. (6)) and maximizes y, (Eq. (9)). Thus, L* is an ESS. This
result is also reached after defining the invasion fitness function,
S, (Lm) = 4, and analyzing its derivatives.

The result of solving Eq. (22) for the exponential trade-off,
Eq. (19), and linear trade-off, Eq. (20), is summarized in Table 1.
These results can be graphically obtained representing the pair-
wise invasibility plots (PIP) (Geritz et al., 1998) for the two forms of
f(L). Fig. 1 (left) portrays the case of the exponential trade-off.

The sign of the invasion fitness depicted in the PIP provides
essential information. Because s, (Ly) < O for any Ly, when Lg = L*,
these solutions for the DM (Table 1) resist any invasion. L* also
maximizes p,, and therefore is an ESS. On the other hand,
st (Lm) >0 for Lg < Ly < L* and L* < Ly < Lg, ensuring that pheno-
types closer to L* can invade populations with phenotypes further
from that strategy. Therefore, L* is also a convergence-stable
strategy (CSS) (Geritz et al., 1998).

3.2. An ESS for the rate model

After following similar steps to those of the previous section,
the condition to be fulfilled for L* to be an ESS candidate is
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Fig. 1. Pairwise invasibility plots. Yellow zones represent pairs of resident and mutant latent periods for which the mutant can take over the population (positive invasion
fitness, s;,(Lw)); in black zones, the resident can resist invasion (negative invasion fitness). Left: PIP obtained with the DM using the exponential form of the trade-off b = f(L);
no point on the vertical Lg = L* line falls into a yellow zone, ensuring that L* is an ESS. Qualitatively similar results are found with the linear trade-off, and for the exponential
b =f(L) version of the RM. Right: PIP obtained with the RM using the linear form of the trade-off; the invasion fitness function only changes sign on the Ly; = Ly line and,
therefore, no singular strategy is possible. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Eco-evolutionary simulation of bacteria-virus interactions for both descriptions. Left: typical example of evolutionary succession in the DM (exponential trade-off);
the dominant phenotype (black) changes with time due to mutation and selection, and with it the population latent period (red). Eventually, a strategy resisting any invasion
(ESSsim) is reached. Right: relative difference between the evolutionarily stationary value of the population latent period in simulations, ESSgim, and the analytic solution for
each model, L*. The evolutionary simulations shown here are those with the DM for exponential (red) and linear (green) trade-offs, the RM with exponential trade-off (blue),
and their respective EiE counterparts (pink, cyan and yellow, respectively). The difference with the analytical result is never beyond 4%. (For interpretation of the references

to color in this figure caption, the reader is referred to the web version of this paper.)

(see Appendix B):

ey W)
fwy=1rom (23)
We can now combine Eq. (23) with Egs. (19) and (20) to obtain L*
for the exponential and linear trade-offs, respectively. In the case
of the former, the evolutionarily stable strategy can be found in
Table 1. This singularity maximizes fitness (see above) and, there-
fore, is an ESS. Furthermore, L* is, at least for the chosen
parametrization, a CSS. These results can be easily confirmed, as
in the previous case, with the numerical analysis of the derivatives
of s, (Ly) or plotting the corresponding PIP, qualitatively similar to
the one shown in Fig. 1 (left).

Interestingly, combining Eq. (20) with Eq. (23) (or ds/oL =0)
does not offer any feasible solution. Moreover, the only line
providing a change of sign for the invasion fitness is the diagonal
Ly = Lg (see Fig. 1, right panel).

4. Unconstrained evolution

Invasion analysis focuses on natural selection. The little pleio-
tropy expected for mutations affecting L, and the steady environ-
ment reached under chemostat conditions, allows invasion
analysis to provide reliable evolutionary predictions if there are
infinitesimal differences between mutant and parent phenotypes
(Bull et al., 2004). These limitations are shared by most of the
available theoretical frameworks, which may also require

ecological equilibrium as necessary condition for mutation/immi-
gration events to occur (Dercole and Rinaldi, 2008).

We present now numerical simulations aimed to check if the
ESSs calculated above are indeed reached in the absence of these
constraints. To this end, we use an eco-evolutionary framework in
which new mutants are created in the system at random times not
necessarily coinciding with ecological stationary states. Similar to
the framework employed in Weitz et al. (2005); Menge and Weitz
(2009), new phenotypes can be introduced periodically into the
system (invasion by migration), or by creating mutants through a
genetic algorithm used at random times. These times are in part
determined by each phenotype's population size and a common,
fixed mutation rate. New phenotypes are identical to the mutating
phenotype except for the latent period, which changes in an
arbitrarily large amount.

The simulation scheme is basically as follows: the model
equations (ecological interactions describing either the DM or
the RM) are numerically integrated; at times calculated as speci-
fied above, a new (invading/mutant) virus phenotype is intro-
duced into the system. The ecological dynamics then resumes,
now with a new viral population in the medium competing
against the existing ones (namely the dominant resident and
contenders) for the host, which is their only available resource.
This competition drives some phenotypes to extinction, which
may change which species dominates, and thus the (L,b) of the
total viral population. These steps are repeated until, eventually,
one phenotype comes along that is able to resist any invasion. This
phenotype will remain as the dominant strain regardless of the
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Fig. 3. Comparison of stationary observables for the delay (red) and rate (green) lytic models at the ESS. The stationary value for the resources needed by the rate-based
population is smaller than that of the delay-based one (left), whereas the population size is larger (right). For these plots, the linear shape of the trade-off b = f(L) has been
used, but results with the exponential form are qualitatively indistinguishable. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this paper.)
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off has been used, but the exponential one offers similar results.

other existing or incoming phenotypes. If this phenotype is indeed
an ESS, its fitness will be larger than that of any other strain. Thus,
due to its competitive advantage, the population size of the
dominant phenotype will eventually be much larger than that of
any other species in the system, and the average (L,b) of the
population will converge in the long term to this species’ trait pair
(L*, b*).

The evolutionary succession described above can be observed
in Fig. 2 (left). This figure portrays the average latent period of the
population, as well as the latent period of the instantaneous
dominant phenotype, over time. We keep in these simulations
the parametrization given by Table Al. After a long transient, the
population reaches an evolutionarily stable state, ESSgiy,. As
depicted in Fig. 2 (right), the evolutionary steady states obtained
in different realizations of the framework fluctuate around the
analytical ESS, with a very small variance. This result is robust, for
it is observed either using random mutation times or periodic
immigration events. Moreover, this result is also reached when an
“everything-is-everywhere” (EiE) approach is used (Bruggeman
and Kooijman, 2007; Follows et al., 2007). In EiE approaches,
a large number of fixed phenotypes, that is, with no possibility for
evolutionary change, is used to initialize the system; these
phenotypes, intended to represent all possible genetic variability,
compete for the available resource until only one strain remains.
As we observe in Fig. 2 (right), the phenotype able to out-compete
the rest is consistently close to the ESS predicted analytically for
the lytic strategy and trade-off used in the simulation. These
results are observed for any combination of model/trade-off
studied above except for the linear case of the RM for which, as
deduced earlier, no ESS is expected.

In any case studied, an initial test simulation with mono-
morphic viral and host populations showed stationary values for
[C], [V] and [I] that match the analytical solutions, confirming the
assumed stability of the stationary state.

5. Discussion and comparison of models
5.1. Ecological comparison

The steady-state value of the observables deduced above, and
how they change with environmental (chemostat) conditions, can
give us some initial insight into the ecological behavior of the two
lytic models.

As stated before, the ecological outcome of the two modes is
qualitatively similar. For instance, for both release models, [C],, and
U, are positively correlated with w (Fig. 3, left). [V],;, on the other
hand, shows non-monotonicity (Fig. 3, right). These results remain
valid for any of the two trade-off functions above. This positive
correlation of the amount of resources needed (host cells) and
viral growth rate with the dilution rate is not trivial, attending to
Egs. (6), (9), (14) and (17). For the host population, increasing the
dilution rate increases the nutrient input rate, fostering host
growth; as a consequence, the viral population can grow faster
as well.

On the other hand, we can measure the relative difference A in
the stationary concentrations of host, virus and infected cells
between the two models (defined as Ax =1—[Xlg,,, /[Xls,,,» With
X=C,V, or [, respectively), as a function of b and L. In Fig. 4, we can
observe that the stationary [C] is lower in the case of the RM for
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any feasible pair of L and b, while the stationary [V] is larger. In this
case, the exponential trade-off has been used, but a qualitatively
similar pattern is observed for the linear form of the trade-off
(results not shown).

This improved ecological performance for the RM is a conse-
quence of the different timing between the two lytic cycles (Bull
et al., 2004): while in the DM there is a fixed delay between the
infection of any cell and its subsequent effects (i.e. viral reproduc-
tion and disease propagation), in the RM distributed bursts have
immediate consequences on the population. Accordingly, the final
viral population for the RM is larger and grows faster; it also needs
less resources (Figs. 4 and 6). According to classic competition
theory (Tilman, 1982), this would indicate that viral populations
releasing continuously their offspring (e.g. shedding viruses) are
better competitors for any feasible combination of b and L.
However, the fact that this strategy performs better in isolation
does not necessarily mean that it can out-compete the delayed
strategy when present in the same environment (Abedon et al.,
2003). Moreover, the fact that delayed lysis and not shedding
dominates in, e.g. marine environments highlights the limitation
of these simplified models to produce reliable ecological and
evolutionary predictions without the proper modifications (Bull
et al., 2004; Komarova, 2007).

We can also define the rate of infection (ROI) as k[V] (Bull et al.,
2006), whose behavior parallels that of the viral population size as
we have assumed k to be constant. For the parametrization in
Table A1, the frequency of infection in the population is never
beyond 50-60 infections per day. This number is reduced to 20
infections per day when [Cy] = 0 (one-stage chemostat). Such low
values confirm the suitability of the single-infection assumption

used here. Moreover, the difference in ROI, as Ay, is negative for
any realistic value of w, L or b, due to the (obvious) higher speed of
infection spread by the rate-based model.

Lastly, we can compare the nontrivial stationary states of the
two models once dilution and other mortality events are dis-
counted from the viral offspring. It is easy to see that, when the
steady-state solutions, Eqs. (6)-(9) and (14)-(17), are expressed as
functions of each model's <b >, Eqgs. (10) and (18) respectively,
both models offer identical values for [Cl, [V, and u,, while [I]
is larger for the DM (Fig. 5, left). In other words, DM viruses need
more infections to maintain growth, population density and
resource requirements similar to those of the RM. However, for
the same values of (b,L), the RM shows a much larger amount of
surviving offspring than the DM (Fig. 5, right), explaining why the
former out-performs the latter in Figs. 3-6. Note that these relative
differences depend only on the latent period, and therefore are not
influenced by the particular trade-off assumed.

5.2. Evolutionary comparison

Focusing now on the ESS, for both delay and rate models not
only does the ESS minimize the amount of resources needed by
the virus (i.e. [Cl,, Eqgs. (22) and (23)), but it also maximizes the
viral population size and its fitness (Fig. 6). These results have
been obtained theoretically in the past for the DM under low ROI
and optimality conditions (e.g. Bull et al., 2006). This explains why
the ESS coincides with the dominant phenotype in EiE experi-
ments: the ESS makes the best use of the available resources
and, thus, out-competes any other phenotype. In addition, the
fitness value at the ESS increases with [C];; for both cycles
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for the DM (red) and RM (green); for both strategies and trade-off forms, an improved host quantity selects for shorter latent periods. The ESS for the RM is larger for any
realistic value of w. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

(Egs. (9) and (17)). The hump shape shown in Fig. 6 (right) has
been experimentally observed (Wang, 2006), pointing to the
possibility of singular strategies in controlled environments.

On the other hand, the DM results in a smaller fitness than
the rate-based release for any value of the latent period, including
the ESS (Fig. 6, right). Importantly, the selection gradient (slope of
the fitness function) close to the ESS is much larger for the delay
model than for the rate model. This enhanced selection strength
accelerates evolution, because it enhances differences between
phenotypes (Dercole and Rinaldi, 2008).

It is noteworthy to mention that the maturation period at the
ESS, L*—E (step (iii) of the cycle description above) is phage-
independent for the DM. In this model, the time needed to
assembly the new virions depends exclusively on the dilution rate
and/or the host physiological state (a function of 7). In the RM,
however, maturation also depends on E. This is due to the fact that
for this model the end of the eclipse period immediately leads to a
possible start of the infectious stage of the population (release of
offspring). This dependence on E provides the phage with control
over its entire reproductive cycle.

Let us delve now into the reasons for the lack of ESS in the case
of RM and linear trade-off. Mathematically, the condition for the
mutant to invade, [Cyly < [Crly, 1S translated into bg < by using
Eqgs. (14) and (20); the phenotype with the larger burst size always
invades. Furthermore, there is no limit to this alternation, as there
is no extrema to the viral fitness (Fig. 7, left). This is owing to the
fact that, for a linear relationship between burst size and latent
period, the fitness cost of increasing b and L in the RM is always
smaller than the benefit. As a consequence, there is no change in
sign for the invasion fitness other than that expected when the
roles of mutant and resident are exchanged (see Fig. 1, right).

From an evolutionary point of view, the key is again the timing
of the offspring release. In the rate-based model, the trade-off
between latent period and burst size influences the average
number of virions liberated per unit time in the population, but
offspring start to be released instantaneously. Thus, unless the
resources in the host set a limit to b (case of the exponential trade-
off, Eq. (19) and Fig. 7, left), the impact on viral fitness of increasing
b at the expense of increasing L is always positive. Note that the
fitness associated with the linear trade-off is always larger than
that of the exponential one (Fig. 7, left). On the other hand,
increasing (L,b) in the case of the delay description has a much
stronger effect on viral fitness, due to the increase in the time
needed to release any of the new virions (Bull et al., 2004). This
enhanced differentiation between approaches is eventually trans-
lated into the larger selection strength observed in Fig. 6 (right).

Finally, Fig. 7 (right) shows the behavior of L* when w, positively
correlated with host quantity (see Fig. 3), varies. For both models, a

larger host availability or quality selects for shorter latent periods
(Fig. 7, right). Thus, improved growth conditions favor shorter
generation times. This result has been observed experimentally
(Abedon et al., 2003; Proctor et al., 1993) and obtained theoreti-
cally by other means (see e.g. Bull, 2006; Wang et al., 1996). For the
RM, however, L* is always larger than that of the DM. Nonetheless,
the continuous release allows the fitness in RM populations to be
larger than that of DM ones to the smaller impact of varying the
latent period for the former (Fig. 6, right).

5.3. The role of oscillations

As commented above, host-virus models are prone to oscilla-
tory equilibria. Indeed, the models presented here can show such
behavior by, e.g. increasing k beyond 10~ °1cell™' d~'. Oscilla-
tions prevent stationary solutions from being realized, for example
due to sudden population collapse or strong fluctuations around
stationary values. Thus, parametrizations leading to oscillations
prevent the ecological and evolutionary analysis presented here
from being applicable.

The presence of a second chemostat (i.e. [Co] # 0) has helped us
find a realistic region of the parameter space where oscillations
are not present. Developing an analytical framework able to
predict ecological and evolutionary behavior in the presence of
such oscillations remains elusive to this date.

6. Conclusions

The numerical value for the ESS and the qualitative behavior
described here have been observed in phage experiments
(Tables 1 and A1). However, this is not to say that real bacter-
iophages are close to their (optimal) evolutionarily stationary
state. The intra- and inter-specific variability observed in mea-
sured latent periods indicates that there are other factors, not
considered in this idealized study, that contribute to the exact
value of the latent period shown by real viruses. For instance,
constantly changing environmental conditions that include hosts
potentially co-evolving with the virus will most certainly change
the latent period’ selected for in each case.

This is especially true for marine environments, for which strict
stationary conditions are hardly found even in stratified waters.
Keeping the same formalism used here, we can implement easily
more realistic environments changing Eq. (5) (for instance, incor-
porating remineralization of nutrients by bacteria, or periodic

1 Among other traits, for instance k.
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pulses), and playing with the sources of “fresh” host or dilution.
Nonetheless, the study under chemostat conditions presented
here provides valuable information on the qualitative behavior of
different lytic strategies.

Continuous cultures are very extended in the experimental
literature. As shown here, in these environments populations with
distributed latent periods prove to have many ecological and
evolutionary advantages. Everything being equal, RM populations start
releasing offspring (i.e. become infectious) earlier, providing the RM
virus with competitive advantage over the DM one. Moreover,
dynamic evolution of the latent period under the same environmental
conditions leads the rate-based population toward an ESS in which the
virus utilizes less resources to produce larger population sizes and
larger viral fitness with smaller generation times.

The strength of selection for this model is, however, much
smaller than for the case of DM viruses. Smaller fitness gradients
slow down evolutionary succession and, thus, may prevent the ESS
for RM viruses from being eventually realized. Moreover, it can in
principle put, e.g. shedding strategies in competitive disadvantage
if the bacterial host co-evolves, because a burst lytic virus may
adapt more quickly to changes in the host. Even in the absence of
DM viruses, RM viruses may not adapt quickly enough to host co-
evolution, leading to a much slower (or even eventually vanishing)
Red-Queen dynamics. However, the expected changing fitness
landscape will influence non-trivially the adaptation rate on both
descriptions. For viruses that can show either infection cycle,
shedding provides quick invasion whereas burst lysis provides
quick adaptation.

On the other hand, we have mathematically proved that the
linear form for the trade-off between burst size and latent period
yields an endless evolutionary succession in the case of the RM.
Linear trade-offs have been experimentally observed for bacter-
iophages, and maxima for the viral fitness have been measured in
the same experiments. Therefore, the standard formulation of the
RM presented here may lead to unrealistic predictions about
bacteriophage evolution in steady environments. Thus, if used to
describe long-term behavior of this and other phages such as
phages with non-linear virion assemblage or, e.g. shedding, more
appropriate environments, biological constraints, and trade-offs
need to be used. Possible improvements to capture a shedding
cycle correctly should include an explicit eclipse period in the
exponential release distribution, and de-couple offspring release
from cell mortality. On the other hand, further research is needed
in order to find which functional forms for the relation between
life-history traits correspond specifically to marine phages.

Thus, the classic modeling trade-off between simplicity and
realism materializes once again. The study presented here shows
that, with the trade-offs analyzed, even though applying the
simpler RM model to bacteriophages provides qualitatively similar
ecological results to those of the DM, the former may not be
reliable for evolutionary matters, leaving the latter as the only
available alternative. On the other hand, the delay terms compli-
cate the analysis of the DM. This prevents its inclusion in bigger
modeling frameworks such as models for oceanic biogeochemistry,
which lack a realistic explicit representation of marine viruses.
Thus, a new theoretical description is needed, able to capture the
essential ecological and evolutionary aspects of the marine host-
virus dynamics without the use of delay terms. Finding new paths
to the regularization of the delay terms fulfilling these features
remains as an open question.

Another open issue relates to finding a theoretical framework
able to tackle the eco-evolutionary interactions in host-virus
systems. In this paper, we focused on the analytical description
of stationary states in both ecological and evolutionary timescales,
ensured by the chosen environmental conditions and parametri-
zation. However, such a framework could describe analytically

more realistic situations such as the evolutionary succession
(i.e. transients) observed in our simulations. This theoretical
framework would be able to capture the feedback loop between
ecology and evolution provided by rapid evolutionary events,
non-vanishing evolutionary jumps, and overlapping generations.
These three features break in one way or another the simplify-
ing assumptions of the available theoretical frameworks such as
adaptive dynamics.

This study evidences the importance of taking into account
both ecological and evolutionary aspects of the dynamics between
host and virus, subject to rapid evolution. This is especially
relevant if we are interested in reliable long-term predictions
for the system under scrutiny. The inclusion of viruses in the
description of biogeochemical cycles is one important example,
as reliable estimates of viral dynamics are crucial to understand
any future climate change scenario. Another sound example is
phage therapy, which is re-emerging as an alternative to anti-
biotics. The design of efficient treatments requires a reliable
estimate not only of instantaneous population sizes but also of
possible co-evolutionary events between phages and bacteria. The
new theoretical alternatives suggested here will prove to be
essential to this end.
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Appendix A. Table of definitions and parameter values

Table Al.

Appendix B
B.1. Feasibility of the trivial stationary states
For both models, a trivial stationary solution is given by the

phage-free state [V =[ll; =0, [Cly=w[Col/(w—p), with z=
H([N],). Stationary conditions also require that:

dIN €l
A _ 0 (o1 - N1,) = B 49
_— w[Co]
=¥y =
or, rearranging terms:

C
(Nol - N w0 =i 26)

Because i = u([N],,) increases with [N],; and vanishes at zero, and
the two terms on the left hand side decrease with [N],, and are
positive at zero, the Intermediate Value Theorem ensures a
solution to the equation above for which both sides are positive
(i.e. 0 < u([N]s;) < w and 0 < [N],; < [No]). Thus, the trivial stationary
state is always feasible.
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Table A1

Compilation of symbols and parameter values. Data for the host taken from Litchman et al. (2007). Data for the virus into the ranges used/shown in
Abedon et al. (2001, 2003), Bull et al. (2006), Weitz et al. (2005), Wang et al. (1996), Menge and Weitz (2009). The yield parameter, Y, has been

adjusted to obtain a maximum growth p,e =Y Vipax = 18 d~", value which is also in harmony with the previous references.

Symbol Description Units Value

[N] Dissolved inorganic nitrogen concentration mol 1! Variable

[C] Non-infected host concentration cell 1-1 Variable

[ Infected host concentration cell 11 Variable

V] Free virus concentration cell 17! Variable

kr Lysis rate d-! Evolutionary variable
L Latent period d Evolutionary variable
b Burst size virions Evolutionary variable
Hy Virus population growth rate d-! Variable

u Host population growth rate d-! Variable

Hmax Maximum host population growth rate d-! 18

Y Yield parameter cell mol~! 4.5x10"

Vinax Maximum nutrient uptake rate mol cell~'d~! 4x10° 1

Ky Half-saturation constant the nutrient mol 1! 10-°

k Adsorption rate lcell=1d~! 10719,5x107°

m Virus mortality rate d-! 01,5

M Maturation rate virions d ! 1.44 x 10°

E Eclipse period d 0.0139

y Hostresources decay rate d-! 144

[Col Non-infected host supply concentration cell 11 108

[No] Dissolved inorganic nutrient supply concentration mol 1! 50 x 10~6

w Chemostat dilution rate d-! 2.4

B.2. Feasibility of the non-trivial solutions

For both models, an analysis similar to the one above ensures
that 0 <u([N]l;,) and O <[N]; <[No]. On the other hand, the
necessary positivity condition for [Cl, [V],;, and [I];; imposes:

C,
p([NLy) = w(l —[[C]"D @7)

and, L<Inb/w for the DM, whereas for the RM the latter
condition becomes L < (b—1)/w.

B.3. Invasion analysis

B.3.1. Delay model

If we assume that the invader perturbs the otherwise stable
state of the resident population (subindex R), the dynamic equa-
tions for the mutant (subindex M) can be written as follows:

VANO _ (il Vil 1,00~ — KICelu[Vi] ~ Vgl ~ IV ],
(8)
O Vi)~ (MCRLalVirl - e — Wl 29)

where [Cg],([Cum]s;) represents Eq. (6) calculated using the resident
(mutant) traits. By definition, the evolutionarily stable strategy
(ESS) cannot be invaded by any mutant or immigrant phenotype.
Thus, the sign of the invasion eigenvalue (i.e. eigenvalue associated
with the equations above) will provide the conditions for the
phenotype (L* b*) to be uninvadable. The eigenvalues A are the
result of solving |J+Jpe~#» —Al| =0 (Beretta and Kuang, 2001),
where ] is the Jacobian matrix associated with the instantaneous
terms of the equations, Jp that of the delayed terms, and I is the
identity matrix. The condition above can be translated into:
K[Crl(bye = WHP — 1) —w—m—, 0
[ R]s[(i IZ[CRLt(e*W”’ZM " | = AD=DB=D =0.
(30)

One eigenvalue is, trivially, given by 1 = B= —w. Thus, if the other
eigenvalue, resulting from solving the implicit equation
A=A = K[Crls(bye~W+Pw —1)—w—m is positive, the mutant

can invade, whereas a negative value will ensure unbeatability for
the resident. This remaining eigenvalue is given by the following:

A= iwn(k[cR]ﬂbMLMe-<’<[CRlsr +Mhwy _ (K[Crlg +W+m), 31)

where W,(z) is the so-called Lambert function, defined as the
solution to W, (2)eWr® =z (Corless et al., 1996). The condition A=0
provides the marginal case:

m+w

A(0) = O@W

= [Crlse=[Cmlse = [Crlse (32)
For the resident to resist invasion (i.e. 4 <0), [Cgly < [Cm]s- Alter-
natively, for the mutant to invade (1 > 0), [Cy]y; < [Crls;. Therefore,
the phenotype that minimizes [C];; will be an ESS candidate. Thus:

diCly . db_
i = O@E =wb;
=f (L) =w f(L). (33)

This condition, deduced in Bull (2006) by other means, can also be
deduced looking for the invading strategy that maximizes y,, Eq.
(9). From Eq. (33), it easily follows that dZ[C]st /sz is positive at L*,
Thus, the solution for Eq. (33) indeed provides an uninvadable
strategy that maximizes fitness, i.e. the ESS.

Equivalently, the condition given by Eq. (33) can be found by
realizing that Eq. (31) can be used to define the invasion fitness
function, s;,(Ly) = A. Thus, evolutionary singularities are given by
the points L* such that the derivative of s with respect to L
vanishes, st (Ly)/oLu|+ = 0. It is also possible to show that both
the second derivative of s; (Ly) and d/dL(ds;,(Ly)/0LmlL,, = 1, = 1)
are, at least for the parametrization in Table A1, negative when
evaluated at L =L*. In this way, the analytical conditions for L* to
be an ESS and a CSS, respectively, are fulfilled.

B.3.2. Rate model

We now follow similar steps to deduce the expressions for the
ESS in the case of the rate model. The equations for the mutant are,
in this case:

diVml(®)

dt = bM kL‘M[IM] — k[CR]st[VM] - m[VM] 7W[VM] (34)
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dlIv](t
D) (VK] Wi, 35)
and the characteristic equation for the invasion eigenvalue is given
by the following:

— kL,M —w—4

-] =

—K[CRlyy —w—m—2 C D-21

k[CR]st _ A— /’{ B
ki mbm -

(36)

A and D are by definition negative in any feasible scenario. Thus,
the only remaining condition to be fulfilled for the resident state
to be uninvadable is, following the Routh-Hurwitz criteria,
BC < AD. After some algebra, this condition is translated again
into [Cg],; < [Cm]s;- Therefore, the phenotype minimizing [C],; will
be a possible ESS. Thus, using Eq. (14):
diCly _o._.db_ wb oo WSl

i ~=a - Trwr =T O 67
This same condition can be reached by defining the invasion
fitness function s, (Ly) = BC—AD and using sy, (Ly) /0Ly |+ = 0.
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