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a b s t r a c t 

Emotional contagion refers to an instantaneous matching of an emotional state between a subject and an 

object. It is believed to form one of the bases of empathy and it causes consistent group behavior in many 

animals. However, how this emotional process relates to group size remains unclear. Individuals with the 

ability of emotional contagion can instantaneously copy the emotion of another group member and can 

take relevant behavior driven by this emotion, but this would entail both cost and benefit to them be- 

cause the behavior can be either appropriate or inappropriate depending on the situation. For example, 

emotional contagion may help them escape from a predator but sometimes induce mass panic. We theo- 

retically study how these two aspects of emotional contagion affect its evolution in group-living animals. 

We consider a situation where an environmental cue sometimes indicates a serious event and individuals 

have to make a decision whether to react to them. We show that, as the group size increases, individuals 

with the ability of emotional contagion would evolutionarily weaken their sensitivity to environmental 

cues. We also show that a larger group yields a larger benefit to them through such evolutionary change. 

However, larger group size prevents the invasion of mutants with the ability of emotional contagion into 

the population of residents who react to environmental cues independently of other group members. 

These results provide important suggestions on the evolutionary relationship between emotional conta- 

gion and group living. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

In many animals, strong emotion manifested by an individual

triggers similar emotion and associated behavior in other individ-

uals around him/her, which is called emotional contagion. This

emotional process is considered to form one of the bases of em-

pathy and contribute to various social behavior ( de Waal, 2008 ,

2012 ; Panksepp and Panksepp, 2013 ). However, why such an emo-

tional process evolved in many animals is a big mystery because

of its cost. Here, by cost we refer not only to the developmen-

tal and neurophysiological cost to support and maintain such abil-

ity, but also to the cost of enhancing and/or suppressing neural

and physiological activity in copying other’s (often negative) emo-

tion, such as increasing blood pressure or decreasing activity level

(freezing). Nakahashi and Ohtsuki (2015) constructed a mathemat-

ical model to investigate conditions for emotional contagion to

evolve, and showed that copying other’s emotion is more adap-

tive than reacting independently when the environmental similar-

ity between individuals is larger. However, their model assumed
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n interaction between two individuals only, so the condition for

motional contagion to evolve in group-living animals remains un-

lear. Since emotional contagion is biased toward in-group mem-

ers ( de Waal, 2012 ), there can be an evolutionary relationship be-

ween emotional contagion and group living. Therefore, how emo-

ional contagion affects group size and how the group size affects

he evolution of emotional contagion still remain an important but

nsolved problem. 

Why many animals form co-living groups and what affects their

roup size are important problems in evolutionary biology. Var-

ous merits of group formation have been proposed; for exam-

le, to keep body temperature, to cooperatively hunt preys, to re-

ist predators, to struggle against other individuals, to find mating

artners, to divide the labor, and so on ( Nakahashi and Horiuchi,

012; Nakahashi and Feldman, 2014; Nakahashi, 2016 ). When we

tudy the relationship between emotional contagion and group for-

ation, we have to consider the merit of information transmission

ithin a group, because individuals may learn environmental in-

ormation from others via emotional contagion. However, although

ome studies considered social learning within a group ( Aoki and

akahashi, 2008; Nakahashi et al., 2012; Ohtsuki et al., 2017 ), they

id not study emotional contagion because the time scale of emo-
under the CC BY-NC-ND license. 
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ional contagion is completely different from that of social learning

ssumed in these studies. In the previous studies, information is

ften assumed to be transmitted intergenerationally. However, in-

ormation transmission occurs instantaneously, usually within sec-

nds, through emotional contagion. Therefore, we need to develop

 new framework to study the evolutionary relationship between

motional contagion and group formation. 

Provided that there is no conflict of interest among group mem-

ers, beneficial information to a group member should also be

eneficial to other members. Since the probability that at least one

ember obtains beneficial information may increase as the group

ize increases, one may naively expect that individuals with the

bility of emotional contagion obtain a larger benefit in a larger

roup. However, the actual situation is not so simple because in-

ividuals are error-prone. As the group size increases, the prob-

bility that at least one member obtains wrong information may

lso increase, which can cause harm in a group, by inducing a

ass panic, for example. In fact, some breeds of chickens are too

ensitive to sounds or stimuli and sometimes show panic behav-

or, which causes hurt ( Abe et al., 2013 ). Therefore, it is unclear

hether a larger group is beneficial for individuals with the ability

f emotional contagion. 

How to select information is an important problem for individ-

als. Although every individual should increase the probability of

btaining beneficial information and decrease that of wrong infor-

ation, there is always a tradeoff between them. That is, when in-

ividuals attempt to obtain more information to receive more ben-

fits, they inevitably obtain more wrong information at the same

ime. Therefore, there may be an optimum amount of information

hat an individual collects. The situation becomes more complex

f individuals belong to a group and learn information from oth-

rs via emotional contagion. There, the best strategy of informa-

ion collection in each individual depends on those in other group

embers, and vice versa, so we need to consider a game-theoretic

ituation. 

In this paper, we study the evolution of emotional contagion

y using mathematical models. Since sensitivity to environmental

nformation can affect the fitness of individuals, we also consider

he evolution of sensitivity. We seek for the condition under which

he fitness of individuals with the ability of emotional contagion is

igher than that of individuals who always react independently of

thers (independent reaction). We also focus on the effect of group

ize on the evolution of emotional contagion and sensitivity. 

. Model 

.1. Overview 

We suppose that individuals live in an environment where two

inds of events may happen, labeled as trivial and serious , and that

he appropriate reaction to one event is inappropriate to the other.

hen a serious event happens, individuals should have strong

motion and react to it immediately, but when the event is trivial ,

hey should ignore it. For example, if an individual finds a preda-

or, he/she should have the emotion of fear and run away quickly

riven by that emotion, but if it is a harmless animal or even just

reeze, he/she should not react to it to avoid unnecessary cost. 

We assume that if an individual takes an appropriate reaction

o the event that happened (either trivial or serious ), he/she suf-

ers no fitness loss. In contrast, an actor incurs some fitness cost

hen he/she behaves in an inappropriate way. Although inappro-

riate reactions to serious events may be more costly than those to

rivial ones, serious events may less frequently happen than triv-

al ones. Therefore, the product of event frequency and the cost

f each inappropriate reaction may be in a similar order between

hese two. By abusing terms, we call this product (frequency times
ost of single inappropriate reaction) the “cost of events” hereafter.

n particular, the cost of trivial events is normalized to unity and

hat of serious ones is set as c ( > 0), i.e., the latter is c times as

arge as the former. 

Individuals recognize each event via an environmental cue, but

hey sometimes mistakenly recognize it due to recognition er-

ors and/or environmental noise. For example, they may mistake

 predator for a harmless animal, or vice versa, if those animals

ook similar. To model uncertainty in environmental cues, we as-

ume for simplicity that an environmental cue is represented by a

eal number z and that it distributes in a one-dimensional space. In

articular, we assume that trivial and serious events always send

ues z = 0 and z = 1, respectively, but each individual recognizes

hem with normally distributed variance σ 2 due to recognition er-

ors and noise. In other words, σ 2 indicates cognitive ambiguity

etween these cues. Note that values z = 0 and z = 1 do not have

ny special meanings here, but they are merely results of non-

imensionalization of model parameters. In particular, the distance

etween the positions of those two cues (which is 1) and the mag-

itude of noise ( σ ) are on a comparable scale. 

Suppose that an individual has perceived a cue, y , which con-

ains some noise in it. Then this individual has to infer if the orig-

nal cue was z = 1 (serious) and the noise made it look y , or if the

riginal cue was z = 0 (trivial) and the noise made it look y . If the

ndividual believes the former, he/she takes an appropriate action

or a serious event (for example, escaping behavior), and if he/she

elieves the latter he/she takes an appropriate action for a triv-

al event (for example, ignoring it). We, however, model decision

aking by individuals in a simpler and more realistic way. In par-

icular, we assume that each individual has a rule of thumb param-

terized by a threshold value, x ; he/she takes an action for a seri-

us event (escaping behavior) if the recognized cue y is larger than

he threshold x , and he/she takes an action for a trivial event (ig-

oring the cue) if the recognized cue y is smaller than x . In other

ords, one’s x represents his/her “insensitivity” to environmental

ues. We believe that this threshold model is appropriate for a

ide range of animals because it does not require sophisticated

bility in inference. Rather, our approach merely assumes that indi-

iduals can have different sensitivity to environmental cues, which

an be physiologically realized by having different numbers/types

f receptors or by having different neural connections. Hence it is

atural to assume that the threshold x is genetically encoded. 

With these assumptions, the probability that an individual with

hreshold x takes an appropriate reaction to a serious event (i.e.

scaping the danger) is 

p = 

∫ ∞ 

y = x 

1 √ 

2 πσ 2 
exp 

[
− ( y − 1 ) 

2 

2 σ 2 

]
dy (1) 

nd that he/she shows an inappropriate reaction to a trivial event

i.e. escaping from nothing) is 

 = 

∫ ∞ 

y = x 

1 √ 

2 πσ 2 
exp 

(
− y 2 

2 σ 2 

)
dy. (2) 

In the following we will mainly consider the evolution of this

ontinuous trait, x . Note that, q is the probability of committing a

alse positive error (type I error; “escaping from nothing”), the cost

f which (times the frequency of trivial cues) is assumed to be 1. In

ontrast, 1 − p is the probability of committing a false negative one

type II error; “ignoring the danger”), the cost of which (time the

requency of serious cues) is assumed to be c . Obviously there is

 trade-off between these two errors; if individuals attempt to de-

rease type I error by reducing their sensitivity, type II error nec-

ssarily increases, and vice versa, so there should be an optimal

hreshold x . 
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Fig. 1. The effect of insensitivity, x , on the total cost, C 1 , is shown. Parameters are 

σ 2 = 1 and c = 2 . 
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Fig. 2. The effect of insensitivity, x , and the group size, n , on the total cost, C n , is 

shown. Parameters are σ 2 = 1 and c = 2 . 
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2.2. Solitary animals 

First, let us consider the decision strategy of solitary animals.

For a solitary individual its group size is n = 1, so there are no in-

teractions with others. According to the argument above, it suf-

fers the cost of false positives by q and that of false negatives by

c( 1 − p ) . Hence its total cost is 

 1 = c ( 1 − p ) + q, (3)

where p and q are given by (1) and (2) , which are dependent on x .

Fig. 1 shows how C 1 depends on x . From (1) and (2) , we have 

dp 

dx 
= − 1 √ 

2 πσ 2 
exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
(4)

and 

dq 

dx 
= − 1 √ 

2 πσ 2 
exp 

(
− x 2 

2 σ 2 

)
, (5)

so that 

d C 1 
dx 

= 

1 √ 

2 πσ 2 

{
c exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
− exp 

(
− x 2 

2 σ 2 

)}
. (6)

Therefore, C 1 is minimized when 

c exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
= exp 

(
− x 2 

2 σ 2 

)
, (7)

i.e., the optimal insensitivity is 

ˆ x 1 = 

1 

2 

− σ 2 log c, (8)

which should be favored by natural selection. Therefore, solitary

animals evolve to be more sensitive to environmental cues when

the cues are more ambiguous (large σ 2 ) provided the cost of se-

rious events is higher than that of trivial events ( c > 1), especially

when serious events are very risky (large c ). This makes sense, be-

cause it is of the utmost importance that one should not commit

a false positive (i.e. mistakenly ignoring the danger). When c = 1,

that is when trivial and serious events are equally risky, the evolu-

tionary optimum exists at ˆ x 1 = 1 / 2 . This also makes sense because

1/2 lies exactly halfway between z = 0 (a cue of a trivial event) and

z = 1 (a cue of a serious event). 

2.3. Group-living animals with emotional contagion 

Next, let us consider group-living animals with the ability of

emotional contagion. Here, the group size is n and we assume that
veryone can observe all the other group members. Emotional con-

agion in such a group is modeled in the following way. Suppose

hat at least one individual in the group takes a reaction appro-

riate for a serious cue (for example, escaping behavior) induced

y strong emotion, such as fear. Then all the other individuals in

he group that have the ability of emotional contagion immediately

opy that strong emotion through emotional contagion and take

eactions appropriate for a serious cue, too. For example, when

n individual suddenly runs away, the other individuals with the

bility of emotional contagion immediately follow him/her. An im-

ortant assumption here is that a reaction appropriate for a trivial

ue (such as neglecting the cue) is not copied through emotional

ontagion. For example, when an individual neglects an environ-

ental cue and stays calm, that behavior is not copied via emo-

ional contagion, because staying calm is associated with no strong

motional representation and hence it does not affect anyone. In

his respect, our modeling of emotional contagion is clearly dif-

erent from behavioral mimicry. In behavioral mimicry, individuals

opy any behavior of others irrespective of their emotional states.

n contrast, our emotional contagion model assumes that only re-

ctions to serious cues are copied, because such reactions are in-

uced by strong emotion. 

Let us consider the evolution of sensitivity to environmen-

al cues in a group of size n . Suppose that all n individuals

ave the ability of emotional contagion and that they have the

ame (in)sensitivity to environmental cues, x . The probability that

o group members recognize a serious event (false negative) is

( 1 − p ) n (where p is given by (1) ). This can be understood as fol-

ows. If at least one member correctly recognizes the serious event,

he whole group can take an appropriate action through emo-

ional contagion and a false negative is avoided. Because 1 − p is

he probability that a single individual fails to react to a serious

vent, its n th power gives us the probability of a false negative.

egarding false positives, if at least one group member mistakes a

rivial event for a serious one then this false positive propagates

o the whole group through emotional contagion. The probability

hat such a false positive does not occur equals the probability of

o one committing a false positive, which is ( 1 − q ) n (where q is

iven by (2) ) and therefore the probability of committing a false

ositive is 1 − ( 1 − q ) n . In sum the total cost for each group mem-

er is calculated as 

 n = c ( 1 − p ) 
n + 1 − ( 1 − q ) 

n 
, (9)

hich is a function of x . Fig. 2 shows how C n depends on x and n .

Because the cost (9) depends on insensitivity x , and because x

s subject to evolution, we are interested in its evolutionary con-

equence. It is natural to believe that the insensitivity in animals
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Fig. 3. The effect of the group size, n , on the optimal insensitivity, ˆ x n , and the min- 

imized total cost, ˆ C n , is shown. Parameters are σ 2 = 1 and c = 2 . 
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iving in a group of size n should evolve toward the direction to

educe the total cost, (9) . As shown in Appendix A , the total cost

 n is minimized at x = ˆ x n , where ˆ x n is given as the solution to 

 = 

ˆ x 1 + ( n − 1 ) σ 2 log 
1 − q 

1 − p 
. (10) 

Note ˆ x 1 is the optimal insensitivity by a solitary individual de-

ived in (8) . Also note that p and q in (10) are functions of x , so

10) contains x in both sides and therefore ˆ x n is given only im-

licitly there. Calculations in Appendix A show that there exists

 unique x that satisfies (10) because ( 1 − q ) / ( 1 − p ) is monotone

ecreasing in x . Moreover, it is shown that the optimal insensitiv-

ty ˆ x n increases as n increases. This makes intuitive sense; as the

roup size n increases, each single individual needs to be less sen-

itive to counterbalance increased sensitivity of the whole group

ue to emotional contagion. We have confirmed by a formal in-

asion analysis that ˆ x n is indeed favored by natural selection (see

ppendix B ). 

Next we study the advantage of group living and emotional

ontagion. Denoting the minimized total cost as ˆ C n , let us consider

ow 

ˆ C n depends on n . Our goal here is to demonstrate ˆ C n < 

ˆ C n −1 

or n ≥ 2. Its proof consists of two steps, as shown below. 

In the first step, consider a group composed of n − 1 members

ith the optimal insensitivity ˆ x n −1 for a group of size n − 1 , and

ne “deviant” member with an arbitrary insensitivity x . Then, the

ost that each member in this group suffers is calculated as 

 n 

(
ˆ x n −1 , x 

)
= c ( 1 − p ) 

(
1 − ˆ p n −1 

)n −1 + 1 − ( 1 − q ) 
(
1 − ˆ q n −1 

)n −1 
, 

(11) 

where ˆ p n −1 and ˆ q n −1 are values of p and q (see (1) and (2) ) eval-

ated at ˆ x n −1 ) which is minimized when the deviant member has

nsensitivity 

˜ 
 = 

ˆ x 1 + ( n − 1 ) σ 2 log 
1 − ˆ q n −1 

1 − ˆ p n −1 

. (12) 

Since C n ( ̂  x n −1 , x ) = 

ˆ C n −1 when x = ∞ (if the deviant member

as the ability of emotional contagion but has infinite insensitiv-

ty in reacting to environmental cues by itself, this group looks as

f there were just n − 1 individuals with the ability of emotional

ontagion), we have C n ( ̂  x n −1 , ̃  x ) < 

ˆ C n −1 . In other words, a group can

ecrease the cost by adding one member with appropriate sensi-

ivity. 

All that remains is to show 

ˆ C n < C n ( ̂  x n −1 , ̃  x ) to complete

he proof of ˆ C n < 

ˆ C n −1 . In the second step, we consider a

roup composed of n − 2 members with fixed insensitivities

 F 1 , x F 2 , · · · , x F n −2 and two members with arbitrary insensitivity

 A and x B . Then, the cost that each of the group members suffers

s 

 n = c ( 1 − p A ) ( 1 − p B ) 

n −2 ∏ 

i =1 

(1 − p F i ) + 1 

−( 1 − q A ) ( 1 − q B ) 

n −2 ∏ 

i =1 

(1 − q F i ) . (13) 

Let us obtain the optimal combination ( ̂  x A , ̂  x B ) that minimizes

his cost. When x B is fixed, the cost is minimized at 

˜ 
 A ( x B ) = 

1 

2 

− σ 2 log c ′ + σ 2 log 
1 − q B 
1 − p B 

, (14) 

nd when x A is fixed, it is at 

˜ 
 B ( x A ) = 

1 

2 

− σ 2 log c ′ + σ 2 log 
1 − q A 
1 − p A 

, (15) 
here 

 

′ = c 

n −2 ∏ 

i =1 

(1 − p F i ) / 
n −2 ∏ 

i =1 

(1 − q F i ) . (16)

The optimal combination ( ̂  x A , ̂  x B ) should be at a crossing point

f x A = ˜ x A ( x B ) and x B = ˜ x B ( x A ) , and because of the symmetry,

here exists a unique crossing point where x A = x B is satisfied (the

niqueness is proved in Appendix C ). Therefore, the cost is mini-

ized when every combination of two members has the same in-

ensitivity, i.e., everyone has the same insensitivity. This minimal

ost is ˆ C n , which is, by definition, smaller than C n ( ̂  x n −1 , ̃  x ) . This

ompletes the proof. 

To sum up the analysis in this subsection, as shown in Fig. 3 ,

he optimal insensitivity ˆ x n that minimizes C n increases as the

roup size n increases, and ˆ x n is favored by natural selection. This

s because the group-level sensitivity to environmental cues in-

reases exponentially with the group size and individual insensi-

ivity counters this effect. Moreover, the minimized total cost ˆ C n 
ecreases as n increases (see Fig. 3 ). In other words, group-living

nimals with emotional contagion evolve to be less sensitive to en-

ironmental cues when the group size is larger, and a larger group

s more adaptive for them provided that they have emotional con-

agion with appropriate sensitivity. 

.4. Invasion analysis and evolution of emotional contagion 

In the model above, it is assumed that all individuals innately

how emotional contagion. Here, we consider an alternative (prob-

bly ancestral) strategy, independent reaction (IR), and study the

volution of emotional contagion strategy (EC). Individuals with IR

ecide their behavior independently of other group members. This

s quite in contrast to individuals with EC strategy who react to

thers’ emotional representation. 

Because IR individuals behave as solitary ones even if they be-

ong to a group of multiple individuals, their insensitivity should

volve to the same level of solitary ones; 

 IR = 

ˆ x 1 = 

1 

2 

− σ 2 log c (17) 

the same as (8) ) and then they suffer the cost 

 IR = 

ˆ C 1 , (18) 

hich is independent of strategies of other group members. Here,

he probability that they react appropriately to a serious event (i.e.
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Fig. 4. The effect of insensitivity of an EC-mutant, x , on his/her total cost, C ECM , is 

shown. C IR is also shown for comparison. Parameters are σ 2 = 1 , c = 2 , and n = 2 . 
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Fig. 5. The effect of the cost of serious events, c , on the difference in the total costs 

between IR-residents and an EC-mutant with the optimal insensitivity, C IR − ˆ C ECM , 

is shown. When C IR − ˆ C ECM is positive, the EC-mutant can invade an IR population. 

Parameter is σ 2 = 1 . 
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escaping danger) is 

p IR = 

ˆ p 1 = 

∫ ∞ 

y = ̂ x 1 

1 √ 

2 πσ 2 
exp 

[
− ( y − 1 ) 

2 

2 σ 2 

]
dy (19)

and that they show an inappropriate reaction to a trivial event (i.e.

escaping from nothing) is 

q IR = 

ˆ q 1 = 

∫ ∞ 

y = ̂ x 1 

1 √ 

2 πσ 2 
exp 

(
− y 2 

2 σ 2 

)
dy. (20)

In this subsection we will study evolutionary competition be-

tween IR and EC strategies. 

Given that all IR individuals use the optimal threshold x IR , let us

first consider the invasion of IR into an EC population. For that pur-

pose let us assume that the resident population uses EC and that

individuals there live in a group of size n ( n ≥ 2). In such a group,

EC individuals adopt the evolutionarily-selected optimal insensitiv-

ity ˆ x n , so that the cost they suffer is ˆ C n . In contrast, a typical IR mu-

tant belongs to a group of size n where all the other n − 1 mem-

bers are EC individuals, and the cost that such an IR mutant suffers

is C IR . Because C IR = 

ˆ C 1 > 

ˆ C n holds for all n ≥ 2 (we saw this in the

previous subsection), we conclude that IR-mutants cannot invade

the EC population. Note that the existence of IR-mutants does not

affect the (average) fitness (cost) of EC-residents because the fre-

quency of IR-mutants in the population in this invasion analysis is

assumed to be ignorable. Moreover, since the fitness of IR-mutants

is independent of strategies of other group members, the conclu-

sion that IR-mutants cannot invade the EC population still holds

even if we consider the invasion of multiple mutants into a group

due to, for example, positive assortment among mutant individu-

als. 

Next, let us consider the opposite direction; invasion of EC into

an IR population. When the group size is n ( ≥ 2), we can assume

that a typical EC-mutant (with arbitrary insensitivity x ) coexists

with n − 1 IR-residents in a group (later we will relax this assump-

tion by considering some genetic relatedness between members in

the same group). The cost that such an EC-mutant suffers is 

 ECM 

= c ( 1 − p ) ( 1 − p IR ) 
n −1 + 1 − ( 1 − q ) ( 1 − q IR ) 

n −1 
. (21)

Note that C ECM 

is a function of x , possibly written as C ECM 

=
 ECM 

(x ) , because p and q are functions of x (see (1) and (2) ). As

shown in Fig. 4 and Appendix D , this cost is minimized when

he/she has the optimal insensitivity, 

ˆ x ECM 

= x IR + ( n − 1 ) σ 2 log 
1 − q IR 
1 − p IR 

. (22)

In the following we will consider whether this “best” EC-

mutant with the optimal insensitivity ˆ x can invade the resi-
ECM 
ent IR-population. The invasion conditions derived below should

herefore be interpreted as the invasion potential of EC strategies

nto an IR-population at their best; if the EC strategy with the fine-

uned value of insensitivity ˆ x ECM 

cannot invade the IR-population,

hen any other EC strategies with arbitrary insensitivity x cannot

nvade IR, either. Since IR-residents always suffer the cost C IR , the

best” EC mutants can invade the population of IR when 

ˆ C ECM 

< C IR ,

here ˆ C ECM 

= C ECM 

( ̂  x ECM 

) is the cost that such mutants pay. 

For n = 2 , ˆ C ECM 

< C IR is always satisfied because ˆ C ECM 

<

 ECM 

(∞ ) = C IR holds. Hence EC invades IR. 

For n ≥ 3, the invasion condition of EC into an IR population can

e obtained only numerically, not analytically. Nevertheless we can

erive its necessary condition. A straightforward calculation shows

hat 

 IR − C ECM 

= c ( 1 − p IR ) + q IR − [ c ( 1 − p ) ( 1 − p IR ) 
n −1 + 1 

−( 1 − q ) ( 1 − q IR ) 
n −1 ] 

= c ( 1 − p IR ) 
[
1 − ( 1 − p ) ( 1 − p IR ) 

n −2 
]

−( 1 − q IR ) 
[
1 − ( 1 − q ) ( 1 − q IR ) 

n −2 
]

≤ c ( 1 − p IR ) − ( 1 − q IR ) 
[
1 − ( 1 − q IR ) 

n −2 
]

(23)

olds, where we used p ≤ 1 and q ≥ 0 to show the last inequality.

herefore, a necessary condition is that the last line in (23) is pos-

tive. However, for large n , the last line in (23) approaches 

 ( 1 − p IR ) − ( 1 − q IR ) , (24)

hich is confirmed to be negative by a straightforward calcula-

ion. Therefore, EC-mutants cannot invade an IR population when

 is large enough. Moreover, as shown in Appendix E , we can also

rove that EC-mutants cannot invade an IR population when c is

arge enough. In other words, if IR is ancestral, a large group size

nd high cost of serious events prevent the invasion (initial evo-

ution) of EC. Fig. 5 shows when 

ˆ C ECM 

< C IR , that is, when EC can

nvade an IR population, for a given group size n ≥ 3 and a given

ost of committing a false negative error, c . We find that EC strat-

gy can invade an IR population only when n and c are small. 

In this model, we assume that EC individuals necessarily copy

trong emotion when at least one group member shows it. If this

trong assumption is relaxed to consider weaker emotional conta-

ion, for example, if EC individuals observe only proportion r of

ther group members, the “effective” group size could decrease

o 1 + r( n − 1 ) , so that EC-mutants may more easily invade an IR

opulation, but the conclusion that a larger group size prevents the

nvasion of EC still holds. 

So far, our invasion analysis has assumed that mutants are so

are that each mutant is surrounded by n − 1 resident individu-

ls in its group. Next we consider what if this assumption is vio-
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Fig. 6. (A) The effect of average genetic relatedness, R , on the total cost of an EC- 

mutant with insensitivity x, C ECM , is shown. C IR is also shown for comparison. (B) 

The effect of the group size, n , is similarly shown. Parameters are σ 2 = 1 , c = 2 , 

and n = 3 in (A) and R = 0 . 5 in (B). 
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ated. More specifically, we consider the effect of genetic related-

ess within groups and assume that some groups comprise more

han one mutant individuals. There are various ways to implement

his assumption, but here we employ the distribution of mutants

redicted by Wright’s infinite island model. For simplicity we as-

ume haploid genetics. We further assume that individuals in the

ame group interact with each other, but reproductive competition

ccurs globally in the whole population; we do not assume any lo-

al competition over reproduction. Emotional contagion occurs in

he same way between relatives and between non-relatives in our

odel. 

Consider the invasion condition of EC into an IR population (be-

ause invasion of the opposite direction has already been proved

mpossible in the argument above). The island model has a single

arameter m (0 < m ≤ 1) that determines the rate of migration. The

maller m is, the larger the average genetic relatedness R within

roups. In Appendix F we derive how mutants are distributed over

roups of size n for a given migration rate, m . When m < 1 (mi-

ration is not global), relatedness R becomes positive. As a result,

ome groups contain more than one mutants and hence the model

eviates from the conventional situation that each EC-mutant is

urrounded by n − 1 IR-residents. For a smaller m , relatedness R is

igher, and groups containing at least one EC-mutant tend to con-

ain multiple EC-mutants. In the extreme case of m ↓ 0, relatedness

ecomes maximal ( R ↑ 1), and the population consists of groups of

 IR-residents and groups of n EC-mutants only. In this case, in-

asion success of EC-mutants is equivalent to that a group of EC

ndividuals is more successful than a group of IR individuals. 

Fig. 6 A shows the costs of EC-mutants (with insensitivity x ) and

R-residents for various values of average genetic relatedness R .

ig. 6 B similarly shows the effect of group size n. EC-mutants with

nsensitivity x can invade an IR-population when C ECM 

< C IR . We

nd that although higher relatedness makes the invasion of EC-

utants easier, the invasion becomes more difficult as the group

ize increases. 

. Discussion 

Since many animals form a group, it is important to know the

erit of group living. In this study, we have considered the merit

ielded by emotional contagion among group members, which has

ot been well studied before, although emotional contagion is

requently observed in group-living animals. Emotional contagion

ay help group members to escape from predators, to find food

esource, and/or to struggle against outgroup individuals, which

re frequently proposed merits of group living. However, emo-

ional contagion may also induce harm to groups, such as via

anic. Therefore, the relationship between emotional contagion

nd group living is not a simple problem. 

We have considered a situation where individuals attempt to

eact appropriately to serious and trivial events that are indicated

y environmental cues but cannot perfectly distinguish them. If in-

ividuals decrease the sensitivity to environmental cues, the prob-

bility of unnecessary reactions to trivial events (i.e. false positives)

ay decrease, but the chance that they fail to correctly react to se-

ious events (i.e. false negatives) may increase. We have firstly con-

idered solitary animals and shown that there is optimal sensitiv-

ty, which becomes higher as the cost of serious events increases,

r as the cues become more ambiguous provided that the serious

vent is more risky than the trivial event. In the animal kingdom,

hysically weak animals (herbivores, subordinate males) tend to

e more cautious than physically strong animals (carnivores, alpha

ales), and individuals pay larger attention to environments when

he situation is unclear, which may be explained by our result. 

Next, we have considered a group of individuals with the abil-

ty of emotional contagion, who copy the emotion of other group
embers that show unusual behavior induced by strong emotion.

ere we have assumed for simplicity that when at least one group

ember shows strong emotion, all other group members copy it

y emotional contagion. Empirical studies have shown that group

iving, or familiarity, among individuals is a key to the occurrence

f emotional contagion ( Langford et al., 2006; Gonzalez-Liencres

t al., 2014 ). We have shown that a larger group favors lower sen-

itivity, which leads to higher fitness of individuals. This could ex-

lain why many group-living animals decrease the level of individ-

al vigilance as the group size increases ( Powell, 1974; Lima, 1995;

oberts, 1996 ). 

Last, we have considered the evolution of emotional conta-

ion by comparing the fitness of two types of individuals, those

ith emotional contagion (EC) and those who always react in-

ependently of others (IR). We have shown that IR-mutants can-

ot invade an EC population because EC individuals with appro-

riate sensitivity can form a group where every member suffers

maller cost than IR. We have, however, also shown that even if

C-mutants have appropriate sensitivity, they cannot invade an IR

opulation if the group size or the cost of serious events is large.

hese results imply that large group size prevents the initial evolu-

ion of emotional contagion, but once it evolved, individuals suffer

 smaller cost when they form a larger group. This conclusion is

nchanged even if we consider weaker emotional contagion or ge-

etic relatedness within groups, although these factors make the

nvasion of EC-mutants into an IR population easier. We have as-

umed there that emotional contagion occurs in the same manner
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between relatives and between non-relatives. This is because it has

been shown in rats that not close kinship but shared social experi-

ence such as being cagemates is a predictor of pro-social behavior

induced by emotional contagion and empathy ( Bartal et al., 2014 ). 

Since many factors affect group formation, our results do not

perfectly explain the origin of groups but provide many sugges-

tions on the merit of group formation. For example, our model

confirms a widely accepted view that group formation is adap-

tive for preys because the probability that at least one group

member recognizes a predator increases (many-eyes hypothesis;

Lima, 1990 ). However, our model also reveals a demerit of a large

group that the probability that at least one group member erro-

neously reacts to safety signals also increases. To reduce the de-

merit, individuals should weaken their sensitivity to environmental

stimuli. Some breeds of chickens often show panic behavior due to

their high sensitivity, probably because they are raised in a larger

group than the natural group of smaller size. 

Our model also provides important suggestions on collective in-

telligence. When there are two options of which one is correct and

the other is wrong, if the group follows the majority rule and each

individual is more likely to select the correct one, the probability

for the group to reach the correct decision increases as the group

size increases, which is known as the Condorcet’s jury theorem

( Sekiguchi, 2016 ). Although our model similarly assumes two can-

didate behaviors (react or ignore) of which one is correct, each in-

dividual does not follow the majority rule in our model but rather

copies unusual reactions of others via emotional contagion. Never-

theless, the probability of correct decision increases as the group

size increases, provided that each individual weakens their sen-

sitivity to environmental cues to reduce the probability of wrong

reactions. Although employing majority rule greatly improves the

accuracy of group-decision making, we believe that emotional con-

tagion is much less cognitively demanding and therefore it should

work as an effective strategy to take advantage of collective intel-

ligence. 

The model assumptions of this study are somewhat differ-

ent from those of Nakahashi and Ohtsuki (2015) where adap-

tive significance of emotional contagion in dyadic interactions

was studied in comparison with independently reacting individu-

als and those who adopt behavioral mimicry. Nakahashi and Oht-

suki (2015) modeled variety of behavior by one-dimensional real

values, whereas our current study considered discrete actions, such

as whether or not to react to environmental cues. In other words,

appropriate emotion does not necessarily yield the best behav-

ior in the previous model, which is not considered in this study.

If this factor is included in the present model, emotional conta-

gion may be less likely to evolve when the behavior induced by

strong emotion differs lar gely from the best behavior. Moreover,

Nakahashi and Ohtsuki (2015) assumed that an individual who rec-

ognized an environmental cue always reacts appropriately but the

appropriate behavior differs between individuals. They found that

emotional contagion is more likely to be adaptive than indepen-

dent reaction when the appropriate behavior is more similar be-

tween individuals. In the current model, reactions are error-prone

but the appropriate behavior (emotion) is the same among all

group members. If we instead assume that the appropriate behav-

ior (emotion) may differ among group members, emotional conta-

gion is less likely to evolve because copying other’s emotion would

be less useful. 

In conclusion, when individuals have to make a decision of

whether to react to an environmental cue that potentially indicates

serious events, they evolve to be more sensitive to the cue when

the event is more risky. When individuals with emotional conta-

gion form a group, their sensitivity to environmental cues evolve

to be weak as the group size increases, and a larger group yields

larger benefit to them. When individuals form a group but react to
nvironmental cues independently of other group members, larger

roup size prevents the invasion of individuals with emotional con-

agion, but once every member adopts emotional contagion, in-

ividuals who react independently of others cannot invade. From

hese results we predict that large group size should not favor the

volution of emotional contagion, but that emotional contagion,

nce evolved, should favor the evolution of larger group size. 
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ppendix A 

From (4) , (5) , and (9) , we have 

d C n 

dx 
= 

n √ 

2 πσ 2 

{
c ( 1 − p ) 

n −1 exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
−( 1 −q ) 

n −1 exp 

(
− x 2 

2 σ 2 

)}
, 

(A.1)

o that C n is minimized when 

 ( 1 − p ) 
n −1 exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
= ( 1 − q ) 

n −1 exp 

(
− x 2 

2 σ 2 

)
, (A.2)

.e., when 

 = 

1 

2 
− σ 2 log c + ( n − 1 ) σ 2 log 

1 − q 

1 − p 

= ˆ x 1 + ( n − 1 ) σ 2 log 
1 − q 

1 − p 
(A.3)

Since the line x − ˆ x 1 is monotone increasing and the curve

( n − 1 ) σ 2 log [ ( 1 − q ) / ( 1 − p ) ] is monotone decreasing (see below)

n x , there exists a unique x that satisfies (A.3) , which we de-

ote as ˆ x n . Then, since log [ ( 1 − q ) / ( 1 − p ) ] is positive for all x be-

ause p > q , ˆ x n increases as n increases. Note that ( 1 − q ) / ( 1 − p )

s monotone decreasing in x because 

d 

dx 

(
1 − q 

1 − p 

)
= 

1 

( 1 − p ) 
2 
√ 

2 πσ 2 

{
( 1 − p ) exp 

(
− x 2 

2 σ 2 

)

−( 1 − q ) exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]}

= 

1 

2 πσ 2 ( 1 − p ) 
2 

∫ x 

y = −∞ 

{
exp 

[
− ( y − 1 ) 

2 

2 σ 2 
− x 2 

2 σ 2 

]

−exp 

[
− y 2 

2 σ 2 
− ( x − 1 ) 

2 

2 σ 2 

]}
dy 

= 

1 

2 πσ 2 ( 1 − p ) 
2 

∫ x 

y = −∞ 

exp 

(
−x 2 + y 2 + 1 

2 σ 2 

)

×
[ 

exp 

(
y 

σ 2 

)
− exp 

(
x 

σ 2 

)] 
dy 

< 0 (A.4)

ppendix B 

Let us consider the evolution of x in an EC population using the

nvasibility analysis. Denote the insensitivity of residents as x R and

heir reaction probabilities to serious and trivial events as p R and

 R , respectively. Then, residents suffer the cost 

 R = c ( 1 − p R ) 
n + 1 − ( 1 − q R ) 

n 
, (B.1)
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nd a mutant with insensitivity x suffers the cost 

 M 

= c ( 1 − p ) ( 1 − p R ) 
n −1 + 1 − ( 1 − q ) ( 1 − q R ) 

n −1 
. (B.2)

Therefore, when 

 R − C M 

= c ( p R − p ) ( 1 − p R ) 
n −1 − ( q R − q ) ( 1 − q R ) 

n −1 (B.3) 

s positive, the mutant can invade. Since C M 

= C R when x = x R 
nd 

d C M 

dx 

∣∣∣∣
x = x R 

= 

1 √ 

2 πσ 2 

{
c ( 1 − p R ) 

n −1 exp 

[
− ( x R − 1 ) 

2 

2 σ 2 

]

−( 1 − q R ) 
n −1 exp 

(
− x 2 R 

2 σ 2 

)}
, (B.4) 

 mutant with insensitivity x R + δ (0 < δ 
 1) can invade when 

 ( 1 − p R ) 
n −1 exp 

[
− ( x R − 1 ) 

2 

2 σ 2 

]
< ( 1 − q R ) 

n −1 exp 

(
− x 2 R 

2 σ 2 

)
(B.5) 

.e., when 

 R < 

ˆ x 1 + ( n − 1 ) σ 2 log 
1 − q R 
1 − p R 

(B.6) 

nd that with x R − δ (0 < δ 
 1) can invade when these inequali-

ies are reversed. From Appendix A , (B.6) is satisfied when x R < ˆ x n ,

nd the reverse is satisfied when x R > ˆ x n , suggesting that insensi-

ivity evolutionarily converges to ˆ x n . Note that once every resident

dopts ˆ x n , no mutants with a slightly different insensitivity can in-

ade because 

d 2 C M 

d x 2 

∣∣∣∣
x = ̂ x n 

= 

1 √ 

2 πσ 2 

{ 

−2 c 
(

ˆ x n − 1 

)(
1 − ˆ p n 

)n −1 
exp 

[ 

−
(

ˆ x n − 1 

)2 

2 σ 2 

] 

+2 ̂

 x n 
(
1 − ˆ q n 

)n −1 
exp 

(
− ˆ x 2 n 

2 σ 2 

)}

= 

2 c 
(
1 − ˆ p n 

)n −1 

√ 

2 πσ 2 
exp 

[ 

−
(

ˆ x n − 1 

)2 

2 σ 2 

] 

> 0 (B.7) 

here ˆ p n and ˆ q n are reaction probabilities of individuals with in-

ensitivity ˆ x n to serious and trivial events, respectively. 

ppendix C 

The uniqueness of the crossing point of x A = ˜ x A ( x B ) and x B =
˜  B ( x A ) can be proved as follows. From (14) , we have 

˜ 
 

′ 
A ( x B ) = f ( x B ) − f ( x B − 1 ) (C.1) 

here 

f ( x B ) = σ 2 exp 

(
− x 2 B 

2 σ 2 

)
/ 

x B ∫ 
y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy. (C.2) 

ince 

f ′ ( x B ) = −
exp 

(
− x 2 B 

2 σ 2 

)[ 
σ 2 exp 

(
− x 2 B 

2 σ 2 

)
+ x B ∫ x B y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy 

] 
[
∫ x B y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy 

]2 
, 

(C.3) 

f ′ ( x B ) < 0 is always satisfied because 

x B 
x B ∫ 

y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy > 

x B ∫ 
y = −∞ 

y exp 

(
− y 2 

2 σ 2 

)
dy 

= −σ 2 exp 

(
− x 2 B 

2 σ 2 

)
(C.4) 
Moreover, we can show f ′ ( x B ) > −1 as follows. Denoting 

 ( x B ) = 

[
x B ∫ 

y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy 

]2 

−exp 

(
− x 2 B 

2 σ 2 

)[
σ 2 exp 

(
− x 2 B 

2 σ 2 

)

+ x B 
x B ∫ 

y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy 

]
, (C.5) 

f ′ ( x B ) > −1 is equivalent to g ( x B ) > 0. Since g( −∞ ) = 0 ,

 ( x B ) > 0 is satisfied if g ′ ( x B ) > 0 i.e., if 

 ( x B ) = x B exp 

(
− x 2 B 

2 σ 2 

)
+ 

(
1 + 

x 2 B 

σ 2 

)
x B ∫ 

y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy > 0 , 

(C.6) 

hich is always satisfied because h ( −∞ ) = 0 and 

 

′ ( x B ) = exp 

(
− x 2 B 

2 σ 2 

)
+ 

x B 
σ 2 

x B ∫ 
y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy > 0 . (C.7)

Note that from (C.4), 

lim 

 B →−∞ 

x B 
x B ∫ 

y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy = 0 (C.8) 

nd 

lim 

 B →−∞ 

x 2 B 

x B ∫ 
y = −∞ 

exp 

(
− y 2 

2 σ 2 

)
dy = 0 . (C.9)

To sum up, we have −1 < f ′ ( x B ) < 0 , i.e., −1 < ˜ x ′ 
A 
( x B ) < 0 .

herefore, because of the symmetry, x A = ˜ x A ( x B ) and x B = ˜ x B ( x A )

ave a unique crossing point where x A = x B is satisfied. 

ppendix D 

From (4) , (5) , and (21) , we have 

d C ECM 

dx 
= 

1 √ 

2 πσ 2 

{
c ( 1 − p IR ) 

n −1 exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]

−( 1 − q IR ) 
n −1 exp 

(
− x 2 

2 σ 2 

)}
, (D.1) 

o that C ECM 

is minimized when 

 ( 1 − p IR ) 
n −1 exp 

[
− ( x − 1 ) 

2 

2 σ 2 

]
= ( 1 − q IR ) 

n −1 exp 

(
− x 2 

2 σ 2 

)
, (D.2) 

.e., when 

 = 

1 
2 

− σ 2 log c + ( n − 1 ) σ 2 log 1 −q IR 
1 −p IR 

 x IR + ( n − 1 ) σ 2 log 1 −q IR 
1 −p IR 

(D.3) 

ppendix E 

Using the notation of Appendix C , the condition for the last line

f (23) to be negative, i.e. c( 1 − p IR ) − ( 1 − q IR )[ 1 − ( 1 − q IR ) 
n −2 

] <

 , can be rewritten as 

f ( x IR − 1 ) > f ( x IR ) / 
[
1 − ( 1 − q IR ) 

n −2 
]
, (E.1)

.e., 

( 1 − q IR ) 
n −2 

< 1 − f ( x IR ) / f ( x IR − 1 ) , (E.2) 

here we used the fact 

 = exp 

(
− x 2 IR 

2 σ 2 

)
/ exp 

[
− ( x IR − 1 ) 

2 

2 σ 2 

]
. (E.3) 
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Since 

lim 

x IR →−∞ 

f ( x IR ) / x IR = −1 , (E.4)

and (C.8), when n ≥ 3, we have 

lim 

x IR →−∞ 

[ 1 − f ( x IR ) / f ( x IR − 1 ) ] = 0 , (E.5)

lim 

x IR →−∞ 

( 1 − q IR ) 
n −2 = 0 , (E.6)

and 

lim 

x IR →−∞ 

( 1 − q IR ) 
n −2 

/ [ 1 − f ( x IR ) / f ( x IR − 1 ) ] = 0 . (E.7)

Therefore, EC-mutants cannot invade an IR population when x IR 
is small enough, i.e., when c is large enough. 

Appendix F 

Suppose that the global frequency of mutants in the popula-

tion is ɛ ( 
 1). To derive how mutants are distributed over groups

of size n , let φi (0 ≤ i ≤ n ) be the proportion of groups that con-

tain i mutants and n − i residents. According to the assumption of

the Wright’s infinite island model that proportion 1 − m of genetic

contribution comes from the original group and the rest comes

from a global gene pool, the equilibrium values of φi (0 ≤ i ≤ n ) sat-

isfy 

φi = 

n ∑ 

j=0 

φ j 

(
n 

i 

)[
( 1 − m ) 

j 

n 

+ mε 

]i [
( 1 − m ) 

n − j 

n 

+ m ( 1 − ε ) 

]n −i

(F.1)

which can formally solved, up to the first order of ɛ , as 

φ0 = 1 − O ( ε ) (F.2)

and 

φi = ψ i ε + o ( ε ) ( 1 ≤ i ≤ n ) (F.3)

where O ( ɛ ) and o ( ɛ ) are Landau’s symbols, and ψ i does not include

ɛ . Note that the global frequency of mutants, up to order ɛ , is 

n ∑ 

i =1 

i 

n 

φi = 

( 

n ∑ 

i =1 

i 

n 

ψ i 

) 

ε, (F.4)

which must be equal to ɛ , and therefore 
n ∑ 

i =1 

i 
n ψ i = 1 must hold as

a consistency condition. For example, for n = 3 we have 

ψ 1 = 

9 m 

(
4 m 

4 − 20 m 

3 + 39 m 

2 − 25 m − 7 

)
4 m 

5 − 20 m 

4 + 34 m 

3 − 4 m 

2 − 34 m − 7 

(F.5)

ψ 2 = 

−9 ( m − 1 ) 
2 m 

(
2 m 

2 − 6 m + 7 

)
4 m 

5 − 20 m 

4 + 34 m 

3 − 4 m 

2 − 34 m − 7 

(F.6)

ψ 3 = 

( m − 1 ) 
3 
(
4 m 

2 − 8 m + 7 

)
4 m 

5 − 20 m 

4 + 34 m 

3 − 4 m 

2 − 34 m − 7 

, (F.7)

and it is not difficult to see that they satisfy the consistency con-

dition. For large n , expressions of ψ i ’s are very complicated, so

we do not explicitly write them here. Average relatedness within
roups is calculated as 

 = 

n ∑ 

i =1 

i − 1 

n − 1 

ψ i , (F.8)

Eq. (11) in Mullon et al. (2016)) , which is a monotone decreasing

unction of m , ranging from R = 1 ( m = 0) to R = 0 ( m = 1). 

Let C (i ) 
ECM 

be the cost that EC-mutants in a group of i EC-mutants

nd n − i IR-residents suffer. Remember that it is a function of in-

ensitivity x of EC individuals. Similarly to (21) , it is given as 

 

( i ) 
ECM 

= c ( 1 − p ) 
i 
( 1 − p IR ) 

n −i + 1 − ( 1 − q ) 
i 
( 1 − q IR ) 

n −i 
. (F.9)

Then, the average cost that EC-mutants suffer, C ECM 

, is the

eighted average of C (i ) 
ECM 

, calculated as 

 ECM 

= 

n ∑ 

i =1 

C ( 
i ) 

ECM 

i 

n 

ψ i . (F.10)
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