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a b s t r a c t 

The Goldbeter–Koshland model has been a paradigm for ultrasensitivity in biological networks for more 

than 30 years. Despite its simplicity the validity of this model is restricted to conditions when the sub- 

strate is in excess over the converter enzymes – a condition that is easy to satisfy in vitro , but which is 

rarely satisfied in vivo . Here, we analyze the Goldbeter-Koshland model by means of the total quasi-steady 

state approximation which yields a comprehensive classification of the steady state operating regimes un- 

der conditions when the enzyme concentrations are comparable to or larger than that of the substrate. 

Where possible we derive simple expressions characterizing the input-output behavior of the system. Our 

analysis suggests that enhanced sensitivity occurs if the concentration of at least one of the converter 

enzymes is smaller (but not necessarily much smaller) than that of the substrate and if that enzyme is 

saturated. Conversely, if both enzymes are saturated and at least one of the enzyme concentrations ex- 

ceeds that of the substrate the system exhibits concentration robustness with respect to changes in that 

enzyme concentration. Also, depending on the enzyme’s saturation degrees and the ratio between their 

maximal reaction rates the total fraction of phosphorylated substrate may increase, decrease or change 

nonmonotonically as a function of the total substrate concentration. The latter finding may aid the inter- 

pretation of experiments involving genetic perturbations of enzyme and substrate abundances. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The quasi-steady state approximation (QSSA) or its close rel-

tive, the rapid equilibrium approximation, are frequently used

o derive reduced models for enzyme-catalyzed reaction networks

 Radulescu et al., 2012; Salazar and Höfer, 2009; Segel and Slemrod,

989; Straube et al., 2005 ). However, while this procedure mostly

reserves the steady state structure of the network it often fails to

orrectly capture its transient dynamics. For this purpose the total

SSA (or tQSSA), which is based on certain linear combinations of

he original variables, has proven to yield much better approxima-

ions, especially when the enzyme concentration becomes compa-

able to or larger than that of the substrate ( Borghans et al., 1996;

iliberto et al., 20 07; Tzafriri, 20 03; Tzafriri and Edelman, 20 04 ).

ere, we wish to show that the tQSSA can also be useful to clas-

ify the steady state behavior of a reaction network. 

To this end, we consider the Goldbeter–Koshland model for

ovalent modification cycles ( Fig. 1 ) which has been a paradigm
E-mail addresses: straube@math.fau.de , rstraube@mpi-magdeburg.mpg.de 
1 Present address: Max Planck Institute for Dynamics of Complex Technical Sys- 

ems, Sandtorstr. 1, D-39106 Magdeburg, Germany 
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022-5193/© 2017 Elsevier Ltd. All rights reserved. 
or the generation of ultrasensitivity in signaling networks

 Ferrell Jr. and Ha, 2014; Goldbeter and Koshland Jr., 1981; Tyson

t al., 2003 ). Due to its simplicity it has also been used as a toy

odel to analyze generic network properties such as signal trans-

ission ( T ̆anase-Nicola et al., 2006; Tostevin and ten Wolde, 2009 )

r cross talk ( Behar et al., 2007; Rowland et al., 2012 ). However,

he applicability of the Goldbeter–Koshland model is restricted to

onditions when the substrate concentration is much higher than

hat of the converter enzymes. While this condition is routinely

sed to conduct in vitro experiments it is rarely satisfied in vivo

 Blüthgen et al., 2006; Legewie et al., 2008 ). To overcome this lim-

tation we reanalyze the Goldbeter-Koshland model by means of

he tQSSA. The resulting quadratic equations for the concentra-

ions of the enzyme-substrate complexes are solved in the limit

f high and low affinity which defines 4 operating regimes. Fur-

her analysis within each regime defines several subregimes the

umber of which depends on the enzyme affinities. Together, this

ields a comprehensive classification of the steady state operating

egimes for covalent modification cycles which extends the classi-

cation given by Gomez-Uribe et al. (2007) to conditions when the

nyzme concentrations are comparable to or larger than that of the
ubstrate. 

http://dx.doi.org/10.1016/j.jtbi.2017.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.08.006&domain=pdf
mailto:straube@math.fau.de
mailto:rstraube@mpi-magdeburg.mpg.de
http://dx.doi.org/10.1016/j.jtbi.2017.08.006
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Fig. 1. Reaction scheme for the Goldbeter–Koshland model describing phosphory- 

lation/dephosphorylation cycles as mediated by a kinase ( K ) and a phosphatase ( P ). 

S and S ∗ denote the unphosphorylated and phosphorylated form of the substrate, 

respectively. 
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2. Material and methods 

2.1. QSSA vs. total QSSA 

Assuming mass-action kinetics the dynamics of the network de-

picted in Fig. 1 is described by the ODE system 

d [ S ∗] 

dt 
= −k + 2 [ S 

∗] [ P ] + k −2 [ S 
∗P ] + k 1 [ SK ] (1)

d [ SK ] 

dt 
= k + 1 [ S ] [ K ] −

(
k −1 + k 1 

)
[ SK ] (2)

d [ S ∗P ] 

dt 
= k + 2 [ S 

∗] [ P ] −
(
k −2 + k 2 

)
[ S ∗P ] (3)

together with the conservation relations 

[ S ] + [ SK ] + [ S ∗] + [ S ∗P ] = S T (4)

[ K ] + [ SK ] = K T (5)

[ P ] + [ S ∗P ] = P T . (6)

Here, S T , K T and P T denote total concentrations of substrate, ki-

nase and phosphatase, respectively. Solving Eqs. (4) –(6) for [ S ], [ K ]

and [ P ], and substituting the resulting expressions into Eqs. (1) –(3)

yields a set of ODEs for [ S ∗], [ SK ] and [ S ∗P ]. 

The QSSA relies on the assumption that the enzyme substrate

complexes, SK and S ∗P , rapidly approach a quasi-steady state de-

fined by 

d[ SK] 

dt 
≈ 0 and 

d[ S ∗P ] 

dt 
≈ 0 . (7)

Solving these equations for [ SK ] and [ S ∗P ] yields the algebraic rela-

tions 

[ SK] ≈ [ S][ K] 

K 1 

and [ S ∗P ] ≈ [ S ∗][ P ] 

K 2 

(8)

where K 1 = (k −
1 

+ k 1 ) /k + 
1 

and K 2 = (k −
2 

+ k 2 ) /k + 
2 

denote the

Michaelis–Menten constants of the kinase and the phosphatase,

respectively. Under the additional assumption that the substrate is

in excess over the enzymes, i.e. 

S T � max (K T , P T ) (9)

Goldbeter and Koshland derived the following ODE for [ S ∗]

( Goldbeter and Koshland Jr., 1981 ) 

d [ S ∗] 

dt 
≈ k 1 K T 

S T − [ S ∗] 

K 1 + S T − [ S ∗] 
− k 2 P T 

[ S ∗] 

K 2 + [ S ∗] 
. (10)

Note that under the substrate excess condition ( Eq. (9) ) the conser-

vation relation for the substrate ( Eq. (4) ) simplifies to [ S] + [ S ∗] ≈
S T , i.e. the Goldbeter–Koshland model neglects sequestration of

substrate into enzyme-substrate complexes. 

One of the hallmarks of the Goldbeter–Koshland model is that it

predicts ultrasensitive responses if both converter enzymes operate
n saturation ( Fig. 2 A). In general, the steady state response curve

 d [ S ∗] /d t = 0 ) is given by 

 ≡ [ S ∗] 

S T 
= 

{
x −, α < 1 

x + , α > 1 

(11)

here α = k 1 K T / (k 2 P T ) denotes the ratio between the maximal re-

ction rates of kinase and phosphatase, and x ± denotes 

 ± = 

1 

2 

(
1 + 

K 

∗
1 + αK 

∗
2 

1 − α

)
± 1 

2 

√ (
1 + 

K 

∗
1 

+ αK 

∗
2 

1 − α

)2 

− 4 

αK 

∗
2 

1 − α
. 

(12)

ence, the steady state response within the Goldbeter–Koshland

odel can be classified by the magnitude of the rescaled

ichaelis–Menten constants K 

∗
i 

= K i /S T ( i = 1 , 2 ). Apart from the

ltrasensitive regime ( max (K 

∗
1 , K 

∗
2 ) � 1 ) there are three further

teady state operating regimes denoted by Gomez-Uribe et al.

2007) : hyperbolic ( min (K 

∗
1 
, K 

∗
2 
) � 1 ), signal-transducing ( K 

∗
1 

�
 � K 

∗
2 ) ) and threshold-hyperbolic ( K 

∗
2 � 1 � K 

∗
1 ). Comparing the

redictions of the Goldbeter–Koshland model with those of full nu-

erical solutions (cf. Fig. 2 ) we see that unless both enzymes are

nsaturated ( Fig. 2 B) the predictions based on Eq. (12) overestimate

he concentration of the phosphorylated substrate at large values

f α because sequestration effects are neglected. 

The total QSSA starts by introducing the total concentrations of

hosphorylated and unphosphorylated substrate as 

 Y ∗] = [ S ∗] + [ S ∗P ] (13)

 Y ] = [ S] + [ SK] (14)

ogether with the inverse relations 

 S ∗] = [ Y ∗] − [ S ∗P ] (15)

 S] = [ Y ] − [ SK] . (16)

n the new variables, Y ∗ and Y , the conservation relation for the

ubstrate (4) simplifies to 

 Y ] + [ Y ∗] = S T . (17)

Addition of Eqs. (1) and (3) yields an ODE for [ Y ∗] which re-

laces that for [ S ∗] according to 

d[ Y ∗] 

dt 
= k 1 [ SK] − k 2 [ S 

∗P ] . (18)

n the total QSSA the concentrations of the enzyme-substrate com-

lexes are, again, determined by the QSSA relations (8) , but now

 S ∗] and [ S ] have to be replaced according to Eqs. (15) and (16) ,

espectively. In conjunction with the conservation relations (5),

6) and (17) this yields two quadratic equations for [ SK ] and [ S ∗P ]

iven by 

 

SK ] 
2 − [ SK ] ( K T + S T − [ Y ∗] + K 1 ) + K T ( S T − [ Y ∗] ) = 0 (19)

 

S ∗P ] 
2 − [ S ∗P ] ( P T + [ Y ∗] + K 2 ) + P T [ Y 

∗] = 0 . (20)

aking into account the constraints 0 ≤ [ SK ] ≤ K T and 0 ≤ [ S ∗P ] ≤ P T ,

he solutions of Eqs. (19) and (20) are given by 

 

SK ] = 

K T + S T − [ Y ∗] + K 1 

2 

−
√ 

( K T + S T − [ Y ∗] + K 1 ) 
2 

4 

− K T ( S T − [ Y ∗] ) (21)

 

S ∗P ] = 

P T + [ Y ∗] + K 2 

2 

−
√ 

( P T + [ Y ∗] + K 2 ) 
2 

4 

− P T [ Y ∗] . (22)

ubstituting these expressions into Eq. (18) yields the tQSSA for

he ODE system defined by Eqs. (1) –(6) and for initial conditions

n the range 0 ≤ [ Y ∗] ≤ S . 
T 
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Fig. 2. Steady state operating regimes of the Goldbeter–Koshland model under conditions of substrate excess: (A) Ultrasensitivity ( K ∗1 = K ∗2 = 0 . 01 ), (B) hyperbolic response 

( K ∗1 = K ∗2 = 50 ), (C) signal-transducing response ( K ∗1 = 0 . 01 , K ∗2 = 50 ), (D) threshold-hyperbolic response ( K ∗1 = 50 , K ∗2 = 0 . 01 ). Solid lines were computed from Eq. (11) . Dashed 

lines correspond to the numerical steady state solution of Eqs. (1) –(6) . Dotted lines mark the parameter value for half-maximal activation (A,B) or the location of thresholds 

(C,D). Parameters: K T = P T = 0 . 1 μM, S T = 1 μM, k 2 = k −
1 

= k −
2 

= 1 / s. 
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(Ia ) : K + P < S (30) 
.2. Operating regimes within the total QSSA 

The steady state behavior within the Goldbeter–Koshland model

an be classified by comparing the Michaelis-Menten constants

ith the total substrate concentration. However, the structure of

he quadratic equations (19) and (20) suggests a different classifi-

ation scheme within the total QSSA. In fact, quadratic equations

f the form 

 

2 − x (A + B + ε) + AB = 0 (23)

ave been analyzed previously in the context of bifunctional en-

ymes ( Straube, 2013 ) and two-component systems ( Straube, 2014 )

s well as in the analysis of substrate competition ( Buchler and

ouis, 2008; Straube, 2015 ). Depending on the relative magnitude

etween ε and A (or B ) the solution Eq. (23) can be approximated

y 

 ≈ AB 

A + B + ε 
, (24) 

hen ε � min ( A, B ) or 

 ≈
{ 

A 

(
1 − ε 

B −A 

)
B 

(
1 − ε 

A −B 

) A < B 

B < A 

(25) 

hen ε � max ( A, B ). 

Applied to the quadratic equations (19) and (20) this suggests

o classify the steady state behavior within the total QSSA by com-

aring the Michaelis–Menten constants with the enzyme concen-

rations (rather than the substrate concentration). In the high- K M 

egime, defined by K 1 � K T and K 2 � P T , this yields the approxi-

ate solutions 
 SK] ≈ K T ( S T − [ Y ∗] ) 

K T + S T − [ Y ∗] + K 1 

(26) 

 S ∗P ] ≈ P T [ Y 
∗] 

P T + [ Y ∗] + K 2 

(27) 

hereas in the low- K M 

regime ( K 1 � K T and K 2 � P T ) the approxi-

ations read 

 

SK ] ≈
{ 

K T 

(
1 − K 1 

S T −[ Y ∗] −K T 

)
( S T − [ Y ∗] ) 

(
1 − K 1 

K T −( S T −[ Y ∗] ) 

) [ Y ∗] < S T − K T 

[ Y ∗] > S T − K T 

(28) 

nd 

 

S ∗P ] ≈
{ 

[ Y ∗] 
(
1 − K 2 

P T −[ Y ∗] 

)
P T 

(
1 − K 2 

[ Y ∗] −P T 

) [ Y ∗] < P T 

[ Y ∗] > P T 
. (29) 

hile previous studies only focussed on the high- K M 

regime, de-

ned by Eqs. (26) and (27) ( Borghans et al., 1996; Ciliberto et al.,

0 07; Gomez-Uribe et al., 20 07 ), we shall also consider the low- K M 

egime as well as the mixed regimes. 

. Results 

.1. The low- K M 

regime 

To derive an explicit expression for [ Y ∗] in the low- K M 

regime

 K 1 � K T and K 2 � P T ) we need to combine the expressions in Eqs.

28) and (29) in an appropriate manner. To this end, we distinguish

wo cases: 
T T T 
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(Ib) : K T + P T > S T (31)

Note that in the first case [ Y ∗] < P T implies [ Y ∗] < S T − K T and vice

versa in the second case. Hence, in the regime (Ia) we obtain (to

lowest order) the tQSSA approximation 

d [ Y ∗] 

dt 
≈

⎧ ⎨ 

⎩ 

k 1 K T − k 2 [ Y 
∗] 

k 1 K T − k 2 P T 

k 1 ( S T − [ Y ∗] ) − k 2 P T 

[ Y ∗] < P T 

P T < [ Y ∗] < S T − K T 

S T − K T < [ Y ∗] 

(32)

whereas in the second regime (Ib) the approximation reads 

d [ Y ∗] 

dt 
≈

⎧ ⎨ 

⎩ 

k 1 K T − k 2 [ Y 
∗] 

k 1 S T − ( k 1 + k 2 ) [ Y 
∗] 

k 1 ( S T − [ Y ∗] ) − k 2 P T 

[ Y ∗] < S T − K T 

S T − K T < [ Y ∗] < P T 

P T < [ Y ∗] 

(33)

3.1.1. Response curve with respect to k 1 
3.1.1.1. Regime (Ia): K T + P T < S T . To derive the steady state re-

sponse curve as a function of k 1 we set the first line in Eq. (32) to

zero 

k 1 K T − k 2 [ Y 
∗] = 0 (34)

which has the solution [ Y ∗] = (k 1 /k 2 ) K T . Applying the condition

[ Y ∗] < P T yields k 1 < k 2 P T / K T . In the middle interval (second line in

Eq. (32) ) there is no steady state solution to lowest order (unless

k 1 K T = k 2 P T ). To find the steady state solution in this interval one

would have to consider the first-order correction terms for [ SK ]

and [ S ∗P ] in Eqs. (28) and (29) . However, for the present purpose

this will not be necessary. Instead, we go ahead setting the last

line in Eq. (32) to zero 

k 1 (S T − [ Y ∗]) − k 2 P T = 0 (35)

which has the solution [ Y ∗] = S T − (k 2 /k 1 ) P T . Applying the con-

dition S T − K T < [ Y ∗] yields k 1 > k 2 P T / K T . Combining these results

shows that 

[ Y ∗] ≈
{ 

k 1 
k 2 

K T 

S T − k 2 
k 1 

P T 

k 1 < k 2 
P T 
K T 

k 1 > k 2 
P T 
K T 

. (36)

Hence, in the lowest order approximation the middle interval in

Eq. (32) shrinks to zero. In fact, in a small interval around the

threshold value k 1 c = k 2 P T /K T the response curve changes in an

ultrasensitive manner from ( k 1 / k 2 ) K T to S T − (k 2 /k 1 ) P T ( Fig. 3 A)

where the threshold (defined by α = 1 ) is the same as in the

Goldbeter–Koshland model (cf. Eq. (11) ). 

To compute the stimulus-response curve for the phosphorylated

substrate we employ Eqs. (15) and (29) which yields 

[ S ∗] ≈
{ k 1 

k 2 
K T 

K 2 

P T − k 1 
k 2 

K T 

S T −
(
1 + 

k 2 
k 1 

)
P T 

k 1 < k 2 
P T 
K T 

k 1 > k 2 
P T 
K T 

(37)

Hence, below k 1 c the phosphorylation level is low (since K 2 / P T � 1)

whereas beyond the threshold it increases hyperbolically. Note that

the steep increase of the response curve near k 1 c is not captured

by this approximation. However, from Eq. (37) we see that even at

high kinase activity ( k 1 � k 2 ) the maximal phosphorylation level is

not S T , but S T − P T , which results from the sequestration of sub-

strate by the phosphatase. Consistently, as the phosphatase con-

centration increases the maximal phosphorylation level drops, and

the ultrasensitivity of the response curve (measured by the Hill co-

efficient n H ) decreases ( Fig. 3 B). Note that even when K T + P T > S T 
the system retains enhanced sensitivity. 

3.1.1.2. Regime (Ib): K T + P T > S T . The steady state equations re-

sulting from the first and the third line in Eq. (33) are the

same as those in Eq. (32) . Applying the conditions [ Y ∗] < S T − K T 

and P < [ Y ∗] to the solutions [ Y ∗] = (k /k ) K and [ Y ∗] = S −
T 1 2 T T 
(k 2 /k 1 ) P T yields k 1 < k 2 (S T − K T ) /K T and k 1 > k 2 P T / (S T − P T ) , re-

pectively. The steady state solution corresponding to the middle

egime in Eq. (33) reads [ Y ∗] = k 1 S T / (k 1 + k 2 ) . Applying the con-

itions [ Y ∗] > S T − K T and [ Y ∗] < P T yields k 1 > k 2 (S T − K T ) /K T and

 1 < k 2 P T / (S T − P T ) , respectively. 

Combining these results shows that for K T + P T > S T the re-

ponse curve can be approximated by (cf. Fig. 3 C) 

 

Y ∗] ≈

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k 1 
k 2 

K T 

k 1 
k 1 + k 2 S T 

S T − k 2 
k 1 

P T 

0 < k 1 < k 2 
S T −K T 

K T 

k 2 
S T −K T 

K T 
< k 1 < k 2 

P T 
S T −P T 

k 1 > k 2 
P T 

S T −P T 

. (38)

ence, if K T < S T and P T < S T (with K T + P T > S T ) there are three dis-

inct intervals in which [ Y ∗] increases with k 1 in a specific man-

er. Since k 1 has to be positive one or two of these intervals be-

ome empty when K T > S T or P T > S T in which case the solution

implifies. For example, if K T > S T the first interval is empty and

q. (38) becomes (cf. Fig. 3 D) 

 

Y ∗] ≈
{ 

k 1 
k 1 + k 2 S T 

S T − k 2 
k 1 

P T 

0 < k 1 < k 2 
P T 

S T −P T 

k 1 > k 2 
P T 

S T −P T 

. (39)

imilarly, if P T > S T the solution simplifies to (cf. Fig. 3 E) 

 

Y ∗] ≈
{ 

k 1 
k 2 

K T 

k 1 
k 1 + k 2 S T 

0 < k 1 < k 2 
S T −K T 

K T 

k 1 > k 2 
S T −K T 

K T 

. (40)

inally, if both enzyme concentrations are larger than that of the

ubstrate Eq. (38) becomes (cf. Fig. 3 F) 

 

Y ∗] ≈ k 1 
k 1 + k 2 

S T . (41)

ogether, this suggests that the system retains enhanced sensitiv-

ty ( n H > 1) in the regime K T + P T > S T if the concentration of at

east one of the converter enzymes remains lower than that of the

ubstrate. 

From the expression in Eq. (41) we see that if the concentra-

ions of both converter enzymes independently exceed the sub-

trate concentration the Hill coefficient for the response curve

ecomes n H = 1 so that ultrasensitivity is lost. Interestingly, the

hape of the stimulus-response curve does not depend on the en-

yme concentrations in that regime. This suggests that the system

xhibits concentration robustness ( Shinar and Feinberg, 2010 ) with

espect to K T and P T , i.e. changes in either concentration would not

ffect the steady state output of the system. Also, from the expres-

ions in Eqs. (39) and (40) we see that the former does not depend

n K T while the latter does not depend on P T suggesting that con-

entration robustness also exists if only one of the enzyme con-

entrations exceeds the substrate concentration. 

Taken together, these results suggest that under the conditions

 T < S T < P T and P T < S T < K T the system exhibits both ultrasensitiv-

ty and concentration robustness. 

.1.2. Response curve with respect to S T 
Next we wish to analyze how the total fraction of phospho-

ylated substrate changes with the total substrate concentration.

o this end, we rewrite Eq. (38) in terms of S T . As a first step

e determine the boundaries of the intervals in which the three

olution branches exist. From the first and the third line we

ee that the solutions [ Y ∗] = (k 1 /k 2 ) K T and [ Y ∗] = S T − (k 2 /k 1 ) P T 
xist for S T > (1 + k 1 /k 2 ) K T and S T > (1 + k 2 /k 1 ) P T , respectively.

he solution in the middle interval ( [ Y ∗] = k 1 S T / (k 1 + k 2 ) ) exists

or S T < min [(1 + k 1 /k 2 ) K T , (1 + k 2 /k 1 ) P T ] . Hence, for k 1 K T < k 2 P T
 α < 1) the stimulus-response curve can be approximated by 
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Fig. 3. Response curves in the low- K M regime as a function of k 1 : (A) K T = P T = 0 . 3 μM. (B) As the enzyme concentrations increase the maximal phosphorylation level as 

well as the ultrasensitivity decrease. Numbers indicate the value of K T = P T for S T = 1 μM. The Hill coefficient is defined by n H = ln 81 / ln R S where R S = k (90) 
1 

/k (10) 
1 

denotes 

the ratio of parameter values that elicite 90% (and 10%) of the maximal response. (C) K T = P T = 0 . 7 μM. (D) K T = 2 μM, P T = 0 . 2 μM. (E) K T = 0 . 2 μM, P T = 2 μM. (F) 

K T = P T = 2 μM. Black solid lines correspond to the numerical steady state solution of Eqs. (1) –(6) . Red dashed lines were computed from Eq. (36) (A), Eq. (37) (B), Eq. 

(38) (C), Eq. (39) (D), Eq. (40) (E), Eq. (41) (F). Other parameters: S T = 1 μM, K 1 = K 2 = 0 . 01 μM, k 2 = 1 / s. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 4. Response curves in the low- K M regime as a function of S T for different values of α = k 1 K T / (k 2 P T ) : (A) total fraction of phosphorylated substrate. (B) fraction of 

phosphorylated substrate. Black solid lines correspond to the numerical steady state solution of Eqs. (1) –(6) . Red dashed lines were computed from Eqs. (42) –(45) . Vertical 

dotted lines correspond to the thresholds (1 + k 1 /k 2 ) K T (upper curves) and (1 + k 2 /k 1 ) P T (lower curves). Parameters: k 2 = 0 . 5 / s (upper curves), k 2 = 2 / s (lower curves). Other 

parameters: k 1 = 1 /s, K 1 = K 2 = 0 . 01 μM, K T = P T = 1 μM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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F  
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E

w

w  

o  
[ Y ∗] 

S T 
≈

{ 

k 1 
k 1 + k 2 
k 1 
k 2 

K T 
S T 

S T < 

(
1 + 

k 1 
k 2 

)
K T 

S T > 

(
1 + 

k 1 
k 2 

)
K T 

(42) 

hereas for k 1 K T > k 2 P T ( α > 1) the approximation reads 

[ Y ∗] 

S T 
≈

{ 

k 1 
k 1 + k 2 

1 − k 2 
k 1 

P T 
S T 

S T < 

(
1 + 

k 2 
k 1 

)
P T 

S T > 

(
1 + 

k 2 
k 1 

)
P T 

. (43) 

rom these expressions it is apparent that the fraction of phospho-

ylated substrate may decrease ( Eq. (42) ) or increase ( Eq. (43) ) as a

unction of the total substrate concentration depending on the ra-

io α = k 1 K T / (k 2 P T ) between the maximal reaction rates of kinase

nd phosphatase ( Fig. 4 A). 
To compute approximate expressions for [ S ∗]/ S T we employ

qs. (15) and (29) which yields 

[ S ∗] 

S T 
≈

⎧ ⎨ 

⎩ 

k 1 
k 1 + k 2 

K 2 

P T − k 1 
k 1 + k 2 

S T 

k 1 
k 2 

K T 
S T 

K 2 

P T − k 1 
k 2 

K T 

S T < 

(
1 + 

k 1 
k 2 

)
K T 

S T > 

(
1 + 

k 1 
k 2 

)
K T 

(44) 

hen k 1 K T < k 2 P T ( α < 1) and 

[ S ∗] 

S T 
≈

⎧ ⎨ 

⎩ 

k 1 
k 1 + k 2 

K 2 

P T − k 1 
k 1 + k 2 

S T 

1 −
(
1 + 

k 2 
k 1 

)
P T 
S T 

S T < 

(
1 + 

k 2 
k 1 

)
P T 

S T > 

(
1 + 

k 2 
k 1 

)
P T 

(45) 

hen k 1 K T > k 2 P T ( α > 1). Interestingly, when α < 1 the fraction

f phosphorylated substrate changes in a nonmonotonic manner
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Fig. 5. Response curves for the total fraction of phosphorylated substrate in the high- K M regime: (A) as a function of k 1 , (B) as a function of S T for different values of 

α = k 1 K T / (k 2 P T ) . Black solid lines correspond to the numerical steady state solution of Eqs. (1) –(6) . Red dashed lines were computed from Eqs. (49) (A) and (47) (B). The 

dotted line indicates the value for half-maximal activation (A). Parameters: (A) k 2 = 2 / s, (B) k 2 = 0 . 5 / s (upper curve), k 2 = 2 / s (lower curve), k 1 = 1 / s, K 1 = K 2 = 10 μM, 

S T = K T = P T = 1 μM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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( Fig. 4 B) with a maximum at (1 + k 1 /k 2 ) K T ( Eq. (44) ). In contrast,

if k 1 K T > k 2 P T the fraction of phosphorylated substrate remains low

(since K 2 / P T � 1) below the threshold and increases hyperbolically

beyond that point ( Eq. (45) ). 

3.2. The high- K M 

regime 

To derive an equation for [ Y ∗] in the high- K M 

regime ( K 1 � K T 

and K 2 � P T ) we substitute the expressions from Eqs. (26) and

(27) into Eq. (18) to obtain the approximation 

d [ Y ∗] 

dt 
≈ k 1 K T 

S T − [ Y ∗] 

K T + K 1 + S T − [ Y ∗] 
− k 2 P T 

[ Y ∗] 

P T + K 2 + [ Y ∗] 
. (46)

Hence, in the high- K M 

regime the dynamics of [ Y ∗] is described by

a similar equation as [ S ∗] in the context of the Goldbeter–Koshland

model ( Eq. (10) ). The steady state solution for the total fraction of

phosphorylated substrate is given by 

y ≡ [ Y ∗] 

S T 
= 

{
y − , 

y + , 
α < 1 

α > 1 

(47)

with 

y ± = 

1 

2 

( 

1 + 

P T 
S T 

α
(
1 + 

˜ K 2 

)
1 − α

+ 

K T 

S T 

1 + 

˜ K 1 

1 − α

) 

(48)

± 1 

2 

√ √ √ √ 

( 

1 + 

P T 
S T 

α
(
1 + 

˜ K 2 

)
1 − α

+ 

K T 

S T 

1 + 

˜ K 1 

1 − α

) 2 

− 4 

P T 
S T 

α
(
1 + 

˜ K 2 

)
1 − α

. 

Here, ˜ K 1 = K 1 /K T and 

˜ K 2 = K 2 /P T denote Michaelis–Menten con-

stants which are scaled by enzyme (rather than substrate) concen-

trations. Note that the expression in Eq. (48) reduces to that of the

Goldbeter–Koshland model ( Eq. (12) ) when S T � max ( K T , P T ) while

keeping K 1 / S T and K 2 / S T constant. 

3.2.1. Response curve with respect to k 1 
Under conditions when the substrate concentration is equal to

or lower than that of the converter enzymes ( S T ≤ min ( K T , P T )) one

may linearize the right-hand side of Eq. (46) to obtain the steady

state approximation ( Fig. 5 A) 

[ Y ∗] ≈ S T 
α

α + K 1 /K 2 

, α = 

k 1 K T 

k 2 P T 
. (49)

Here, [ Y ∗] increases in a hyperbolic manner as a function of k 1 sim-

ilar to [ S ∗] in the Goldbeter–Koshland model when both enzymes

are unsaturated ( Fig. 2 B). 
.2.2. Response curve with respect to S T 
When considered as a function of S T Eq. (49) is a poor approx-

mation. In that case we employ the solution from Eqs. (47) and

48) . Similar as in the low- K M 

regime the total fraction of phospho-

ylated substrate may decrease or increase depending on whether

< 1 or α > 1, respectively ( Fig. 5 B). 

.3. Mixed regime I: K 1 � K T and K 2 � P T 

To derive an equation for [ Y ∗] under conditions when the ki-

ase is saturated while the phosphatase is unsaturated we substi-

ute the expressions from Eqs. (27) and (28) into Eq. (18) to obtain

he approximation 

d [ Y ∗] 

dt 
≈

{ 

k 1 K T − k 2 P T [ Y 
∗] 

P T + K 2 + [ Y ∗] 

k 1 ( S T − [ Y ∗] ) − k 2 P T [ Y 
∗] 

P T + K 2 + [ Y ∗] 

[ Y ∗] < S T − K T 

[ Y ∗] > S T − K T . 
(50)

etting the first line to zero yields 

 

Y ∗] = 

α

1 − α
( P T + K 2 ) , α < 1 . (51)

ince [ Y ∗] must be positive this solution only exists for α < 1. In

he regime [ Y ∗] > S T − K T the steady state concentration of Y ∗ is

etermined by the quadratic equation 

 

Y ∗] 
2 + 

((
1 + 

k 2 
k 1 

)
P T + K 2 − S T 

)
[ Y ∗] − S T ( P T + K 2 ) = 0 . (52)

ince [ Y ∗] must be positive the solution of this equation reads 

 

Y ∗] q = − 1 

2 

((
1 + 

k 2 
k 1 

)
P T + K 2 − S T 

)

+ 

1 

2 

√ ((
1 + 

k 2 
k 1 

)
P T + K 2 − S T 

)2 

+ S T ( P T + K 2 ) . (53)

n the limit P T � K 2 (which holds by assumption) and if k 2 /k 1 ∼
(1) the solution of the quadratic equation (52) can be approxi-

ated by (cf. Appendix) 

 

Y ∗] ≈ S T 

(
1 − k 2 

k 1 

P T 
K 2 + S T 

)
. (54)

ence, for α > 1 the steady state solution of Eq. (50) can be ap-

roximated by Eq. (53) (or by Eq. (54) ) whereas for α < 1 the ap-

roximation reads 

 

Y ∗] ≈
{ α

1 −α ( P T + K 2 ) 

∗
[ Y ∗] < S T − K T 

∗ . (55)
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Fig. 6. Response curves in the mixed regime I: K 1 � K T and K 2 � P T . (A,B) [ Y ∗] as a function of k 1 , (C,D) [ Y ∗]/ S T as a function of S T . Black solid lines correspond to the 

numerical state solution of Eqs. (1) –(6) . Red dashed lines were computed from Eq. (58) (A,B) and Eq. (60) (C,D) whereas blue dashed lines correspond to Eq. (59) (C,D). 

Dotted lines denote threshold values computed from Eq. (57) (A) and Eq. (61) (D). Parameters: S T = 2 μM, k 2 = 1 /s (A), S T = 0 . 5 μM, k 2 = 1 /s (B), k 2 = 2 /s (C) k 2 = 0 . 5 /s 

(D). Other parameters: k 1 = 1 / s, K 1 = 0 . 01 μM, K 2 = 10 μM, K T = P T = 1 μM. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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.3.1. Response curve with respect to k 1 
As k 1 increases from small to large values α changes from the

egime α < 1 to the regime α > 1 so that we have to combine the

olutions in Eqs. (53) (or Eq. (54) ) and (55) . To this end, we first

ompute the location of the threshold by solving 

α

1 − α
(P T + K 2 ) = S T − K T , α = 

k 1 K T 

k 2 P T 
(56)

or k 1 with the result 

 1 c = k 2 
P T 
K T 

S T − K T 

P T + K 2 + S T − K T 

. (57) 

ote that this threshold is always smaller than that obtained from

he condition α = 1 . Also, the threshold only exists if k 1 c > 0, i.e. if

 T < S T . Hence, for K T < S T we obtain from Eq. (55) the approxima-

ion (cf. Fig. 6 A) 

 

Y ∗] ≈
{

α
1 −α ( P T + K 2 ) 

[ Y ∗] q 

k 1 < k 1 c 

k 1 > k 1 c 
(58) 

hile for K T > S T the approximation is given by Eq. (53) (or

q. (54) ) (cf. Fig. 6 B). 

.3.2. Response curve with respect to S T 
For α > 1 the total fraction of phosphorylated substrate is given

y Eq. (53) or, to leading order, by Eq. (54) as 

[ Y ∗] 

S T 
≈ 1 − k 2 

k 1 

P T 
K 2 + S T 

, (59) 

.e. it increases monotonically as a function of S ( Fig. 6 C). 
T 
In contrast, for α < 1 there exists a threshold defined by

q. (56) so that Eq. (55) becomes 

[ Y ∗] 

S T 
≈

{
[ Y ∗] q /S T 
α

1 −α
P T + K 2 

S T 

S T < S Tc 

S T > S Tc 

. (60) 

here S Tc is given by 

 Tc = K T + 

α

1 − α
(P T + K 2 ) . (61)

ence, for α < 1 the total fraction of phosphorylated substrate ex-

bits a maximum near S Tc ( Eq. (61) ) since [ Y ∗]/ S T is a decreasing

unction of S T beyond the threshold ( Fig. 6 D). 

.4. Mixed regime II: K 1 � K T and K 2 � P T 

To derive an equation for Y ∗ under conditions when the kinase

s unsaturated while the phosphatase is saturated we substitute

he expressions from Eqs. (26) and (29) into Eq. (18) to obtain the

pproximation 

d [ Y ∗] 

dt 
≈

{ 

k 1 K T 
S T −[ Y ∗] 

K T + K 1 + S T −[ Y ∗] 
− k 2 [ Y 

∗] 

k 1 K T 
S T −[ Y ∗] 

K T + K 1 + S T −[ Y ∗] 
− k 2 P T 

[ Y ∗] < P T 

[ Y ∗] > P T 
. (62) 

etting the second line to zero yields 

 

Y ∗] = S T − K T + K 1 

α − 1 

, α > 1 . (63)

ince [ Y ∗] must be smaller than S T this solution only exists for

> 1. In the regime [ Y ∗] < P the steady state concentration of Y ∗
T 
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is determined by the quadratic equation 

[ Y ∗] 
2 − [ Y ∗] 

((
1 + 

k 1 
k 2 

)
K T + K 1 + S T 

)
+ 

k 1 K T 

k 2 
S T = 0 . (64)

Since [ Y ∗] must not exceed S T the solution of this equation is given

by 

[ Y ∗] = 

1 

2 

((
1 + 

k 1 
k 2 

)
K T + K 1 + S T 

)

− 1 

2 

√ ((
1 + 

k 1 
k 2 

)
K T + K 1 + S T 

)2 

− 4 

k 1 
k 2 

K T S T . (65)

For K 1 �
(

1 + 

k 1 
k 2 

)
K T the solution of the quadratic equation

(64) can be approximated by balancing the linear and the constant

terms ( Straube, 2014, 2015 ) 

[ Y ∗] ≈ k 1 
k 2 

K T S T (
1 + 

k 1 
k 2 

)
K T + K 1 + S T 

. (66)

Combining these results yields for α > 1 

[ Y ∗] ≈
{ 

k 1 
k 2 

K T S T (
1+ k 1 

k 2 

)
K T + K 1 + S T 

S T − K T + K 1 
α−1 

[ Y ∗] < P T 

[ Y ∗] > P T 
(67)

while for α < 1 the approximation is given by Eq. (66) . 

3.4.1. Response curve with respect to k 1 
As k 1 increases from small to large values α changes from the

regime α < 1 to the regime α > 1 so that we have to combine the

solutions in Eqs. (66) and (67) . To this end, we first compute the

location of the threshold by solving 

S T − K T + K 1 

k 1 K T 
k 2 P T 

− 1 

= P T (68)

for k 1 with the result 

k 1 c = k 2 
P T 
K T 

K T + S T − P T + K 1 

S T − P T 
. (69)

Note that this threshold is always larger than that obtained from

the condition α = 1 . Also, the threshold only exists ( k 1 c > 0) if

P T < S T . Hence for P T < S T we obtain ( Fig. 7 A) 

[ Y ∗] ≈
{ 

k 1 
k 2 

K T S T (
1+ k 1 

k 2 

)
K T + K 1 + S T 

S T − K T + K 1 
α−1 

k 1 < k 1 c 

k 1 > k 1 c 
(70)

while for P T > S T the approximation of the stimulus-response curve

given by Eq. (66) ( Fig. 7 B). 

3.4.2. Response curve with respect to S T 
For α < 1 (and k 1 /k 2 ∼ O(1) ) the total fraction of phosphory-

lated substrate can be approximated by (cf. Eq. (66) ) 

[ Y ∗] 

S T 
≈ k 1 

k 2 

K T (
1 + 

k 1 
k 2 

)
K T + K 1 + S T 

, (71)

i.e. it decreases monotonically as a function of S T ( Fig. 7 C). 

In contrast, for α > 1 there exists a threshold defined by Eq.

(68) so that Eq. (67) becomes 

[ Y ∗] 

S T 
≈

{ 

k 1 
k 2 

K T (
1+ k 1 

k 2 

)
K T + K 1 + S T 

1 − 1 
S T 

K T + K 1 
α−1 

S T < S Tc 

S T > S Tc 

(72)

where S Tc is given by 

S Tc = P T + 

K T + K 1 

α − 1 

. (73)

Hence, for α > 1 the total fraction of phosphorylated substrate ex-

ibits a minimum near S Tc ( Eq. (73) ) since [ Y ∗]/ S T is an increasing

function of S beyond the threshold ( Fig. 7 D). 
T 
. Discussion and conclusion 

In this study we have analyzed the steady state behavior of co-

alent modification cycles under conditions when the concentra-

ions of the converter enzymes ( K and P ) are comparable to or

arger than that of the substrate ( S ). To this end we have em-

loyed the total quasi-steady state approximation (tQSSA) which is

ased on the total concentration of the modified substrate ( [ Y ∗] =
 S ∗] + [ S ∗P ] ). From a theoretical point of view this procedure facil-

tates the analysis under conditions when enzyme concentrations

re high because [ Y ∗] accounts for both free and enzyme-bound

ubstrate forms. From a practical point of view the tQSSA has the

dvantage that [ Y ∗] (rather than [ S ∗]) is often the quantity that is

ccessible in experiments. 

The tQSSA yields quadratic equations whose analysis suggests

o classify the steady state behavior of [ Y ∗] based on the ratio be-

ween the enzyme’s Michaelis-Menten constants and the respec-

ive enzyme concentration. Since each of the two enzymes can

e either saturated ( K M 

� E T ) or unsaturated ( K M 

� E T ), there are

 steady state operating regimes as depicted in Fig. 8 . Depending

n the parameter of interest (with respect to which the response

urve is to be computed) each regime can be subdivided into one

r more subregimes. For example, if the total fraction of phospho-

ylated substrate ([ Y ∗]/ S T ) is the quantity of interest its behavior

an be classified according to the ratio α = k 1 K T / (k 2 P T ) between

he maximal reaction rates of the converter enzymes. If α < 1 the

otal fraction of phosphorylated substrate decreases as a function

f total substrate while the opposite is true for α > 1. Interest-

ngly, when only one of the converter enzymes is saturated (mixed

egimes) nonmonotonic behavior is possible where [ Y ∗]/ S T either

xhibits a maximum ( α < 1, Fig. 6 D) or a minimum ( α > 1, Fig. 7 D).

his simple classification may aid the interpretation of overexpres-

ion data to decide which of the two enzyme activities dominates

nder a given condition. 

One of the hallmarks of the Goldbeter-Koshland model is its

rediction of ultrasensitivity ( Goldbeter and Koshland Jr., 1981 ) for

he free form of the modified substrate ( S ∗). However, its occur-

ence does not only require both converter enzymes to be satu-

ated but also the substrate to be in excess ( S T � max ( K T , P T )) –

 condition that is rarely satisfied in living cells ( Blüthgen et al.,

006; Legewie et al., 2008 ). In general, the shape of the stimulus-

esponse curve for [ Y ∗] (as a function of the catalytic rate con-

tant k 1 ) depends on the concentration(s) of the saturated con-

erter enzyme(s) ( Fig. 8 ). For example, if both enzymes operate

n saturation (low- K M 

regime) and the sum of the concentrations

f both converter enzymes does not exceed the substrate con-

entration ( K T + P T < S T ) ultrasensitive responses with n H � 1 are

ossible ( Fig. 3 B) similar as in the Goldbeter-Koshland model. Our

esults suggest that enhanced sensitivity is still possible in the

egime K T + P T > S T if the concentration of at least one of the con-

erter enzymes remains smaller than that of the substrate. 

In the high- K M 

regime the steady state equation for [ Y ∗] be-

omes similar to that of the Goldbeter-Koshland model for [ S ∗].

his regime has been previously analyzed in the limit of substrate

xcess ( S T � max ( K T , P T )) ( Gomez-Uribe et al., 2007 ) where its pre-

ictions become identical to that of the Goldbeter-Koshland model.

owever, if the substrate concentration is lower than that of the

onverter enzymes the Hill coefficient of the response curve be-

omes n H = 1 ( Fig. 5 ). In fact, we made similar observations in all

 operating regimes ( Fig. 8 ) suggesting that S T < min ( K T , P T ) is a

ufficient condition for the loss of enhanced sensitivity at the level

f [ Y ∗]. 

Concentration robustness is another network property that has

eceived substantial attention from the theoretical side. The latter

ccurs if the stimulus-response curve is independent of the con-

entration of a protein in the network. In that case, changes in
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Fig. 7. Response curves in the mixed regime II: K 1 � K T and K 2 � P T . (A,B) [ Y ∗] as a function of k 1 , (C,D) [ Y ∗]/ S T as a function of S T . Black solid lines correspond to the 

numerical steady state solution of Eqs. (1) –(6) . Red dashed lines were computed from Eq. (70) (A), Eq. (66) (B), Eq. (71) (C) and Eq. (72) (D). Dotted lines denote threshold 

values computed from Eq. (69) (A) and Eq. (73) (D). Parameters: S T = 2 μM, k 2 = 1 / s (A), S T = 0 . 5 μM, k 2 = 1 / s (B), k 2 = 2 / s (C) k 2 = 0 . 5 / s (D). Other parameters: k 1 = 1 / s, 

K 1 = 10 μM, K 2 = 0 . 01 μM, K T = P T = 1 μM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Classification of the steady state operating regimes of covalent modification cycles based on the tQSSA. 1st row: qualitative shape of the stimulus-response curve for 

[ Y ∗]/ S T as a function of S T and α = k 1 K T / (k 2 P T ) . 2nd row: Classification of the stimulus-response curve for [ Y ∗] as a function of k 1 . 
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the expression level of that protein would not affect the steady

state output of the system. In some cases concentration robust-

ness is absolute in the sense that the steady state output of a sys-

tem is completely independent of a protein concentration ( Shinar

and Feinberg, 2010 ). Often this form of robustness can be related

to structural properties of the network such as bifunctionality of

a converter enzyme ( Dexter et al., 2015; Shinar et al., 20 07; 20 09;

Straube, 2013 ). In our case, the concentration robustness is approx-

imate in nature as it only occurs under certain conditions, i.e. if

both converter enzymes are saturated and if the concentration of

at least one of the converter enzymes is higher than that of the

substrate. As a result concentration robustness can exist with re-

spect K T , P T or both. Interestingly, the conditions for the occur-

rence of concentration robustness partially overlap with those for

the occurrence of ultrasensitivity (cf. Fig. 8 ) suggesting that cova-

lent modification cycles operating in the low- K M 

regime can simul-

taneously exhibit both concentration robustness and ultrasensitiv-

ity. 

Appendix A. Derivation of Eq. (54) 

Using the rescaled quantities 

x = 

[ Y ∗] 

S T 
≤ 1 , ε = 

P T 
K 2 

� 1 , β = 

K 2 

S T 
(A.1)

the quadratic equation (52) can be written in the form 

x 2 + x 

(
β

[
1 + ε 

(
1 + 

k 2 
k 1 

)]
− 1 

)
− β( 1 + ε ) = 0 . 

Assuming that k 2 /k 1 ∼ O ( 1 ) we expand the solution as 

x = x 0 + εx 1 + O 

(
ε 2 

)
. 

To lowest order this yields the quadratic equation 

x 2 0 + x 0 ( β − 1 ) − β = 0 

which has the two solutions 

x ( 
1 ) 

0 
= −β, x ( 

2 ) 
0 

= 1 . 

The next order correction is determined by 

2 x 0 x 1 + x 0 β

(
1 + 

k 2 
k 1 

)
+ x 1 ( β − 1 ) − β = 0 . 

Substituting the positive solution ( x ( 
2 ) 

0 
) and solving for x 1 yields 

x ( 
2 ) 

1 
= −k 2 

k 1 

β

1 + β
= −k 2 

k 1 

K 2 

K 2 + S T 
. 

Together, this shows that 

x ≈ 1 − ε 
k 2 
k 1 

β

1 + β

or (using Eq. (A.1) ) 
 

Y ∗] ≈ S T 

(
1 − k 2 

k 1 

P T 
K 2 + S T 

)
. 

ote that this approximation remains positive in its range of valid-

ty since P T � K 2 and k 2 /k 1 ∼ O(1) by assumption. 
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