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H I G H L I G H T S

� We introduce an epidemiological model with age-dependent removal/sampling rates.
� This framework allows for arbitrary lifetime distributions and heterochronic data.
� We show that viral phylogenies can be represented by a Markovian coalescent point process.
� We derive the likelihood of a phylogenetic tree for parameter inference.
� This method facilitates fast simulation of phylogenetic trees under the model.
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a b s t r a c t

The reconstruction of phylogenetic trees based on viral genetic sequence data sequentially sampled from
an epidemic provides estimates of the past transmission dynamics, by fitting epidemiological models to
these trees. To our knowledge, none of the epidemiological models currently used in phylogenetics can
account for recovery rates and sampling rates dependent on the time elapsed since transmission, i.e. age
of infection.

Here we introduce an epidemiological model where infectives leave the epidemic, by either recovery
or sampling, after some random time which may follow an arbitrary distribution.

We derive an expression for the likelihood of the phylogenetic tree of sampled infectives under our
general epidemiological model. The analytic concept developed in this paper will facilitate inference of
past epidemiological dynamics and provide an analytical framework for performing very efficient
simulations of phylogenetic trees under our model. The main idea of our analytic study is that the non-
Markovian epidemiological model giving rise to phylogenetic trees growing vertically as time goes by can
be represented by a Markovian “coalescent point process” growing horizontally by the sequential
addition of pairs of coalescence and sampling times.

As examples, we discuss two special cases of our general model, described in terms of influenza and
HIV epidemics. Though phrased in epidemiological terms, our framework can also be used for instance to
fit macroevolutionary models to phylogenies of extant and extinct species, accounting for general species
lifetime distributions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Phylogenetic trees, which are reconstructed from genetic data,
describe the genealogical relationships within a population. The
analysis of these trees can provide important insights into the
underlying population dynamic processes. For instance, in a group
of species descending from a common ancestor, one can construct
a tree based on homologous gene(s) sequenced from these species,
and thus infer speciation and extinction rates (Nee et al., 1994).
As another example, viral genetic sequences extracted from patient
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samples can provide information on the rate at which an infectious
disease transmits within the host population (Stadler et al., 2012).

Maximum likelihood and Bayesian inference are common
techniques for estimating such parameters, given a model of the
underlying population dynamics. However, the complexity of
models that can be applied is limited by the need to derive the
likelihood of a phylogenetic tree. Until recently, approaches using
a birth–death model framework were limited to death rates of
individuals being independent of the age of the individual (see e.g.
Nee et al., 1994; Morlon et al., 2011; Stadler, 2011; Etienne et al.,
2012 for species phylogenies and Stadler et al., 2012, 2013 for virus
phylogenies). Meanwhile, a coalescent-based framework, which
epidemiological applications have more widely used (e.g. Pybus
et al., 2001; Drummond et al., 2002; Pomeroy et al., 2008; de Silva
et al., 2012; Dearlove and Wilson, 2013), does not separately
estimate birth and death rates (Stadler et al., 2012).

For phylogenetic trees in which all tips are sampled at one point
in time, such as extant species phylogenies, Lambert (2010) and
Lambert and Stadler (2013) introduced a framework to calculate
the likelihood of a phylogenetic tree accounting for general lifetime
distributions. Here we build upon this approach to additionally
allow for sequential sampling. Sequential sampling allows analysis
e.g. of virus sequence data obtained throughout the course of an
epidemic. In the model exposition and worked examples to follow,
we focus on an epidemic model in which “births” (branching
events) represent the transmission events and “deaths” represent
the events of becoming non-infectious either with or without
sampling. The model also applies to non-epidemic scenarios in
which individuals are sampled at different time points, for instance
when dated fossils are included in a species tree.

Allowing age-dependent death/recovery and sampling agrees
with the common observation that lifetimes (time being infec-
tious, in the epidemic model) are not generally exponential. For
example the infectious period of influenza typically lasts for
5–7 days, according to the U.S. Centers for Disease Control and
Prevention (http://www.cdc.gov/flu/about/disease/spread.htm).
Extending the model to age-dependent removal will allow the
use of genetic sequence data to quantify the death/recovery
dynamics more accurately and to test whether parameter
estimates (such as the basic reproductive number, R0) have been
biased by the more simplistic assumption of age-independent
removal rates. Furthermore, our approach will allow for rapid
simulation of phylogenies under age-dependent death/recovery
rates even for huge epidemic outbreaks, thus allowing for efficient
investigation of the impact of age-dependent rates on the struc-
ture of the phylogenetic tree.

The structure of the paper is as follows. First we introduce more
precisely the general model of infection and sampling. The
forward-in-time (vertical) process which determines the phylo-
geny is non-Markovian due to the age-dependent removal rates.
We then describe the jumping chronological contour process
(JCCP, or simply “contour process” for short), a systematic way of
exploring trees. The contour process analysis (horizontal) makes
use of a Markovian process giving rise to the phylogeny by
sequentially adding pairs of coalescence and sampling times in a
way that only depends on the previous sampling time.

We proceed to apply Lévy process theory in order to obtain
explicit expressions for the Markov process transition probabilities
in terms of the so-called scale function associated with the
contour process. This leads to the key result of the paper, an
explicit formula for the likelihood of a given sampled tree as a
function of the parameters of the population dynamic process
(Theorem 6.3).

Two worked examples then illustrate application of the general
mathematical results: an influenza model, where the lifetime
of individuals is not dependent upon whether they leave the

epidemic by recovery or sampling; and an HIV model, where
sampling occurs after some exponential time during the (inde-
pendently distributed) infectious period.

We conclude the paper by discussing future challenges of
creating a computational inference tool based on this theoretical
framework that can be used to analyze pathogen genetic sequence
data collected during an epidemic.

2. Model of infection and sampling

We model the dynamics of a population of infectives by a
(possibly non-Markovian) branching process, where

� Each infective independently gives birth to a new infective at
constant rate b.

� Each infective is removed from the population at rate ρ1,
because of recovery, and independently, at rate ρ2, because
of sampling/detection, where ρ1 and ρ2 are functions of the
time elapsed since transmission, hereafter called the age of the
infective.

The process is assumed to start with one infective at time 0 and is
stopped after an overall time duration of t. Let us comment on
these assumptions.

Here, a “birth” event is interpreted as the transmission of the
infection to a susceptible individual. The assumption that trans-
missions occur independently and at a constant rate (branching
property) is due to the implicit assumption that susceptibles are in
excess. The branching property implies in particular that the
population of infectives either becomes extinct or asymptotically
grows exponentially. Note that we do not assume any latent
period, that is, the new infective is assumed to be infectious
immediately after infection.

Here, the “death” of an individual is the removal of an individual
from the infective population. An infective is removed from the
population either because he/she naturally recovers (or actually
dies) without detection, or because his/her infection is detected,
and by assumption, immediate behavioral changes or successful
treatment prevents any further transmission after detection.
Removals due to recovery are said to be of type 1, and removals
following detection are said to be of type 2. At a detection time, a
sample is simultaneously taken from the removed individual and is
included in the phylogeny, hence the synonymy between detection
and sampling.

The assumptions on ρ1 and ρ2 are equivalent to saying that
individuals with ‘age’ a leave the epidemic at rate ρðaÞ≔ρ1ðaÞþ
ρ2ðaÞ (i.e., an individual is removed at the first point of a time-
dependent Poisson process with instantaneous rate ρ, where time
is reset at birth), and that upon leaving the epidemic at age a, they
leave it by recovery (without sampling) with probability ρ1ðaÞ=ρðaÞ
and by sampling with probability ρ2ðaÞ=ρðaÞ.

Mathematically, we can equivalently assume that the type (1 or 2)
is chosen upon infection (birth) with probabilities c1 and c2 ¼ 1�c1
respectively, independently of other individuals. Individuals of type
1 live for a duration distributed as V1 after which they are removed
without being sampled. Individuals of type 2 live for a duration
distributed as V2 after which they are simultaneously sampled and
removed. This description agrees with the previous one if one sets
for i¼1,2:

ci≔
Z 1

0
ρiðzÞe�

R z

0
ρðaÞ da dz and PðViAdzÞ≔c�1

i ρiðzÞe�
R z

0
ρðaÞ da dz:

Our analyses and results apply to the general model just
described, but we will later use the following two cases as examples.
In the first case (framed as an influenza model), V1 and V2 are
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identically distributed, meaning that the duration of infectiousness
does not depend on being sampled. In the second case (framed as an
HIV model), natural infectious lifetimes are distributed as some
random variable V, while sampling is assumed to occur after some
independent exponential duration with parameter μ, meaning that
individuals are sampled with a constant rate μwhile being infectious.
The type of an individual is determined by the first event to occur
(removal with or without sampling).

The binary random tree, embedded in continuous time, of this
two-type population can be viewed as a two-type splitting tree,
where in addition the tip of every edge corresponding to the life of
an individual of type 2 is marked as a sampling point, see Fig. 1.
Splitting trees (Geiger and Kersting, 1997; Lambert, 2009, 2010;
Lambert and Trapman, 2013) are those random trees generated by
a so-called homogeneous, binary Crump–Mode–Jagers process (CMJ),
that is, a branching process where individuals give birth singly and
at constant rate b, during lifetimes that are independent and
identically distributed (iid), distributed as some random variable V,
which is not necessarily exponentially distributed. In particular,
the process counting the total population size is not necessarily
Markovian. The law of a splitting tree is characterized by the
measure πð�Þ≔bPðVA �Þ usually called the lifespan measure.

Here, the law of our two-type splitting tree is characterized
by the knowledge of the two lifespan measures π1≔bc1PðV1A �Þ
and π2≔bð1�c1ÞPðV2A �Þ. Notice that regardless of types/marks,
the genealogical tree of the whole population (i.e., on both
sampled and unsampled individuals) is a splitting tree with life-
span measure π≔π1þπ2.

We call the sampled tree the part of the marked splitting tree
which is spanned by its marks and the root, that is, the phylogenetic
tree of samples (i.e., when all lineages without sampled descen-
dants are pruned). See Fig. 1b for a graphical representation.
Assuming that the sampled tree can be reconstructed exactly from
the patient samples, our goal is to provide a method for computing
the probability density (likelihood) of a sampled tree for given

parameters under our model. The method can also be used to
compute the posterior likelihood of the parameters given the data,
in a Bayesian framework where parameters are given a prior
distribution. The likelihood thus allows us to infer parameters of
the epidemiological process from the sampled tree using max-
imum likelihood or Bayesian methodology.

From now on, we assume that the tree is embedded in the
plane, employing the natural orientation where each daughter
edge sprouts to the right of its mother edge (see Fig. 1). Our next
step is to describe a process which allows us to systematically
explore plane splitting trees, and elucidates how plane sampled
trees under our model may be represented simply by successive
pairs of coalescence and sampling times.

3. The contour process

In Lambert (2010), Lambert has considered the so-called
jumping chronological contour process (JCCP), or simply contour
process, of the plane splitting tree truncated up to height (time) t.
This process can be seen as the path of a ball that follows an
outline of the oriented tree, decreasing at unit speed along its
edges (which are vertical and embedded in the plane), and
jumping instantaneously to the tip of the daughter edge when
reaching a node. Fig. 2 shows the contour process associated with
the tree in Fig. 1a.

The contour process can also be seen as an alternative repre-
sentation of the transmission process. The ball starts at the “death”
of an infective and slips back until the corresponding infective
transmits. Due to the transmission being a Poisson process, we can
have the ball slip backward in time until transmission, rather than
forward in time until transmission. At transmission, the ball jumps
to the time of “death” of the newly infected individual, and again
the ball slips back until the next transmission occurs. Once the ball

Fig. 1. (a) The oriented phylogeny of the epidemics showing transmission events (horizontal dashed lines) and sampling events (black dots), for 3 infectives sampled before
present time t (dotted line), and 3 infectives alive at time t; (b) Sampling times (Si) and coalescence times ðRiÞ characterizing the oriented sampled tree (see main text).

Fig. 2. The marked contour process, with jumps in solid line, which is associated to the marked tree of Fig. 1. Exploration time is denoted by u, and times u1 to u6 are all jump
times of the contour process corresponding to lifetimes of individuals who are either alive at t or sampled before t. The process terminates at time u7.
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reaches the time of infection of the current infective, it returns to
the donor in the infection event of consideration.

Observe that the number of visits of t by the contour process is
exactly the number of individuals in the population at time t.
Details can be found in Lambert (2010) and Lambert and Trapman
(2013). We now seek to uncover the law of this process under
our model.

Now let X denote the stochastic process with derivative �1
almost everywhere, which jumps at rate bc1, with jump sizes
distributed as V1. In probabilistic terms, X is a compound Poisson
process with jump measure π1 compensated at rate �1. In the
absence of sampled individuals, we have shown (Lambert, 2010,
Theorem 4.3) that the contour process has exactly the same law as
the process X reflected below t (meaning sent back to exactly t
whenever it overshoots), and killed upon hitting 0.

From now on, X will denote this stochastic process, which,
properly reflected and killed, is the contour process of the
population on unsampled individuals. The idea is that the subpaths
between sampled individuals, into which we will later break up
the process, can be seen as independent realizations of X. We
denote the law of X by P, writing Px when conditioning on X0 ¼ x.
Nevertheless, unless otherwise specified, the denomination ‘con-
tour process’ will be reserved for the contour process of the whole
population, that we will denote by Z. It is straightforward that
when forgetting about the types of individuals, Z is just the
compound Poisson process with jump measure π compensated
at rate �1 and reflected below t. Notice that Z is reflected and
killed, whereas X is not.

The statement regarding Z can also be seen by the following
argument. Recall that regardless of their types, individuals give
birth to type 2 individuals at rate bc2. Since the contour process
visits the tree at unit speed, by the lack-of-memory property of the
exponential distribution, it is easy to see that the contour process
of the two-type splitting tree can be obtained from X by adding
jumps, whose sizes are distributed as V2, and which occur after
independent exponential random variables with parameter bc2
(further reflecting this new process under t and killing it upon
hitting 0). By analogy with the representation in Fig. 2, we will call
these jumps the marked jumps of the contour process Z.

4. The coalescent point process with sampling times

In this section we show that pairs of consecutive sampling
times and coalescence times in the sampled phylogeny extracted
from the contour process give rise to a so-called coalescent point
process. This observation will allow us to provide an expression for
the probability of the sampled tree.

Assume that we label sampled individuals (i.e., type 2 indivi-
duals) 1;2;… in the order of the contour, that is, from left to right.
We denote by Si the sampling time of individual i, which is, by
assumption, the time at which this individual is removed from the
infective population (and simultaneously sampled). We further
denote by Ri the coalescence time between individuals i�1 and i,
that is, the time at which their most recent common ancestor in
the epidemic transmitted the disease to an ancestor of i (which
can be assumed, for practical applications, to also be the coales-
cence time between the pathogens carried by i�1 and i).

Straightforward consequences of the definition of the contour
process are the following:

1. the sampling time Si is the value of the contour process at its
i-th marked jump;

2. the coalescence time Ri is the infimum of the contour process
between the (i�1)-th and the i-th marked jump.

In the special case when the progenitor is sampled (before time t),
S1 is actually the lifetime of the progenitor.

More formally, let si denote the time of the i-th marked jump.
Formally, if the progenitor of the epidemic is not sampled, then
s0≔0 and for any iZ1

si ¼ inffs4si�1 : Zs� oZsot and this jump of Z at time s is markedg;
with the convention that si ¼ þ1 when there is no marked jump
after si�1. Otherwise, if the progenitor is sampled, s1≔0 and the
previous definition only holds for iZ2. If sio1, then

Si ¼ ZðsiÞ and Ri ¼ inffZðsÞ;si�1rsosig;
otherwise if si ¼ þ1, then ðRi; SiÞ ¼ ð0;0Þ. Our first remark is that
the pairs ðRi; SiÞ characterize the (plane) sampled tree, as seen in
Fig. 1. By analogy with phylogenies spanned by extant individuals
(where one can consider Si ¼ t for all i), we will say that ðRi; SiÞ
form a coalescent point process with sampling times (Aldous and
Popovic, 2005; Lambert, 2010; Lambert and Stadler, 2013).

Since each si is a stopping time for Z, observe, by the strong
Markov property of Z, that conditional on sio1 and ZðsiÞ ¼ x, the
subpath fZðsÞ; sZsig is independent of the subpath fZðsÞ; srsig.
In particular, conditional on Si, the pair ðRiþ1; Siþ1Þ, which is a
function of fZðsÞ; sZsig, is independent of fZðsÞ; srsig. Since all
the pairs fðRj; SjÞ; jr ig are functions of fZðsÞ; srsig, we deduce that
conditional on Si ¼ x40, the pair ðRiþ1; Siþ1Þ is independent of
fðRj; SjÞ; jr ig. In other words, the pairs ðRi; SiÞ form a Markov
chain, where the transition probability only depends on the
second component.

More accurately, they form a killed Markov chain, that is, a
Markov chain with a possibly finite (random) lifetime, which is the
first i such that ðRi; SiÞ ¼ ð0;0Þ. More specifically, the transition
kernel pðx; �Þ of a killed Markov chain M with values in some space
E is a sub-probability kernel, in the sense that pðx; EÞr1. Then at
each time step n, conditional on Mn ¼ x, the Markov chain is killed
(has lifetime n) with probability 1�pðx; EÞ, and with probability
pðx; EÞ, makes a transition according to the probability kernel
pðx; �Þ=pðx; EÞ.

We can record the previous discussion in the next statement.

Lemma 4.1. The pairs ðRi; SiÞ form a killed Markov chain whose
transition probability only depends on the second component. In
addition, if we set for any xAð0; t�, yA ð0; xÞ and zAðy; tÞ,

pðx; dy dzÞ≔P inf
0r sos1

ZðsÞAdy; Zðs1ÞAdzjZ0 ¼ x
� �

;

then for any iZ1,

PðRiþ1Ady; Siþ1AdzjSi ¼ xÞ ¼ pðx; dy dzÞ;
and conditional on Si ¼ x, the Markov chain is killed at step i with
probability

kðxÞ≔1�
Z
ð0;xÞ

Z
ðy;tÞ

pðx; dy dzÞ ¼Pðs1 ¼ þ1jZ0 ¼ xÞ:

From now on, we will use the notation Px to denote the law of Z
when Z0 ¼ x (recall that Px is the law of X when X0 ¼ x). With a
slight abuse of notation, we define the random pair (R,S) by

PxðRAdy; SAdzÞ≔pðx; dy dzÞ;
and ðR; SÞ≔ð0;0Þ with probability k(x).

Our goal is now to give a finer characterization of the distribu-
tion of (R,S), i.e., of the transitions of the coalescent point process
with sampling times. For any yA ½0; tÞ, we can classify paths of the
contour process according to the three following events:

A0
y – exit of (y,t) from the bottom, i.e. hit y before hitting t and
before the first marked jump;
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B0
y – arrival of a marked jump (with terminal value in ð0; tÞ) before
exit of (y,t);

C0
y – exit of (y,t) from the top and before the first marked jump.

Notice that the events A0
y;B

0
y;C

0
y form a partition. If we denote by

TA the first hitting time of the set A, that is,

TA ¼ inffs40 : ZðsÞAAg;
and if we write s for s1, we can express the events A0

y, B
0
y and C0

y as
follows:

A0
y ¼ fTyoTt4sg; B0

y ¼ fsoTt4Tyg; C0
y ¼ fTtoTy4sg;

where we used the usual notation a4b¼minða; bÞ. Now an
iterative application of the strong Markov property of Z at its
successive hitting times of t shows that

PxðR4y; SAdzÞ ¼PxðB0
y; ZðsÞAdzÞþPxðC0

yÞ ∑
nZ0

PtðC0
yÞnPtðB0

y; ZðsÞAdzÞ

¼PxðB0
y; ZðsÞAdzÞþ PxðC0

yÞ
1�PtðC0

yÞ
PtðB0

y; ZðsÞAdzÞ:

Similarly,

kðxÞ ¼PxðA0
0Þþ

PxðC 0
0Þ

1�PtðC0
0Þ PtðA0

0Þ:

Apportioning the paths of Z as we just did will now allow us to
express the law of (R,S) in terms of the law of the Lévy process X
rather than that of the contour process Z. We stick to the notation
TA for the first hitting time of the set A by X. Now recall that the
paths of Z can be obtained by adding independent jumps,
distributed as V2, to the paths of X, at rate

q≔bc2;

and further reflecting those paths below t. As a consequence, if
e denotes an independent exponential random variable with
parameter q, and if V2 is assumed to be independent of e and X,
the events A0

y;B
0
y;C

0
y have the same law under Px, respectively, as

the events Ay;By;Cy under Px, where

Ay≔fTyoT ðt;þ1Þ4eg;

By≔feoTy4T ðt;þ1Þ;XeþV2rtg;

Cy≔fT ðt;þ1ÞoTy4eg [ feoTy4T ðt;þ1Þ;XeþV24tg:
More precisely, we arrive at the following statement, where X

and X denote respectively the infimum and supremum processes
of X, that is,

Xs ¼ inf
0rur s

Xu and Xs ¼ sup
0rur s

Xu:

Proposition 4.2. Let xA ð0; t�, yAð0; xÞ and zAðy; tÞ. Then
PxðR4y; SAdzÞ ¼ PxðX e4y;X ert;XeþV2AdzÞ

þ PxðCyÞ
1�PtðCyÞ

PtðXe4y;X ert;XeþV2AdzÞ;

and

kðxÞ ¼ PxðA0Þþ
PxðC0Þ

1�PtðC0Þ
PtðA0Þ:

We will now use the fact that X is a Lévy process in order to
obtain explicit expressions for the above probabilities, finally
leading to an explicit expression for the probability of a sampled
tree in Theorem 6.3. In the following section, we first introduce the
necessary background results on Lévy processes.

5. Lévy processes and scale functions

The standard results presented in this section can be found in
Bertoin (1996, 1997), and Lambert and Trapman (2013). We state
these results in terms of an arbitrary compound Poisson process Y
with jump measure π on ð0; þ1Þ with total mass b, compensated
at rate �1. We stick to the notation defined earlier for X (law Px
when started from x, first hitting time TA of A and extremum
processes Y and Y ). It can be convenient to characterize the law of
this process by its Laplace exponent ψ defined by

ψ ðλÞ≔λ�
Z 1

0
πðdxÞð1�e�λxÞ; λZ0: ð1Þ

The function ψ is differentiable and convex and we denote by η its
largest root. Then ψ is increasing on ½η; þ1Þ and we denote by ϕ
its inverse on this set, so that ϕ is a bijection from ½0;1Þ to ½η;1Þ.

The probability of exit of an interval (from the bottom or from
the top) by Y has a simple expression (see e.g. Bertoin, 1996) in the
form

PxðT0oT ðt;þ1ÞÞ ¼Wðt�xÞ
WðtÞ ; tZxZ0; ð2Þ

where the so-called scale function W is the non-negative, non-
decreasing, differentiable function such that Wð0Þ ¼ 1, character-
ized by its Laplace transformZ 1

0
dx e�λxWðxÞ ¼ 1

ψ ðλÞ; λ4η: ð3Þ

Eq. (2) gives the probability that Y exits ð0; t� from the bottom of
the interval. The following formula gives the Laplace transform of
T on this event, where T denotes the first exit time of ð0; t�, that is,
T ¼ T04T ðt;þ1Þ:

For any q40,

Exðe�qT1fT0 oT ðt;þ1ÞgÞ ¼
W ðqÞðt�xÞ
W ðqÞðtÞ

; ð4Þ

where the so-called q-scale function W ðqÞ is the non-negative,
nondecreasing, differentiable function such that W ðqÞð0Þ ¼ 1, char-
acterized by its Laplace transformZ 1

0
dx e�λxW ðqÞðxÞ ¼ 1

ψ ðλÞ�q
; λ4ϕðqÞ: ð5Þ

Note that W ð0Þ �W . Last, the q-resolvent of the process killed upon
exiting ð0; t� is given by the following formula:

uq
t ðx; zÞ dz≔Ex

Z T

s ¼ 0
ds e�qs1fYs Adzg

� �
¼W ðqÞðt�xÞW ðqÞðzÞ

W ðqÞðtÞ
�1fzZxgW

ðqÞðz�xÞ: ð6Þ

Observe that by the Fubini–Tonelli Theorem

quq
t ðx; zÞ dz¼ Ex

Z T

s ¼ 0
1feAdsg1fYs Adzg

� �
¼ PxðeoT ;YeAdzÞ

¼ PxðY e40;Y ert;YeAdzÞ; ð7Þ

where e denotes an independent exponential random variable
with parameter q. The previous formula is key to computing the
probabilities involved in Proposition 4.2 (see Appendix). We will
use the following useful lemma (proved in the Appendix) several
times.

Lemma 5.1. For any z; qZ0,

Z z

0
W ðqÞðz�xÞπðdxÞ ¼ ðqþbÞW ðqÞðzÞ�W ðqÞ0 ðzÞ:
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6. The likelihood of the sampled tree

We now apply the results from Section 5 to the process X
(the contour process on nonsampled individuals), in order to give
an explicit formula for the probabilites displayed in Proposition 4.2.
Let ψ1 be the Laplace exponent of X:

ψ1ðλÞ ¼ λ�
Z 1

0
bc1PðV1AdxÞð1�e�λxÞ;

and W ðqÞ
1 the q-scale function associated with ψ1 and defined in

(5), required now for the specific q¼ bc2. Note that all formulae
given in the previous section hold for a general q, but that from
now on we will always assume q¼ bc2. We will use the following
definitions:

CðqÞ
1 ðzÞ≔q

Z z

0
W ðqÞ

1 ðz�uÞPðV2AduÞ; ð8Þ

and

UðqÞ
1 ðzÞ≔1þ

Z z

0
CðqÞ
1 ðxÞ dx¼ 1þq

Z z

0
W ðqÞ

1 ðz�uÞPðV2ruÞ du: ð9Þ

The last equality comes from an application of Fubini–Tonelli
theorem and a change of variable. Notice in particular that
UðqÞ0

1 ¼ CðqÞ
1 . Then we have the following results, for which proofs

can be found in the Appendix.

Lemma 6.1. Let xA ð0; t�, yA ½0; xÞ and zA ðy; tÞ. Then
PxðXe4y;X ert;XeþV2AdzÞ

¼ W ðqÞ
1 ðt�xÞ

W ðqÞ
1 ðt�yÞ

CðqÞ
1 ðz�yÞ�1fzZxgC

ðqÞ
1 ðz�xÞ

 !
dz:

Lemma 6.2. Let xAð0; t� and yA ½0; xÞ. Then

PxðCyÞ ¼ UðqÞ
1 ðt�xÞ�W ðqÞ

1 ðt�xÞ
W ðqÞ

1 ðt�yÞ
UðqÞ

1 ðt�yÞ:

We can now state the main result of this paper.

Theorem 6.3. The sequence S1; ðR2; S2Þ; ðR3; S3Þ;… is a killed Markov
chain where the transition probability only depends on the second
component (Si), and for any xA ð0; t�, yA ½0; xÞ and zAðy; tÞ, the
starting point has distribution

PðS1AdzÞ ¼ c2PðV2AdzÞþ c2

Z z

0
PðV2AduÞW ðqÞ0

1 ðz�uÞ�CðqÞ
1 ðzÞCðqÞ

1 ðtÞ
bUðqÞ

1 ðtÞ

 !
dz;

the transition probability pðx; dy dzÞ ¼ PxðRAdy; SAdzÞ is character-
ized by

PxðR4y; SAdzÞ ¼ CðqÞ
1 ðz�yÞU

ðqÞ
1 ðt�xÞ

UðqÞ
1 ðt�yÞ

�1fzZxgC
ðqÞ
1 ðz�xÞ

 !
dz;

and the killing probability is

kðxÞ ¼UðqÞ
1 ðt�xÞ
UðqÞ

1 ðtÞ
: ð10Þ

The probability p that at least one individual is sampled before time t
(i.e., the sequence is not empty) is given by

p¼
Z t

0
PðS1AdzÞ ¼ CðqÞ

1 ðtÞ
bUðqÞ

1 ðtÞ
: ð11Þ

When the chain is conditioned upon the number n of sampled
individuals, it remains a Markov chain ððRi; SiÞ;1r irnÞ, but the
transition probability becomes pðx; dy dzÞ=ð1�kðxÞÞ, which now
integrates to 1.

The formula for the transition probability is a direct consequence,
by elementary calculus, of Proposition 4.2 and Lemmas 6.1 and 6.2.
The remaining statements are proved in the Appendix.

In the rest of this section, we assume that V2 has a density, say
g2, in the sense that PðV2AduÞ ¼ g2ðuÞ du, so that CðqÞ

1 is differenti-
able with derivative

CðqÞ0
1 ðzÞ ¼ qg2ðzÞþq

Z z

0
W ðqÞ0

1 ðz�uÞg2ðuÞ du; ð12Þ

where the first term comes from differentiating the integral as a
function of its upper bound and the second one comes from
differentiating the function of z inside the integral. The first
consequence is that S1 has a density, say g, given by

gðzÞ ¼ b�1 CðqÞ0
1 ðzÞ�CðqÞ

1 ðzÞCðqÞ
1 ðtÞ

UðqÞ
1 ðtÞ

 !
: ð13Þ

The second consequence is that the transition probability has
density, say f,

PxðRAdy; SAdzÞ ¼ pðx; dy dzÞ≕f ðx; y; zÞ dy dz;

where by differentiating the expression given in Theorem 6.3 for
PxðR4y; SAdzÞ=dz with respect to y and recalling that UðqÞ0

1 ¼ CðqÞ
1 ,

we get

f ðx; y; zÞ ¼ UðqÞ
1 ðt�xÞ

UðqÞ
1 ðt�yÞ

CðqÞ0
1 ðz�yÞ�CðqÞ

1 ðz�yÞC
ðqÞ
1 ðt�yÞ

UðqÞ
1 ðt�yÞ

" #
: ð14Þ

Then we can directly write down the likelihood of a given
oriented tree as follows:

Corollary 6.4. For any given oriented tree T with coalescence times
ðyiÞ2r irn and sampling times ðziÞ1r irn, where tips are labeled from
left to right, the likelihood LSðT Þ of this tree under the general
epidemiological model observed at time t, conditional on at least one
sampled individual, is

LSðT Þ ¼ gðz1ÞkðznÞ
p

∏
n

i ¼ 2
f ðzi�1; yi; ziÞ;

where k and p are given respectively by (10) and (11) in Theorem 6.3,
and g and f are given respectively by (13) and (14).

Alternatively, we can condition on the number n of sampled
individuals (nZ1). Applying the remark in Theorem 6.3, we obtain
the conditional likelihood LnðT Þ

LnðT Þ ¼ gðz1ÞkðznÞ
p

∏
n

i ¼ 2

f ðzi�1; yi; ziÞ
1�kðzi�1Þ

:

7. Worked examples

For illustration, we now describe two specific cases of the
general model, meant as simplistic descriptions of influenza and
HIV epidemics. We apply our mathematical results to these cases
by deriving the expressions required for the likelihood under
certain simplifying assumptions. We emphasize, however, that
any practitioner working with data should carefully consider
whether the assumptions made below are suitable for their
disease of interest, or whether a different specification of the
general model would be more appropriate.

7.1. Influenza

In one special case of the model, which we envision as a
description of influenza, we assume that the outcome of an
infection is clear after a certain (random) amount of time, on the
order of a few days: either the individual has a normal, mild case
of influenza, and recovers at this point (without sampling), or it
becomes apparent that the infection is severe and the individual is
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hospitalized, with concomitant sampling of their virus. We assume
that hygiene and isolation measures in the hospital imply that
such an individual is also removed from the infectious population.
We suppose that the former outcome occurs with given prob-
ability c1 and the latter with probability c2 ¼ 1�c1; realistically for
influenza, c1 is likely to be much larger than c2, except when
restricted to particular sub-populations at risk (e.g. the elderly).
Furthermore, we assume that V1 and V2 are equal in distribution,
i.e. the time until the outcome is “decided” does not depend on the
outcome itself. Recall that, as per the general model, all infective
individuals are assumed to have the same transmission rate (b)
regardless of the outcome (severity) of their infection.

The following statement is a straightforward consequence of
Lemma 5.1 and is needed for practical applications of Theorem 6.3.
In the case when V1 ¼ V2 has a density, it is recommended to use
Eqs. (12)–(14) for such practical applications.

Proposition 7.1. In the influenza model, we have

CðqÞ
1 ðzÞ ¼ ðc2=c1ÞðbW ðqÞ

1 ðzÞ�W ðqÞ0
1 ðzÞÞ;

so that

UðqÞ
1 ðzÞ ¼ 1þðc2=c1Þ 1þb

Z z

0
W ðqÞ

1 ðsÞ ds�W ðqÞ
1 ðzÞ

� �
:

7.2. HIV

In a second special case of the model, which we envision as a
description of HIV, we suppose that individuals have a “natural”
infectious lifetime, denoted as V; we leave the distribution of V
arbitrary in the following derivations. This lifetime would apply if
there were no intervention, and since HIV is incurable, the end of
this lifetime would indeed correspond to the individual's death.
Without treatment, the time until death (shortly after the onset of
AIDS) is typically several years (median around 10 years but with
substantial variation, Collaborative Group on AIDS Incubation and
HIV Survival, 2000).

We then apply sampling at a constant rate, μ, “on top” of these
natural infectious lifetimes. That is, sampling occurs after an
independent exponential duration, say e0, with rate parameter μ;
if this time falls before the end of an individual's “natural” lifetime,
he/she is considered to be sampled. A constant rate is not entirely
unreasonable since, outside the relatively short acute phase of the
infection, the disease is asymptomatic until the onset of AIDS.
Importantly, we assume that sampling occurs concomitantly with
an effective intervention (successful drug treatment and/or beha-
vioral adjustments) that permanently prevents this individual
from transmitting further, i.e. removes him/her from the infectious
population. That is, (i) all individuals receiving interventions that
may affect the “natural” lifetime defined above have their virus
sampled (otherwise the definition of lifetime for non-sampled
individuals should be adjusted accordingly), and (ii) any such
individual immediately and completely ceases any transmission.
Assumption (i) requires that viral sequencing occurs upon diag-
nosis, which is now common for drug resistance testing in some
countries. Assumption (ii) is of course never perfectly accurate, but
can be partially justified by the high efficacy of modern drug
treatment regimens when available, and has been used in previous
HIV data analysis (Stadler et al., 2012). These assumptions may be
reasonable in some resource-rich countries, but likely not in many
resource-poor countries. Note that the model used in Stadler et al.
(2012) is in fact a special case of the model described here, where
both “natural death” (removal without sampling) and removal
with sampling occur at constant rates. We deal with this Marko-
vian case at the end of the section, but first present derivations for
an arbitrary distribution of “natural” lifetime V.

Setting Vμ≔minðV ; e0Þ, where V and e0 are assumed to be
independent, we have the probability of sampling:

c2 ¼ PðVμ ¼ e0Þ ¼ Pðe0oVÞ ¼ 1�Eðe�μV Þ
which we can rewrite as

c2 ¼ PðV4e0Þ ¼
Z
ð0;1�

μe�μrPðV4rÞ dr¼ 1�
Z
ð0;1�

e�μrPðVAdrÞ

¼ 1�c1: ð15Þ

Furthermore,

PðV1AdrÞ ¼ c�1
1 e�μrPðVAdrÞ and PðV2AdrÞ ¼ c�1

2 μe�μrPðV4rÞ dr:
ð16Þ

Taking ψ ðλÞ≔λ�b
R1
0 ð1�e�λrÞPðVAdrÞ and manipulating Eq. (15)

yield

c2 ¼
μ�ψ ðμÞ

b
;

while,

ψ1ðλÞ≔λ�bc1

Z 1

0
ð1�e�λrÞPðV1AdrÞ

¼ λ�bc1þb
Z 1

0
e�ðλþμÞrPðVAdrÞ ¼ψ ðλþμÞ�ψ ðμÞ:

Now since ψ1ðλÞ ¼ψ ðλþμÞ�ψ ðμÞ and q¼ bc2 ¼ μ�ψ ðμÞ, notice
that ψ1ðλÞ�q¼ψ ðλþμÞ�μ.

The following statement is needed for practical applications of
Theorem 6.3. The proof is found in the appendix.

Proposition 7.2. In the HIV model, we have

CðqÞ
1 ðzÞ ¼ μ

Z z

0
e�μxW ðqÞ0

1 ðz�xÞ dx

¼ μ W ðqÞ
1 ðzÞ�1�

Z z

0
μe�μxðW ðqÞ

1 ðz�xÞ�1Þ dx
� �

;

UðqÞ
1 ðzÞ ¼ 1þμ

Z z

0
dx e�μxðW ðqÞ

1 ðz�xÞ�1Þ ¼W ðqÞ
1 ðzÞ�μ�1CðqÞ

1 ðzÞ;

and the initial distribution of S1 is given by

PðS1AdzÞ ¼ μ
b

W ðqÞ0
1 ðzÞ�CðqÞ

1 ðzÞW ðqÞ
1 ðtÞ

UðqÞ
1 ðtÞ

 !
dz:

We make further computations in the Markovian case, that is,
when the “natural” lifetime of individuals ends at constant rate δ.
Then πðdrÞ ¼ bδe�δr dr and

ψ ðλþμÞ�μ¼ Q ðλÞ
λþμþδ

;

where Q ðλÞ ¼ λ2þλðμþδ�bÞ�bμ. Then the polynomial Q has two
distinct real roots

�α1 ¼ b�δ�μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþδ�bÞ2þ4bμ

q� �.
2 and

α2 ¼ b�δ�μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþδ�bÞ2þ4bμ

q� �.
2;

where both α1 and α2 are positive. Using α2�α1 ¼ b�δ�μ, we get

1
ψ ðλþμÞ�μ

¼ 1
α1þα2

α2�b
λþα1

þα1þb
λ�α2

� �
;

so that

W ðqÞ
1 ðxÞ ¼ α2�b

α1þα2
e�α1xþ α1þb

α1þα2
eα2x; xZ0:
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We demonstrate in the Appendix that applying Theorem 6.3 with
the above expression for W ðqÞ

1 ðxÞ leads to the same expression for
the likelihood as derived previously using methods particular to
this Markovian case (Stadler et al., 2012).

8. Discussion

We introduced a stochastic population dynamics model giving
rise to phylogenetic trees with sequentially sampled tips. The
lifetime of the individuals within the population may follow an
arbitrary distribution, while the production of “daughter” indivi-
duals occurs with a constant rate. We showed that the coalescent
point process with sampling times formed by pairs of coalescence
and sampling times in the left-to-right order satisfies the Markov
property. We characterized the law of this Markov chain, providing
a framework to calculate the likelihood of a phylogenetic tree, as
displayed in Theorem 6.3 and especially in Corollary 6.4.

Evaluating the likelihood of a phylogenetic tree requires the
numerical evaluation of the function W ðqÞ

1 . This evaluation can be
performed either by solving the inverse Laplace transform in (3) or
the integro-differential equation in Lemma 5.1. We leave the
numerical challenges for a future study. However, for the special
case of exponentially distributed lifetimes, analytic solutions for
the inverse Laplace transform and thus also for the likelihood of
the sampled tree are available (Stadler, 2010; Stadler et al., 2012).
A special section is dedicated to this case in the Appendix.

We envision using the model on epidemiological data in the
following way. Pathogen genetic sequencing data from different
hosts is used to reconstruct the genealogical relationship of the
data, i.e. the phylogenetic tree. This phylogenetic tree is treated as
a proxy for the transmission tree (i.e. branching events are
transmission events). We do not deal with this reconstruction
and assume for our method that the reconstructed tree is
provided. We then assume that the model introduced in this
paper gave rise to the transmission tree, and want to fit the model
to the tree using the likelihood function. There are two ways to do
the fitting. First, the likelihood of the tree can be used for
determining maximum likelihood parameter estimates for a given
sampled phylogenetic tree, by optimizing the expression for the
likelihood of the sampled tree over the parameters. Second, the
likelihood together with prior distributions on the model para-
meters can be used in a Bayesian framework to obtain the
posterior distribution of parameters given a sampled tree.

We stress that real data (i.e. sequences, sampling times and/or
the associated phylogenetic tree) do not come with the informa-
tion on the orientation of the tree. However, different orientations
lead to different likelihoods, since different orientations can give
rise to different precise pairings of successive coalescence and
sampling times (R and S). An additional computational challenge is
thus to sum the likelihood over all valid (R,S) pairings.

The second useful application of our framework is concerned
with the simulation of phylogenetic trees. If simulating the model
forward in time, one must simulate many non-sampled indivi-
duals, and thus it takes much computational time to obtain the
required number of samples. However, using the Markov chain
property of our coalescent and sampling time pairs, we can sample
once from the distribution for the starting point and n�1 times
from the distribution specifying the Markov chain in order to
obtain a tree on n tips of a specified tree age (observation time t).

So far we had to assume a constant birth rate. Generalizing the
results to time-dependent birth rates, as well as death/sampling
rates, should be conceptually straightforward: the ball in the
contour process is simply rolling back towards 0 with a varying
speed. However, generalizing to age-dependent birth rates, i.e. an
arbitrary distribution of time until birth of a new individual, will

most likely be unachievable with the current framework, as we
can no longer let the ball in the contour process roll back along an
edge without knowing the age of the individual it represents.

We conclude by emphasizing that our analyses were performed
with an epidemiological application in mind; however, any imple-
mentation may also be useful for analyzing phylogenetic trees
with sequentially sampled tips arising in different applications,
such as species phylogenies with fossil tips.
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Appendix A. Proofs

A.1. Proof of Lemma 5.1

By an integration by parts, the Laplace transform (as a function
of λ4ϕðqÞ) of the non-negative function z↦W ðqÞ0 ðzÞþ R z0 W ðqÞ

ðz�xÞπðdxÞ equals

½e�λzW ðqÞðzÞ�10 þ λ
ψ ðλÞ�q

þ
R1
0 πðdxÞe�λx

ψ ðλÞ�q

¼ �1þ λ
ψ ðλÞ�q

þψ ðλÞ�λþb
ψ ðλÞ�q

¼ qþb
ψ ðλÞ�q

;

where we used successively the facts that the Laplace transform of
W ðqÞ is 1=ðψ ðλÞ�qÞ, that the Laplace transform of a convolution
product is the product of Laplace transforms, and that W ðqÞð0Þ ¼ 1.
Now the right-hand side is also the Laplace transform of the non-
negative function z↦ðqþbÞW ðqÞðzÞ: &

A.2. Proof of Lemma 6.1

Set

HðqÞðx; t; dzÞ≔PxðX e40;X ert;XeþV2AdzÞ:
By (7), defining uq

t the q-resolvent of the process X killed upon
exiting ð0; t�, we get

HðqÞðx; t; dzÞ ¼ q
Z z

0
uq
t ðx;drÞPðV2Adz�rÞ;

so by Eqs. (6) and (8),

HðqÞðx; t; dzÞ=dz¼W ðqÞ
1 ðt�xÞ
W ðqÞ

1 ðtÞ
CðqÞ
1 ðzÞ�1fzZxgC

ðqÞ
1 ðz�xÞ:

In conclusion,

PxðX e40;X ert;XeþV2AdzÞ

¼ W ðqÞ
1 ðt�xÞ
W ðqÞ

1 ðtÞ
CðqÞ
1 ðzÞ�1fzZxgC

ðqÞ
1 ðz�xÞ

 !
dz: ð17Þ

Invariance by translation yields the result. &

A.3. Proof of Lemma 6.2

Integrating over z the equality in the previous lemma and
applying Eq. (9) yield

PxðX e4y;X ert;XeþV2rzÞ
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¼W ðqÞ
1 ðt�xÞ

W ðqÞ
1 ðt�yÞ

ðUðqÞ
1 ðz�yÞ�1Þ�1fzZxgðUðqÞ

1 ðz�xÞ�1Þ: ð18Þ

Now observe that

PxðCyÞ ¼ PxðT ðt;þ1ÞoTy4eÞþPxðX e4y;X ert;XeþV24tÞ:
For the first term, we get

PxðT ðt;þ1ÞoTy4eÞ ¼ 1�PxðeoTy4T ðt;þ1ÞÞ�PxðTyoT ðt;þ1Þ4eÞ

¼ 1�PxðeoTy4T ðt;þ1ÞÞ�
W ðqÞ

1 ðt�xÞ
W ðqÞ

1 ðt�yÞ
;

where the last equality is due to (4). For the second term, we have

PxðX e4y;X ert;XeþV24tÞ ¼ PxðX e4y;X ertÞ
�PxðX e4y;X ert;XeþV2rtÞ

¼ PxðeoTy4T ðt;þ1ÞÞ�
W ðqÞ

1 ðt�xÞ
W ðqÞ

1 ðt�yÞ
ðUðqÞ

1 ðt�yÞ�1ÞþðUðqÞ
1 ðt�xÞ�1Þ;

where the last equality follows by applying (18) with z¼t.
As a conclusion,

PxðCyÞ ¼ 1�W ðqÞ
1 ðt�xÞ

W ðqÞ
1 ðt�yÞ

�W ðqÞ
1 ðt�xÞ

W ðqÞ
1 ðt�yÞ

ðUðqÞ
1 ðt�yÞ�1ÞþUðqÞ

1 ðt�xÞ�1

¼ �W ðqÞ
1 ðt�xÞ

W ðqÞ
1 ðt�yÞ

UðqÞ
1 ðt�yÞþUðqÞ

1 ðt�xÞ;

which was the announced result. &

A.4. Proof of Theorem 6.3

Recall that the formula for the transition probability is a direct
consequence of Proposition 4.2 and Lemmas 6.1 and 6.2.

The computation of the killing probability can be obtained by
two methods. The first method uses the formula in Proposition 4.2.
Taking y¼0 in Lemma 6.2, we get

PxðC0Þ ¼ UðqÞ
1 ðt�xÞ�W ðqÞ

1 ðt�xÞ
W ðqÞ

1 ðtÞ
UðqÞ

1 ðtÞ:

Also by (7),

PxðA0Þ ¼
W ðqÞ

1 ðt�xÞ
W ðqÞ

1 ðtÞ
;

which suffices to terminate the computation. The second method
uses the fact that 1�kðxÞ is the total mass of the measure pðx; �Þ.
Taking y¼0 in the transition probability, one gets

PxðSAdzÞ ¼ CðqÞ
1 ðzÞU

ðqÞ
1 ðt�xÞ
UðqÞ

1 ðtÞ
�1fzZxgC

ðqÞ
1 ðz�xÞ

 !
dz: ð19Þ

The present alternative proof ends integrating the last density over
½0; t� and using (9).

As a last step, we express the distribution of S1. To compute the
law of S1, observe that either the progenitor of the genealogy is
sampled before t, or otherwise, conditional on the lifetime x of this
progenitor, S1 is distributed according to PxðSA �Þ. This can be
written as follows, integrating over the different possible values of
x, greater than t (in which case reflection occurs) or smaller than t:

PðS1AdzÞ ¼ c2PðV2AdzÞþðc1PðV1ZtÞþc2PðV2ZtÞÞPtðSAdzÞ
þ
Z
ð0;tÞ

c1PðV1AdrÞPrðSAdzÞ:

From (19), we get, after some algebra,

PðS1AdzÞ ¼ c2PðV2AdzÞþCðqÞ
1 ðzÞ

UðqÞ
1 ðtÞ

ðc1PðV1ZtÞþc2PðV2ZtÞÞ

þb�1AðqÞðtÞ dz�b�1BðqÞðzÞ dz;

where

AðqÞðtÞ≔bc1

Z
ð0;tÞ

PðV1AdrÞUðqÞ
1 ðt�rÞ

¼ bc1PðV1otÞþbc1q
Z t

0
PðV1AdrÞ

Z t� r

0
W ðqÞ

1 ðt�r�uÞPðV2ruÞ du;

and

BðqÞðzÞ≔bc1

Z
ð0;zÞ

PðV1AdrÞCðqÞ
1 ðz�rÞ ¼ bc1q

Z
ð0;zÞ

PðV1AdrÞ

�
Z z� r

0
W ðqÞ

1 ðz�r�uÞPðV2AduÞ:

Using the commutativity of the convolution product and Lemma
5.1, and recalling that q¼ bc2 ¼ bð1�c1Þ, we get

AðqÞðtÞ ¼ bc1PðV1otÞþq
Z t

0
du PðV2ouÞ

Z t�u

0
W ðqÞ

1 ðt�r�uÞbc1PðV1AdrÞ

¼ bc1PðV1otÞþq
Z t

0
du PðV2ouÞðbW ðqÞ

1 ðt�uÞ�W ðqÞ0
1 ðt�uÞÞ

¼ bc1PðV1otÞþbðUðqÞ
1 ðtÞ�1Þ�q

Z t

0
du PðV2ouÞW ðqÞ0

1 ðt�uÞ

¼ bc1PðV1otÞþbðUðqÞ
1 ðtÞ�1Þþbc2PðV2otÞ�q

�
Z t

0
PðV2AduÞW ðqÞ

1 ðt�uÞ

¼ bðc1PðV1otÞþc2PðV2otÞÞþbðUðqÞ
1 ðtÞ�1Þ�CðqÞ

1 ðtÞ:

Similarly,

BðqÞðzÞ ¼ q
Z z

0
du PðV2AduÞ

Z z�u

0
W ðqÞ

1 ðz�r�uÞbc1PðV1AdrÞ

¼ q
Z z

0
PðV2AduÞðbW ðqÞ

1 ðz�uÞ�W ðqÞ0
1 ðz�uÞÞ

¼ bCðqÞ
1 ðzÞ�q

Z z

0
PðV2AduÞW ðqÞ0

1 ðz�uÞ:

Substituting the final expressions for AðqÞ and BðqÞ into the previous
expression for PðS1AdzÞ finally yields

PðS1AdzÞ ¼ c2PðV2AdzÞþ c2

Z z

0
PðV2AduÞW ðqÞ0

1 ðz�uÞ�CðqÞ
1 ðzÞCðqÞ

1 ðtÞ
bUðqÞ

1 ðtÞ

 !
dz;

which was to be proved.
Finally, the probability p that at least one individual is sampled

before time t is given by

p¼
Z t

0
PðS1AdzÞ

¼ c2PðV2rtÞþc2

Z t

0
dz
Z z

0
PðV2AduÞW ðqÞ0

1 ðz�uÞ

� CðqÞ
1 ðtÞ

bUðqÞ
1 ðtÞ

Z t

0
CðqÞ
1 ðzÞ dz

¼ c2PðV2rtÞþc2

Z t

0
PðV2AduÞðW ðqÞ

1 ðt�uÞ�1Þ

� CðqÞ
1 ðtÞ

bUðqÞ
1 ðtÞ

ðUðqÞ
1 ðtÞ�1Þ

¼ c2PðV2rtÞþc2

Z t

0
PðV2AduÞW ðqÞ

1 ðt�uÞ�c2PðV2rtÞ

�b�1CðqÞ
1 ðtÞþ CðqÞ

1 ðtÞ
bUðqÞ

1 ðtÞ

¼ CðqÞ
1 ðtÞ

bUðqÞ
1 ðtÞ

;

which is the announced result. &
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A.5. Proof of Proposition 7.2

First, using the convolution rule for Laplace transforms and
then Eq. (16), the Laplace transform (as a function of λ) of CðqÞ

1 is

qEðe�λV2 Þ
ψ1ðλÞ�q

¼
R1
0 bμe�μrPðV4rÞe�λr dr

ψ1ðλÞ�q

¼ bμ
λþμ

1�Eðe�ðλþμÞV Þ
ψ1ðλÞ�q

¼ μ
λþμ

λþμ�ψ ðλþμÞ
ψ1ðλÞ�q

¼ μ
λþμ

�1þ λ
ψ1ðλÞ�q

� �
:

Now since the first factor in the final product is the Laplace
transform of the exponential density with parameter μ and the
second factor is the Laplace transform of W ðqÞ0

1 , we get (by the
convolution rule) the first proposed expression for CðqÞ

1 . The second
one follows by an integration by parts. By substituting the first
expression for CðqÞ

1 into Eq. (9), one obtains the first expression
proposed for UðqÞ

1 ðzÞ. The second follows by rearranging terms in
the second expression for CðqÞ

1 .
Let us now compute the initial distribution of S1. To this end,

we compute an expression for IðzÞ≔μ�1c2
R z
0 PðV2AduÞW ðqÞ0

1 ðz�uÞ.
Applying Eq. (16) (the laws of V1 and V2), we get

IðzÞ ¼
Z z

0
e�μuPðV4uÞW ðqÞ0

1 ðz�uÞ du

¼ ½�W ðqÞ
1 ðz�uÞe�μuPðV4uÞ�z0�

Z z

0
W ðqÞ

1 ðz�uÞðc2PðV2AduÞ

þc1PðV1AduÞÞ
¼ �μ�1c2PðV2AdzÞ=dzþW ðqÞ

1 ðzÞ�b�1CðqÞ
1 ðzÞ�b�1ðbW ðqÞ

1 ðzÞ
�W ðqÞ0

1 ðzÞÞ;
where the second equality is an integration by parts and the last
one is due to Lemma 5.1 and Eq. (8). Then we get

μIðzÞ ¼ c2

Z z

0
PðV2AduÞW ðqÞ0

1 ðz�uÞ ¼ �c2PðV2AdzÞ=dz

þμb�1ð�CðqÞ
1 ðzÞþW ðqÞ0

1 ðzÞÞ:
Using the general expression for the initial distribution of S1 in
Theorem 6.3, we get

PðS1AdzÞ=dz¼ μb�1ð�CðqÞ
1 ðzÞþW ðqÞ0

1 ðzÞÞ�CðqÞ
1 ðzÞCðqÞ

1 ðtÞ
bUðqÞ

1 ðtÞ

¼ μb�1W ðqÞ0
1 ðzÞ�μb�1CðqÞ

1 ðzÞU
ðqÞ
1 ðtÞþμ�1CðqÞ

1 ðtÞ
UðqÞ

1 ðtÞ

¼ μ
b

W ðqÞ0
1 ðzÞ�CðqÞ

1 ðzÞW ðqÞ
1 ðtÞ

UðqÞ
1 ðtÞ

 !
;

which ends the proof. &

A.6. Likelihood in the Markovian case

In the Markovian case, individuals die at constant rate δ and are
sampled at constant rate μ. In this competing-exponentials case,
we have c2 ¼ μ=ðμþδÞ and PðV2AdrÞ ¼ ðμþδÞe�ðμþδÞr dr. The scale
function W ðqÞ

1 was already presented in Section 7.2, and we now
compute the remaining functions required for the expression of
the likelihood. To obtain simple expressions, we note the following
useful relationships, where α1 and α2 are defined in Section 7.2:

α1α2 ¼ bμ
ðα1�μ�δÞðα2þμþδÞ ¼ �bδ
ðα1þbÞðα1�μ�δÞ ¼ �bδ
ðα2�bÞðα2þμþδÞ ¼ �bδ

α1ðα2�bÞðα2þμÞ ¼ �bδμ
α2ðα1þbÞðα1�μÞ ¼ bδμ

Then, using the definitions of CðqÞ
1 and UðqÞ

1 in Eqs. (8) and (9), and
simplifying, we obtain

W ðqÞ
1 ðxÞ ¼ α2�b

α1þα2
e�α1xþ α1þb

α1þα2
eα2x

W ðqÞ0
1 ðxÞ ¼ b

α1þα2
ððα1�μÞe�α1xþðα2þμÞeα2xÞ

CðqÞ
1 ðxÞ ¼ bμ

α1þα2
ðeα2x�e�α1xÞ

CðqÞ0
1 ðxÞ ¼ bμ

α1þα2
ðα1e�α1xþα2eα2xÞ

UðqÞ
1 ðxÞ ¼ α2e�α1xþα1eα2x

α1þα2
:

We can now proceed to calculate the factors involved in the
likelihood (Corollary 6.4). Substituting the required functions and
simplifying, we have

gðz1Þ ¼
μeα2z1 ðα2þα1eðα1 þα2Þðt� z1ÞÞ

α2þα1eðα1 þα2Þt

kðznÞ ¼
eα1zn ðα2þα1eðα1 þα2Þðt� znÞÞ

α2þα1eðα1 þα2Þt p¼ μðeðα1 þα2Þt�1Þ
α2þα1eðα1 þα2Þt

f ðzi�1; yi; ziÞ

¼ bμeα1ðzi� 1 �yiÞeα2ðzi �yiÞðα2þα1eðα1 þα2Þðt� zi� 1ÞÞðα2þα1eðα1 þα2Þðt� ziÞÞ
ðα2þα1eðα1 þα2Þðt�yiÞÞ2

:

For direct comparison to the likelihood derived previously for
the Markovian case (Stadler et al., 2012), we consider the like-
lihood given the time of observation (t) but not conditioned on
sampling, which we denote as LðT Þ. Substituting the above factors
and simplifying, we have

LðT Þ ¼ gðz1ÞkðznÞ ∏
n

i ¼ 2
f ðzi�1; yi; ziÞ

¼ bn�1μn 1
e�ðα1 þα2Þtðα2þα1eðα1 þα2ÞtÞ2

�∏n
i ¼ 1e

�ðα1 þα2Þðt� ziÞðα2þα1eðα1 þα2Þðt� ziÞÞ2
∏n

i ¼ 2e
�ðα1 þα2Þðt�yiÞðα2þα1eðα1 þα2Þðt�yiÞÞ2

: ð20Þ

On the other hand, the likelihood was previously derived (Stadler
et al., 2012) as the following, adjusted to match present notation:

LðT Þ ¼ bn�1μn 1
qðtÞ

∏n
i ¼ 1qðt�ziÞ

∏n
i ¼ 2qðt�yiÞ

ð21Þ

with the definitions

qðxÞ ¼ 2ð1�γ22Þþe� γ1xð1�γ2Þ2þeγ1xð1þγ2Þ2;

γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�δ�μÞ2þ4bμ

q
; γ2 ¼ �b�δ�μ

γ1
:

Note that γ1 ¼ α1þα2 and γ2 ¼ ðα1�α2Þ=ðα1þα2Þ. We can thus
rewrite

qðxÞ ¼ 4e�ðα1 þα2Þx

ðα1þα2Þ2
ðα2þα1eðα1 þα2ÞxÞ2:

Cancelling the constant factors in qð�Þ, it immediately follows that
Eqs. (20) and (21) precisely agree.
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