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© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A central tenet of inclusive fitness theory is that a trait may be
selected for even if it involves some sacrifice to an individual's
personal fitness, provided that it sufficiently enhances the repro-
ductive success of genetically related individuals. Genetic related-
ness between social partners can arise for various reasons, in
particular kinship. Inclusive fitness is central to much work on the
evolution of social behaviour. It has been used to understand
diverse biological phenomena including sex-ratios, co-operative
breeding, dispersal, reproductive skew, group formation, and more.
For introductions to inclusive fitness theory, see Frank (1998),
McElreath and Boyd (2007), or Wenseleers et al. (2010).

J.B.S. Haldane purportedly enunciated the basic idea of inclu-
sive fitness theory in a pub when he quipped that he would
sacrifice himself by jumping into a river to save two brothers or
eight cousins, a view he only later expressed in print (see Haldane,
1955, p. 44). However, it was Hamilton (1963, 1964a,b) who first
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provided a precise formal statement of the theory. In addition to
Haldane (1955), other precursors to Hamilton include Darwin
(1859), Fisher (1930), and Haldane (1932) (see Dugatkin, 2007).
Hamilton's original theory contains two distinct though related
ideas: firstly, his famous rule for when a gene coding for an
altruistic action will be favoured by natural selection; and sec-
ondly, the idea of inclusive fitness, as opposed to personal fitness,
as the quantity that individuals will behave as if they are trying to
maximize. Hamilton's rule is expressed by the inequality rb > c.
This rule tells us that a gene for altruism will spread so long as the
cost ¢ to the altruist is offset by a sufficient amount of benefit b to
relatives who are sufficiently close, as measured by the relatedness
coefficient r. This way of thinking involves taking the ‘gene's eye
view’, that is, looking for the selective advantage that a trait has for
the gene that causes the trait, rather than the individual that
expresses it. However, Hamilton showed that altruistic behaviour
can also be understood from an individual's perspective. Though
an individual performing an altruistic action will reduce its
personal fitness (i.e. expected number of offspring), it may
enhance its inclusive fitness—a measure that also takes into
account the effect of the action on the reproductive output of
relatives. Under certain conditions, it can be shown that natural
selection will lead an individual to behave as if it is trying to
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maximize its inclusive fitness (see Frank, 1998; McElreath and
Boyd, 2007; Grafen, 2006, 2009).

The concept of inclusive fitness is somewhat unintuitive, and
critics have questioned both the generality of the theory and
the usefulness of the concept (e.g, Nowak et al, 2010). (Birch
(forthcoming) provides an illuminating discussion of the arguments
for and against the claims made by Nowak et al. (2010).) While
granting that inclusive fitness has its limitations, and that there are
other valid ways to study the evolution of social behaviour, here we
focus on a conceptually attractive feature of inclusive fitness theory,
namely that it allows us to preserve the idea of the individual
organism as a quasi-rational agent, choosing between alternative
actions according to the criterion of maximal inclusive fitness. This
aspect of the theory explains its wide appeal to behavioural ecologists
as it allows them to take an adaptationist approach to social
behaviour, as has been emphasized in recent work by Grafen (2006,
2009) and Gardner et al. (2011), among others.

In this paper, we offer a novel perspective on inclusive fitness
theory by applying tools from the economic theory of rational
choice. Our aim is to derive inclusive fitness maximization from
axioms on an individual organism's choice behaviour for the case
in which phenotypic effects are additive. Consider a focal indivi-
dual and the set of other individuals who might be affected by this
individual's actions. At a given point in time, each of the latter
individuals stands in a given relatedness relationship to the focal
individual. The focal individual is faced with a choice between
alternative social actions. Each action leads to a payoff (which
could be positive, negative, or zero) for the focal individual and
each of the other affected individuals. An individual's payoff is the
incremental change in its personal fitness due to the focal
individual's action. The focal individual's choice behaviour is
described by a binary preference relation on the set of actions.
This relation specifies, for any two actions, which the focal
individual would choose; in principle, this choice could be directly
observed. The question we pose is as follows: What conditions
must this binary relation satisfy such that the focal individual
always behaves as if it were trying to maximize its inclusive
fitness? We also consider a variant of inclusive fitness maximiza-
tion called quasi-inclusive fitness maximization that can be applied
when the focal individual is unable to determine the exact degree
of relatedness to some of the other individuals, and axiomatically
characterize this behaviour as well.

The axiomatic approach employed here is the standard way of
justifying a maximization assumption in rational choice theory,
and it is instructive to apply it to inclusive fitness for three reasons.
Firstly, it offers a novel way of forging links, both formal and
conceptual, between social evolution theory and economic theory.
Many authors have drawn attention to the analogy between
the utility-maximizing paradigm of economics and the fitness-
maximizing paradigm of behavioural ecology; here we develop
this analogy in a precise way by finding the behavioural conditions
that are necessary and sufficient for an organism to be represen-
table as an inclusive fitness maximizer. Our results draw on related
work in social choice theory, which is the branch of rational choice
theory that is concerned with social preferences. Axiomatic social
choice theory has been used by Okasha (2009) and Bossert et al.
(2013a,b) to evaluate alternative measures of group fitness in
hierarchically structured populations. This paper is the first to
apply this methodology to analyzing inclusive fitness.

Secondly, our results suggest a possible route by which evolu-
tion could program organisms to implement inclusive fitness
maximization, or something close to it. That is, the axioms we
use to characterize inclusive fitness maximization could be viewed
as heuristic rules by which evolution might induce organisms to
display optimal behaviour in social settings without having to
consciously perform inclusive fitness calculations.

Thirdly, our results help bring out the behavioural implications
of inclusive fitness theory, and could thus facilitate its empirical
testing. An organism's binary choices between actions can be
directly observed, whereas the consequences of those choices for
inclusive fitness are typically difficult to determine. If it could be
shown that an organism's choice behaviour violated one of the
axioms below, we could immediately infer that the organism was
not maximizing inclusive fitness.

Our model is not evolutionary; rather it is behavioural. Our aim
is to characterize mathematically a certain pattern of behaviour
that organisms might exhibit, namely inclusive fitness maximiza-
tion, in terms of the properties of a binary preference relation. We
do not assert that the evolutionary process will necessarily lead
organisms to exhibit the behaviour in question, or that it will
‘tend’ to do so, or that the behaviour, if it evolves, will be stable
against mutation; and we do not study the conditions under
which an allele coding for the behaviour will be favoured by
natural selection. To address these questions would require con-
structing an explicit evolutionary model and studying its evolu-
tionary dynamics. There is a large literature addressing these
questions, and we are not attempting to contribute to it. Rather,
our aim is different, namely to supply an alternative mathematical
characterization of inclusive fitness maximizing behaviour.

Section 2 describes the formal framework employed here. Our
axioms are introduced in Section 3. Our axiomatic characteriza-
tions of the two forms of inclusive fitness maximization are
presented in Section 4. We discuss the significance of our results
in Section 5. The proofs of our theorems may be found in the
Appendix.

2. The model

We consider a set of individuals I = {1, ..., n}. Individual 1 is the
focal individual whose actions we are interested in; the other n—1
comprise all the other individuals who might be affected by the
focal individual's actions. We let r; e R denote the relatedness of
the focal individual to individual i, with higher values denoting a
closer degree of relatedness, where r; = 1. Thus, the set I has an
associated relatedness profile r=(rq,...,r) e 1 x R"~1. At a parti-
cular point in time, the profile r is taken as given. (However, we
make no assumption about what determines r; it may have
ecological as well as genealogical determinants.) If relatedness
depends on the evolving trait, then at a subsequent point in time
the relatedness profile r will be different; and our analysis will
apply again at that later time modulo the new relatedness profile.

In Hamilton's original papers, relatedness was defined as the
probability that actor and recipient share genes that are ‘identical
by descent’, which is determined by their genealogical relation-
ship; this implies that r; € [0, 1]. However later work, by Hamilton
and many others, has shown that the relatedness that matters to
inclusive fitness theory is a more abstract measure of genetic
similiarity (typically, the regression of recipient genotype on actor
genotype); for discussion, see Michod and Hamilton (1980), Frank
(1998), Grafen (2006), or Rousset (2004, chapter 7). This means
that, in principle, the relatedness co-efficient can assume any real
value, including negative values, and that is why we assume r; e R
rather than r; € [0, 1] for i # 1. Our formalism is deliberately neutral
with respect to the precise definition of relatedness employed,
which may be different in different evolutionary models.

At a given point in time, the focal individual can perform a
number of different actions, each of which potentially affects the
personal fitness (expected number of offspring) of every individual
in I. We identify an action with a payoff vector a=(ay, ...,a,) e R",
where g; € R is the incremental personal fitness gain or loss that
individual i suffers as a result of action a. The set of all possible
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actions is R". There is a fixed status-quo payoff vector
S =(51,...,Sn) € R", describing the fitness of each individual before
any action is performed. Thus, the set of feasible actions is given by
F={aeR"a+s>0}={aeR"Ja> —s}, where 0 denotes an n-vec-
tor of zeros. There may be further contingent biological restric-
tions on the feasible actions in particular cases, but for maximal
generality we take the feasible set to be F.

In common with some inclusive fitness models, including
Hamilton's original, we assume that social interactions have
additive fitness effects; that is, the focal individual's action a adds
a; to the fitness of individual i irrespective of what action
individual i may himself perform. This is admittedly a serious
restriction, and one that many modern inclusive fitness models do
not make. Non-additive phenotypic effects are often handled in
inclusive fitness theory by employing weak selection techniques,
permitting a Hamilton-type inequality for allele frequency change
to be derived (see Rousset, 2004, chapter 7). However, it is only in
the additive case that a convincing demonstration exists that
individuals will behave as if maximizing their inclusive fitness in
an evolutionary equilibrium (see Grafen, 2006). Thus restricting
our attention to additive phenotypic effects on fitness seems
reasonable for the purposes of this paper. Whether this restriction
can be dispensed with is discussed in Section 5.

The focal individual's choice behaviour is described by a binary
preference relation >, on F. The relation >, indicates, for any two
actions in F, which the focal individual would prefer given the
relatedness profile r; formally, >, is a subset of F x F. As the
notation suggests, >, is a weak preference relation; that is, a >, b
means that action a is either strictly preferred or indifferent to b.
From >, we can define corresponding relations of strict preference
>r and of indifference ~ by letting a > b=y [a % b and not
(b>ra)] and a~ b=g4 [a %, b and b %, a]. The concept of prefer-
ence being appealed to here is an ‘as if one; the preference >, is
simply a way of summarizing the focal individual's choice behaviour.
That is, a > b means that a is chosen when the options are a and b,
whereas a ~y b means that either of these actions might be chosen
when both are available.

The inclusive fitness of a feasible action aeF is defined as
>r_,riai. That is, it is a weighted sum over individuals of the
action's payoff to each individual, with weights given by the
relatedness profile. Note that we define inclusive fitness for actions
rather than for individuals, as recommended by Queller (1996);
this corresponds to the ‘inclusive fitness effect’ of Hamilton
(1964a). If the focal individual is an inclusive fitness maximizer,
then its preference relation >, is represented by the inclusive
fitness function, which means that for all actions a,beF, a >; b if
and only if 3!_ ria; > Y rib;.

If the focal individual is not an inclusive fitness maximizer, this
may be because it cannot discriminate sufficiently precisely
between different classes of relatives. We define a quasi-inclusive
fitness maximizer as an individual whose preference relation > is
represented by >"_ , 3;a; for some vector (3, ..., 3,) € R" such that
(i) §;>0ifand only if r; > 0 for all i e I and (ii) §; > f; if and only if
ri>rj for all i,jel. A quasi-inclusive fitness maximizer uses a
weighted sum of the payoffs to evaluate an action; however, the
weights need not be the true relatednesses but, rather, can be any
sign-preserving monotonic transformation of them.

The concept of quasi-inclusive fitness maximization is inter-
esting for two different reasons. Firstly, it describes a way that an
organism might attempt to maximize inclusive fitness if it lacks
information about exact degrees of relatedness, but can tell whom
it is more related to. Empirically, it seems likely that many
organisms are in this situation. Secondly, it highlights the fact
that inclusive fitness maximization comprises two logically sepa-
rate components: (i) evaluating social actions by a weighted sum
of the payoffs and (ii) using relatednesses as the weights in the

sum. Below, we obtain an axiomatic separation of these two
components of inclusive fitness theory.

Our goal is to identify axioms on >, that characterize the focal
individual as an inclusive fitness maximizer and as a quasi-
inclusive fitness maximizer. Some of our axioms are analogues of
axioms used in social choice theory to characterize a weighted
utilitarian social objective function (see d'Aspremont, 1985;
Bossert and Weymark, 2004). A weighted utilitarian objective has
the same functional form as the function Y!_,f;a; used to
represent a quasi-inclusive fitness maximizer's preferences, but
with @; interpreted as the ith individual's utility and f; as the
corresponding social welfare weight. This functional form can
alternatively be interpreted as representing the preferences of
someone who takes account of the interests of others. In this case,
it is natural for the weights to be inversely related to the social
distance from the individual whose preferences are being con-
sidered, as in the dominant loyalties problem of Harsanyi (1977,
section 2.3).

We have implicitly assumed that the payoffs (i.e., the incre-
mental fitnesses) are measurable on an absolute scale. This is a
stronger assumption than is necessary; both inclusive fitness
maximization and quasi-inclusive fitness maximization only
require that gains and losses of incremental fitness are comparable
across individuals. The importance of measurement-theoretic
issues for the quantification of fitness has recently been stressed
by Wagner (2010).

3. The axioms

In this section, we consider a number of axioms that might be
imposed on the relation >, and comment briefly on their mean-
ing and biological significance.

The binary relation >, is (i) reflexive if for all aeF, a =, a, (ii)
complete if for all a,beF with a#b, a>;b or b>>;a, and (iii)
transitive if for all a,b,ceF, a>; b and b >, ¢ imply a >, c. An
ordering is a reflexive, complete, and transitive binary relation.

Ordering. >, is an ordering.

Ordering is a standard axiom in the theory of rational choice
(see, e.g., Kreps, 1988 or Bossert and Weymark, 2004). Essentially
it requires that the focal individual can rank all feasible actions in
terms of betterness, with ties permitted. Though violations of
transitivity have been reported empirically in both humans and
animals, this axiom is a fundamental part of the meaning of
‘rationality’, and is necessary if the individual's choices are to
maximize any quantity, inclusive fitness or some other. The reader
can easily verify that if the focal individual's choice behaviour
violates Ordering, then as a matter of logic, it is not an inclusive
fitness maximizer.

The binary relation x>y is continuous if for any action aeF,
the upper contour set {beF|b>;a} and the lower contour set
{b e Fla > b} are both closed.

Continuity. >, is continuous.

Continuity is also a standard axiom of rational choice theory
(again see Kreps, 1988 or Bossert and Weymark, 2004). It for-
malizes the intuitive idea that ‘small’ changes in payoffs should
not lead to ‘large’ changes in preference. It is an appropriate
assumption in any context where payoffs cannot be measured
with perfect accuracy or are subject to minor chance fluctuations.

Payoff Dominance. For all a,b e F such that (i) a; > b; for all jel
with r; > 0 and (2) a; < b; for all jeI with r; <0, a>¢ b.
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Payoff Dominance says that if one action yields a strictly higher
payoff than another for everyone to whom the focal individual is
nonnegatively related, and a strictly lower payoff for everyone to
whom the focal individual is negatively related, then the former
action is strictly preferred. If the focal individual violated this
axiom by choosing a dominated action, then its behaviour would
seem clearly non-optimal because by simply switching actions, it
would be able either to increase the personal fitness of every
individual in I to whom it is positively related, or to decrease the
personal fitness of every individual to whom it is negatively
related. This axiom is closely related to the ‘Pareto principle’ in
social choice theory (see Bossert and Weymark, 2004).

Focal Individual Monotonicity. For all a,b e F such that a; > by
and gj=b; forall je{2,...,n},a > b.

Focal Individual Monotonicity says that starting from any action, if
the focal individual's payoff is increased while the payoff of all
other individuals is held fixed, then the resulting action is strictly
preferred to the original. Thus, the focal individual is not com-
pletely other-regarding; it does care about its personal fitness.
Again, violating this axiom would seem clearly non-optimal for it
would amount to sacrificing one's personal fitness without a
compensating gain in fitness for anyone else. Such a sacrifice
would necessarily reduce inclusive fitness (because personal
fitness is a component of inclusive fitness); so satisfying this
axiom is necessary for being an inclusive fitness maximizer.

Baseline Independence. For all a,b,ceF such that (a+c)eF and
(b+c)eF,

axb<(@+c) = (b+o).

Baseline Independence requires the focal individual's evalua-
tion of an action to be independent of the ‘baseline fitnesses’ from
which we start; so if action a is preferred to b, this preference will
never be reversed by changing the baseline. (Note that on the LHS
of the above equivalence, the baseline is the null action 0, whereas
on the RHS it is ¢.) So if an individual prefers a to b today, it should
continue to do so tomorrow, irrespective of what fitness-affecting
events have occurred in the interim. Another interpretation is to
think of (b+c) as the result of performing actions b and c¢ in
succession; the axiom then says that if one action is preferred to
another, it should remain so irrespective of which other actions
have already been performed.

Nepotism. For all a,b e F, for all j, k eI such that rj > ry, and for all
x>0, if bj=a;+x, by=ay—x, and b; =a; for all ie 1\{j, k}, then (i)
b>raifrj>r,and (ii) b~ aif rj=r.

Nepotism captures the idea that the focal individual would
prefer to help closer than more distant relatives; this is a central
prediction of kin selection theory. The axiom says that starting
from a given action, if some quantity of payoff is shifted from one
individual to another more closely related individual while every-
one else's payoff is held fixed, then the resulting action will be
preferred; while if payoff is shifted to an equally related individual,
indifference will result. To satisfy Nepotism, all the focal individual
needs to ‘know’ is which of any pair of individuals it is more
closely related to, but not by how much. This seems a reasonable
idealization of the actual powers of kin discrimination of many
animals.

Haldane. For all a,b eF, if there exist ke {2,....,n} and x € R such
that (i) rp # 0, by = a1 —x, by = ay+x/ry, and bj = g; for all j e I\{1,k}
or (ii) rp, =0, by =ay, by =ax+x, and b; = q; for all je \{1,k}, then
a~ b

Haldane provides a formal statement of the idea that starting
from a given action, if we reduce the focal individual's own payoff
by x and increase the payoff to any other individual i by x/r;, then
indifference is the result; that is, the focal individual uses related-
ness as the ‘exchange rate’ for determining which payoff sacrifices
it is prepared to make. The axiom derives its name from Haldane's
remark quoted in the Introduction that it would be a fitness-
enhancing sacrifice to jump into a river to save two brothers or
eight cousins when r:(l,%, %, ...). Note that this axiom requires
only that the focal individual be able to perform ‘egocentric’
comparisons; that is, it must be able to compare the results of
transferring its own payoff to others. It does not require compar-
isons among pairs of actions that involve transfers between two
non-focal individuals (unlike Nepotism). Nonetheless, to satisfy
Haldane is still a demanding task, as it requires that the focal
individual ‘knows’ its degree of relatedness to every other indivi-
dual in I, and uses this information to compute the level of self-
sacrifice it is prepared to make.

4. The results

We now use the axioms introduced in the preceding section
to provide axiomatic characterizations of inclusive fitness max-
imization (Theorem 1) and quasi-inclusive fitness maximization
(Theorem 2).

Theorem 1. The relation >, satisfies Ordering, Focal Individual
Monotonicity, and Haldane if and only if the focal individual is an
inclusive fitness maximizer.

Theorem 1 states necessary and sufficient conditions for the
focal individual to be an inclusive fitness maximizer, namely that
its preference relation >, satisfies Ordering, Focal Individual
Monotonicity, and Haldane. It might be thought that this result
is somewhat unexciting on the grounds that the Haldane axiom is
conceptually quite similar to inclusive fitness maximization itself.
However, two points should be noted. Firstly, recall that Haldane
concerns only ‘egocentric’ comparisons between actions which
involve a transfer of payoff from the focal individual to another
individual. The axiom is silent about how to rank pairs of actions
that are not of this sort; yet inclusive fitness maximization yields a
ranking of all actions in the feasible set. So the conceptual gap
between the axioms of Theorem 1 and the characterization is in
fact substantial, and the proof correspondingly non-trivial.

Secondly, note that the Haldane axiom on its own does not
suffice to characterize inclusive fitness maximization; the other
two axioms of Theorem 1 are also needed. Therefore, the theorem
helps to clarify the exact logical relation between Haldane's
original idea, as formalized here, and Hamilton's later theory.
Because the two axioms that must be added to Haldane to yield
inclusive fitness maximization (Ordering and Focal Individual
Monotonicity) are fairly obvious rationality requirements, this
vindicates the widely held view that Haldane had grasped the
essence of inclusive fitness theory prior to its detailed elaboration
by Hamilton.

Theorem 2. The relation x, satisfies Ordering, Continuity, Payoff
Dominance, Baseline Independence, and Nepotism if and only if the
focal individual is a quasi-inclusive fitness maximizer.

Theorem 2 characterizes quasi-inclusive fitness maximization
using five axioms that do not include Haldane. As the proof in the
Appendix shows, the first four axioms (Ordering, Continuity,
Payoff Dominance, and Baseline Independence) imply that the
focal individual evaluates actions by a weighted sum of the payoffs
for some vector of weights whose signs are the same as the signs
of the corresponding relatedness coefficients; the addition of
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Nepotism then restricts these weights to be monotone transfor-
mations of these coefficients. Thus, the first four axioms charac-
terize one component of inclusive fitness theory—evaluating
actions by weighted sums of payoffs, while the fifth axiom ensures
a logical link with the second component—using weights that vary
positively with relatedness.

Although Theorem 2 only characterizes quasi-inclusive fitness
maximization, rather than inclusive fitness maximization itself, it
has one significant advantage over Theorem 1, namely, its axioms
make weaker informational demands on the focal individual than
does Haldane. Consequently, it should be correspondingly easier
for natural selection to bring about conformity to them. Recall that
Nepotism requires that the focal individual prefers to help closer
than more distant relatives; exact degrees of relatedness do not
matter. Because kin discrimination is quite common in social
species, there is no great difficulty in imagining how natural
selection could produce organisms whose choice behaviour satis-
fies Nepotism. By contrast, it is rather harder to imagine natural
selection fine-tuning choice behaviour so as to satisfy Haldane. So
although Theorem 2 only yields quasi-inclusive fitness maximiza-
tion, the axioms it uses are more biologically reasonable.

It is worth commenting on the logical relationship between the
axioms used in our two theorems. Because quasi-inclusive fitness
maximization is a special case of inclusive fitness maximization,
the three axioms of Theorem 1 together imply all of the axioms of
Theorem 2. The Ordering axiom is common to both theorems, but
as we shall argue, Ordering in combination with either Focal
Individual Monotonicity or Haldane does not imply any of the
non-ordering axioms of Theorem 2.

Ordering and Focal Individual Monotonicity are not sufficient to
exclude non-continuous orderings such as lexicographic binary
relations. Furthermore, they place no restrictions on the mono-
tonicity properties of =, with respect to individuals other than the
focal individual, so they do not imply Payoff Dominance either.
In addition, these two axioms do not imply the additive structure
required by Baseline Independence or the additive trade-offs
employed in Nepotism.

Haldane only applies to comparisons involving the indifference
relation ~, and so cannot be used in conjunction with Ordering to
determine if the upper and lower contour sets of any action a are
closed, as required by Continuity. Nor do they imply Payoff
Dominance, which is concerned with the strict preference >.
Furthermore, these two axioms do not imply the additive structure
required by Baseline Independence. The kind of transfers between
two non-focal individuals considered in Nepotism cannot be
replicated by a sequence of transfers of the kind considered by
Haldane when r; # r. Moreover, Haldane makes no claims about
the strict preference >, so Ordering and Haldane do not imply
Nepotism either.

5. Discussion

The popularity of the inclusive fitness concept in evolutionary
biology arises because it allows social behaviour, even when it is
individually costly, to be understood from the perspective of an
individual organism ‘trying’ to achieve a goal, thus preserving
Darwin's insight that selection will lead to the appearance of
design in nature. (The goal in question, of course, is maximization
of inclusive fitness.) This has led many authors to see a link
between social evolution and rational choice theory; that is,
evolved organisms should behave like rational agents trying to
maximize a utility function, where the utility function is inclusive
fitness (Grafen, 2006; West and Gardner, 2013).

The use of concepts from rational choice theory in evolutionary
biology is widespread, and extends beyond social evolution.

To take two well-known examples, optimal foraging models have
often been inspired in part by Bayesian decision theory (e.g.,
Houston and McNamara, 1980); while evolutionary game theory
has borrowed liberally from the traditional rationality-based game
theory (see Maynard Smith, 1982; Hammerstein, 2012). More
recently, there have been attempts to forge links between social
choice theory (another branch of rational choice theory) and
evolution (Okasha, 2009; Bossert et al., 2013a,b).

At the heart of rational choice theory is the idea of utility
maximization by individuals. However, what is not always appre-
ciated by those who apply this idea to biology (and others) is that
a widely accepted approach to rational choice called revealed
preference theory (see Kreps, 1988) treats utility maximization as
a strictly ‘as if affair. To describe an individual as a utility
maximizer, on this view, is not to speculate about the proximate
psychological causes of its behaviour, but rather just to say that the
individual behaves as if it were trying to maximize a utility
function. Consistent with this behaviourist orientation, in revealed
preference theory, theorists do not begin their analysis of indivi-
dual behaviour by simply writing down a real-valued utility
function; rather they begin with a description of an individual's
choice behaviour, which can be summarized in the form of a
binary preference relation on a set of alternatives. They then
investigate the conditions that this binary relation must satisfy if
it is to be representable by a real-valued utility function. This
methodology enables clear operational meaning to be given to the
hypothesis of utility maximization.

Our approach has been to apply this methodology to the case of
inclusive fitness maximization. To that end, we have sought
axioms on a focal individual's preference relation over actions
(i.e., payoff vectors) which are necessary and sufficient for this
individual to always choose between actions in a way that
maximizes its inclusive fitness. Our hope is that this endeavour
helps elucidate, in a novel and precise way, the connection
between social evolution theory and rational choice theory. By
contrast, previous work on this connection, for example Alan
Grafen's pioneering work on the ‘individual as maximizing agent
analogy’ (Grafen, 2002, 2006, 2009), does not take account of the
‘as if’ nature of utility-maximization employed in revealed pre-
ference theory, and so has not employed the behaviourist meth-
odology used here. The same is true of much other biological work
that draws on rational choice theory.

It is worth explicitly comparing our analysis to Grafen (2006).
In that article, Grafen seeks a firm foundation for the idea, popularly
assumed in behavioural ecology, that as a result of natural
selection individuals can be expected to display inclusive fitness
maximizing behaviour. To this end, he studies a simple model of
social behaviour in which individuals play strategies which have
consequences for their own and others' reproductive fitness, with
the effects on fitness assumed to be additive. Grafen then estab-
lishes links between the evolutionary dynamics and the indivi-
duals’ strategic choices. While these links fall short of showing
that selection will always lead to inclusive fitness maximization
(as Grafen acknowledges), they are still significant; in effect, they
show that if all individuals choose the inclusive fitness maximizing
strategy, then a population-genetic equilibrium will obtain. In the
absence of genetic constraints, selection can thus be expected to
lead individuals to maximize their inclusive fitness.

Grafen's analysis draws on rational choice theory by explicitly
modelling an individual as attempting to solve an optimization
problem. He deduces this individual's objective function (or utility
function) from considerations of evolutionary stability. This work
is valuable, and certainly helps to justify the behavioural ecolo-
gist's assumption of inclusive fitness maximization. However, it
only goes part way to forging a link between social evolution and
rational choice theory because Grafen's analysis leaves untouched
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the question of what patterns of choice behaviour are necessary
and sufficient for an individual to be representable as an inclusive
fitness maximizer. Our analysis answers this question, and thus
complements Grafen's work. In effect, Grafen aims to justify the
idea that evolution will lead individuals to maximize their inclu-
sive fitness; while we aim to show, in terms of observable choice
behaviour, what inclusive fitness maximization actually
amounts to.

One outstanding issue is whether our analysis can be extended
to deal with non-additive costs and benefits, thus capturing traits
such as the sex-ratio, dispersal, and more generally phenotypic
interactions. Inclusive fitness models usually deal with phenotypic
non-additivity in one of two ways: either by invoking weak
selection (Rousset, 2004) or by defining the b and c terms of
Hamilton's rule as partial regression coefficients rather than as
incremental payoffs (Queller, 1985, 2011; Frank, 1998; Gardner
et al., 2011). In principle, the latter approach could be used to
define the actions in our model as our formal analysis assumes
only that each action a is a vector in R". However, the usefulness of
extending our analysis in this way is debatable because a satisfac-
tory justification of the idea that individuals maximize their
inclusive fitness in non-additive scenarios has not been given.
(It is unclear whether Grafen's (2006) argument can be general-
ized to non-additive cases; see Gardner et al. (2011) and Lehmann
and Rousset (forthcoming) for conflicting opinions on this issue.)

To conclude, our aim has been to study the connection between
rational choice and social evolution theory and to place it on a
secure foundation. We do this by seeking to deduce inclusive
fitness maximization from a more primitive basis, namely axioms
on an individual's ‘as if preferences’, in accordance with a standard
decision-theoretic methodology. Our hope is that this will shed
light on the conceptual links between evolution and rational
choice theory, show a possible route by which natural selection
could bring about inclusive fitness maximization or something
close to it, and help to draw out behavioural implications of
inclusive fitness theory that are directly testable.
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Appendix

We say that the focal individual is an m-inclusive fitness
maximizer, me{2,...,n}, if, for all M<I such that 1eM and
M| =m,
axb<e Yra> Y b

ieM ieM
for all a,beF such that gj=b; for all je\M. Thus, the focal
individual is an inclusive fitness maximizer if it is an n-inclusive
fitness maximizer.

The following two lemmas are used in the proof of Theorem 1.

Lemma 1. If the relation >, satisfies Ordering, Focal Individual
Monotonicity, and Haldane, then the focal individual is a 2-inclusive
fitness maximizer.

Proof. Consider any ke {2,...,n}, M={1,k}, and a,beF. Let a;=q;
for all j e I\{1,k} and consider the set

Liay); - oo (@1, G) = {(d, ap)la" € F and @’ ~ aj,

where a' = (dj, ....a,). This is the level set of the restriction of >,
corresponding to the set of components {1,k} that contains
(ay,a;) conditional on the remaining variables having the values
(@)j e 1. BY subtracting x = —[ry(sg+a,)] from a; and adding
x/1) to a, when ry # 0 or by adding — (s, +ay) to ay when r, =0, it
follows from Haldane that the point (a; +7r(S,+ax), —Sk) belongs
to this level set.

In order for the focal individual to be a 2-inclusive fitness
maximizer, any point (aj, @) in L, (ay, a,) must be such that

)j e N1.ky

A} + 1 = a1 4T = A1 + TSk + Q) +Tie( = S). (1

Any such point can be reached by subtracting x = a; +1(S;+ay) —
a; from a; +r(sg+a,) and adding x/r, to —s, when ry # 0 or by
adding s +aj, to —s, when 1, = 0. Thus, by Haldane, it follows that
any point (a;, ;) for which (1) holds is in the level set of the point
(a +rp(sg+ag), —si). The transitivity of ~; then implies that
a~a for all (a},a)e L), ,,,(@1.0). By Ordering and Focal
Individual Monotonicity, higher level sets of > are associated
with higher level sets L), ., (@1, a)-

The same procedure can be applied to b. Defining b’ and
L(bj)jgwm(bl,b,() by analogy to a’ and L., (@1, ), it follows
that b~ b for all (b}, b}) € Ly, ., (b1,by) and that higher level
sets of >, are associated with higher level sets L(bj),FN“_k,(bbbk)-
Transitivity now implies that

axb< a+rag>by+riby

for all a,beF such that a;=b; for all jel\{1,k}. Hence, the focal
individual is a 2-inclusive fitness maximizer. ©

The following lemma is established by reinterpreting and adapting
the proof of Lemma 3.3.1 in d'Aspremont (1985). d'Aspremont's
lemma is concerned with the properties of weighted utilitarian
social objectives.

Lemma 2. If the relation >, satisfies Ordering, Focal Individual Mono-
tonicity, and Haldane, then the focal individual is an m-inclusive fitness
maximizer for all me {2, ...,n}.

Proof. By Lemma 1, the focal individual is a 2-inclusive fitness
maximizer. If n = 2, we are done. If n > 2, we complete the proof by
induction. Suppose that the focal individual is an m-inclusive
fitness maximizer, where me {2,...,n—1}. We need to show that
the focal individual is an (m+1)-inclusive fitness maximizer.

It is sufficient to consider the case in which M ={1,...,m+1}.
Let a,beF be such that a;=b; for all jel\{1,...,m+1}. Without
loss of generality, we can suppose that a1 > b, 1 (if this is not
the case, then the roles of a and b can be interchanged in the
following argument). Define c e R" by letting

c=a;>—s; Vjel{l,m+1}, 2)
Cms1=bmni1= —Sms1, 3
and

C1=01+Tm1(@ms1—bmi1). 4

Because a; > —s; and, by assumption, a1 > b, 1, it follows that
c1 > —s; and, together with the inequalities in (2) and (3), we
obtain ceF.

Using (3) and (4), it follows that

C1+Tmi1Cme1 =01 +Tmp10my1- )
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By Lemma 1, the focal individual is a 2-inclusive fitness maximizer
and, thus, (4) implies

C~a. (6)

It follows from (2) and (3) that ¢; = b; for all j e {m+1, ..., n}. By the
induction hypothesis, the focal individual is an m-inclusive fitness
maximizer and, thus,

m m
cxbe Y ric= ¥ b (7)
i=1 i=1

Because ¢p, 1 =bpm1, (7) is equivalent to

m+1 m+1
Cx b Z TriCi > Z r;b;.
i=1 i=1

Furthermore, by (6) and the transitivity of >,
a>b<cx>b.

Thus,

m+1 m+1
ax b Z riC; > Z rib;. (8)
i=1 i=1

Because ¢; =g for all je\{1,m+1} and (5) holds, it follows that

m+1 m+1

X Tigi= Y TG
i i=1

i=1
Substituting this equality in (8), we obtain

m+1 m+1
axb< z ria; > 2 r;b;.

i=1 i=1
That is, the focal individual is an (m+1)-inclusive fitness
maximizer. O

We now use Lemma 2 to prove that the relation >, satisfies
Ordering, Focal Individual Monotonicity, and Haldane if and only if the
focal individual is an inclusive fitness maximizer, as Theorem 1 asserts.

Proof of Theorem 1. It is straightforward to verify that if the focal
individual is an inclusive fitness maximizer, then >, satisfies
Ordering, Focal Individual Monotonicity, and Haldane.

Now, suppose that >, satisfies these three axioms. Lemma 2 states
that the focal individual is an m-inclusive fitness maximizer for all
me {2,...,n} if = satisfies these axioms. Setting m = n, it follows that
the focal individual is an inclusive fitness maximizer. ©

We now turn to the proof of Theorem 2. As a first step, we state
a lemma, the proof of which is almost identical to the proof of
Theorem 8.1 in Bossert and Weymark (2004) with a reinterpreta-
tion of the axioms and a change in notation. As is the case with the
lemma of d'Aspremont (1985) used above, Bossert and Weymark's
result is expressed in terms of a weighted utilitarian social
objective. The only change needed to apply their proof here is
that the payoffs of any individual with a negative relatedness
coefficient must be replaced by the negative of this payoff. See also
Theorem 4.3.1 in Blackwell and Girshick (1954) for a related result
(without the continuity axiom) in the context of decision-making
under uncertainty.

Lemma 3. The relation >, satisfies Ordering, Continuity, Payoff
Dominance, and Baseline Independence if and only if there exists
By, ....Pp) € R" with B; > 0 if and only if r; > O for all i e I such that,
foralla,beF,

n n
ax b Z ﬂia,‘Z Z :Bibl"
i=1 i=1

We next prove that =, satisfies Ordering, Continuity, Payoff
Dominance, Baseline Independence, and Nepotism if and only if

the focal individual is a quasi-inclusive fitness maximizer, as
Theorem 2 asserts.

Proof of Theorem 2. It is straightforward to verify that if the focal
individual is a quasi-inclusive fitness maximizer, then >, satisfies
Ordering, Continuity, Payoff Dominance, Baseline Independence,
and Nepotism.

Now, suppose that >, satisfies these five axioms. In view of
Lemma 3, all that remains to be established is that, for all j ke,
the parameters are such that (i) r; >r, implies ;> f, and (ii)
rj =Ty implies f§; = f,.

Consider case (i) first. Suppose that there exist j, k e I such that
rj>ry. Let a,beF and x > 0 be such that a; = ay =: ap, bj =ag+x,
by=ap—x, and b;=aq; for all iel\{j,k}. Nepotism implies that
b > a. By Lemma 3 and the definition of a, b, and x,

n n
b>rae ¥ fibi> ¥ pia
i=1 i=1
< Bibj+Pbi > B;a;+ Prax

<= (Bi+P)ao+ (B~ Px > (B;+Piao
<= (f;—Px>0.

Because x > 0, the last inequality implies that ; > f3;.

The proof of case (ii) is similar. In this case, suppose that there
exist j,kel such that rj=r,. Defining a,b as above, Nepotism
implies b ~; a. Replacing the inequalities with equalities in the
displayed array, it follows that

b~ a< (f;—px=0.

Hence, f; = p; because x> 0. ©
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