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The drive to understand the invasion, spread and fade out of infectious disease in structured

populations has produced a variety of mathematical models for pathogen dynamics in metapopulations.

Very rarely are these models fully coupled, by which we mean that the spread of an infection within a

subpopulation affects the transmission between subpopulations and vice versa. It is also rare that these

models are accessible to biologists, in the sense that all parameters have a clear biological meaning and

the biological assumptions are explained. Here we present an accessible model that is fully coupled

without being an individual-based model. We use the model to show that the duration of an epidemic

has a highly non-linear relationship with the movement rate between subpopulations, with a peak in

epidemic duration appearing at small movement rates and a global maximum at large movement rates.

Intuitively, the first peak is due to asynchrony in the dynamics of infection between subpopulations; we

confirm this intuition and also show the peak coincides with successful invasion of the infection into

most subpopulations. The global maximum at relatively large movement rates occurs because then the

infectious agent perceives the metapopulation as if it is a single well-mixed population wherein the

effective population size is greater than the critical community size.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A metapopulation is a group of subpopulations, each with their
own dynamics, but connected by movement of individuals
(Leibold et al., 2004). Understanding how such population
structure affects the invasion, spread and persistence of infectious
disease is of high importance for public health and wildlife
management authorities (Grenfell and Harwood, 1997) and
consequently the problem has received and continues to receive
considerable attention (Cross et al., 2005; Hagenaars et al., 2004;
Keeling and Rohani, 2002; Lloyd and Jansen, 2004). We briefly
review some of the methodological aspects of the models used by
these and other authors and then present a simple, accessible
stochastic metapopulation model in which the spread of an
infectious disease within a subpopulation is fully coupled to the
dynamics of transmission between subpopulations. By fully
coupled we mean that the course of epidemics within subpopula-
tions is affected by the movement of individuals to and from
subpopulations, and the probability that a migrant is infectious
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(i.e. that transmission between subpopulations occurs) depends
on the course of the epidemic in the subpopulation from which
the migrant came.

Metapopulation infection models can be clearly divided into
those that classify whole subpopulations as infectious, susceptible
or recovered (Gog et al., 2002; Hess, 1996; McCallum and Dobson,
2002), and those that model the dynamics of infection within each
group (Cross et al., 2005; Hess, 1996; Keeling and Gilligan, 2000;
Park et al., 2002). The first approach ignores the rise and fall of
prevalence within a patch over time and neglects variation
between infected subpopulations arising from the stochastic
nature of epidemics in finite populations. The critical assumption
of these patch-based epidemic models then is that when the
infection arrives in a new patch it very quickly, relative to the
movement dynamics, reaches an infected quasi-stationary state
and so all infected patches are identically and immediately
infected with a constant prevalence, i.e. the two processes of
infection and movements between patches do not occur on the
same time scale. The advantage of such an assumption is
tractability, and analytic results can often be obtained (Hagenaars
et al., 2004; Hess, 1996). There are infectious disease systems
where the progress of an infection in a subpopulation is relatively
predictable and so the critical assumption of the patch-
based approach is arguably appropriate. One such example is
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Table 1
Definition and default values of the model parameters for numerically studied

cases

Parameter Value Definition

P 100 Number of patches

K 10 Patches carrying capacity

b 0.02 Birth rate per week

m 0.001 Natural mortality rate per week

m [0, 0.1] Movement rate per week

b 1 Infection rate per week

g 0.05 Recovery rate per week
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foot-and-mouth disease where on average 90% of the animals in a
herd become infected in less than a week after a primary infection
occurs (Le Menach et al., 2005). That is, in each infected
subpopulation prevalence rises predictably and rapidly to �90%.
Other examples, where the prevalence of an infection rises rapidly
within a week, are the spreading of campylobacter in broiler flocks
(Van Gerwe et al., 2005) and the spreading of highly pathogenic
avian influenza in chicken flocks (Tiensin et al., 2007).

The second class of models explicitly describe the course of an
infection within a subpopulation. This creates two levels of
complexity and hence these models are usually simulation models
and their behaviour must be understood by running large
numbers of simulations to determine the typical or average
outcome (Cross et al., 2005).

Another, useful way of dividing metapopulation models is by
the way transmission between subpopulations is modelled. It is
frequently modelled phenomenologically (Hagenaars et al., 2004;
Keeling and Rohani, 2002; Park et al., 2002) by which is meant
that the presence of infectious individuals in one subpopulation
leads to positive forces of infection on individuals in surrounding
subpopulations but exactly how transmission between subpopu-
lations occurs is not further specified. A common alternative to
modelling transmission phenomenologically is to model mechan-
istically the movement of hosts between subpopulations so that
transmission between subpopulations only occurs when an
infectious host from one subpopulation moves to another (Cross
et al., 2005; Keeling and Rohani, 2002). Such an approach is
frequently used in genetics, for example with the structured deme
model (Comins et al., 1979), which is also mechanistic in the sense
that the spread of new genes occurs when individuals explicitly
move between patches.

Metapopulations are defined on networks which can be
classified as spatially implicit or explicit. Each node corresponds
to either an individual (Rhodes and Anderson, 1996) or a
subpopulation (Cross et al., 2005; Park et al., 2002). In spatially
implicit networks, all patches are connected to each other, so each
individual can move from one patch to any other patch
(Hagenaars et al., 2004). For spatially explicit networks an
adjacency matrix can be used to describe which patches are
connected to each other—they are, for example, defined on
lattices (Cross et al., 2005; Park et al., 2002).

The objective of the present study is twofold. First we set out
an accessible model for the spread of pathogens in a metapopula-
tion of hosts, in which the between-patch movement rate of hosts
is free to vary from one extreme to the other (for example, there is
no requirement that this needs to be slow relative to the rates of
transmission and recovery). We model transmission mechanisti-
cally and while this choice excludes application of the model to
disease agents that are air-borne or vector-borne, it does result in
a model for which all parameters have a clear biological
interpretation (for example, a parameter representing the
strength of coupling between subpopulations is not required).
The model is not individual based, rather, it models the numbers
of individuals in each class (susceptible, infectious or recovered)
in each subpopulation, though one such class within a subpopula-
tion could well consist of a single individual. Our second objective
is to present new results on the relationship between the duration
of infection in the metapopulation as a whole (beginning with a
single infectious individual in a single subpopulation) and the rate
of movement of hosts between patches. Our motivation here is to
understand how infectious disease dynamics change when the
host population is viewed as being structured into many smaller,
connected subpopulations. Additionally, there is a direct link with
the control of infectious disease by considering a common
response to an outbreak: reduction of the movement of
hosts. This is particularly valid for infectious diseases of livestock
(http://ec.europa.eu/food/animal/diseases/controlmeasures/index_
en.htm).
2. Model

In the model the host population is divided into subpopula-
tions, each inhabiting a patch in the landscape. At least initially,
there are no unoccupied patches. The patches in the model are
identical in the sense that the patch carrying capacity, demo-
graphic parameters, infection parameters and movement rates of
individuals are the same for all patches (Table 1). Births are locally
density dependent, meaning that the birth rate in a patch depends
on the number of individuals in that patch but not on the numbers
of individuals in other patches.

Like the island model of Hess (1996), the between-patch contact
structure in this model is such that individuals can move from any
patch to any other patch. We consider the relatively simple case
where transmission is mechanistic and each individual takes on
one of three infection states: susceptible (S), infectious (I) and
recovered/immune to the infection (R). Individuals do not lose
immunity but eventually die and are replaced by susceptibles.

2.1. Within-patch dynamics

The within-patch infection process is a discrete version of the
classical stochastic SIR model (Diekmann and Heesterbeek, 2000),
where Sx(t), Ix(t) and Rx(t) denote the number of individuals per
infection state in patch x, at time t. The total number of
individuals in patch x at time t is given by Nx(t). Events occur
successively in the interval [t, t+1) in the order of birth, death,
infection, recovery and movement. Such an order is of course
artificial because all of these processes are continuous. However,
in a discrete model such as this it is necessary to impose an order
of events so that probabilities of dying or recovering are
consistently applied to the correct numbers of individuals. We
now describe how these events are modelled, following the same
order as they occur in the model.

The number of births in patch x at time t is represented by the
random variable B(Nx,t) and follows a Poisson distribution:

BðNx; tÞ� Poi max 0; bNxðtÞ 1�
NxðtÞ

K

� �� �� �

where b represents a maximum birth rate and K the carrying
capacity of a single patch.

The expression for the birth probability is the same as the
logistic model for population growth. It represents a situation in
which each patch has enough resources for K individuals; if the
population size exceeds K the birth probability drops to zero.

After the event of birth all individuals except newborns have a
chance to die, such that the number of deaths in a patch follows
a series of binomial distributions. In this case, the probability of
dying is independent of the infection state and this is what is

http://ec.europa.eu/food/animal/diseases/controlmeasures/index_en.htm
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reflected here. More explicitly, three random variables can be
written down, representing separately the number of susceptible,
infectious and recovered individuals that die in patch x over the
time interval [t, t+1):

DðSx; tÞ�Bin½SxðtÞ;m�
DðIx; tÞ�Bin½IxðtÞ;m�
DðRx; tÞ�Bin½RxðtÞ;m�

where m is the natural mortality rate. Here, we assume no
infection-related mortality. Note that Sx(t) is the number of
susceptible individuals in patch x at time t, which does not include
the newborns appearing in the time interval [t, t+1).

It is assumed that newborns appearing in the time interval [t,
t+1) cannot be infected in the same time interval, just as they
cannot die. The number of susceptible individuals in patch x that
become infected in the time interval [t, t+1) is again modelled as a
random variable:

InfðSx; tÞ�Bin SxðtÞ � DðSx; tÞ;1

�

� exp �
bðIxðtÞ � DðIx; tÞÞ

NxðtÞ � DðSx; tÞ �DðIx; tÞ � DðRx; tÞ

� ��

where b is the transmission rate in a frequency-dependent
infection process. The probability of success in the binomial
distribution is one minus the probability of avoiding infection.
Since in the imposed order of events infection occurs after
mortality, the number of individuals per state in a patch at this
point is the number of individuals at the beginning of the time
step, i.e. at time t, minus the number that died.

Infectious individuals (that have been infectious for at least
one time step) may recover. The numbers that do recover are also
assumed to follow a binomial distribution:

RecðIx; tÞ�Bin½IxðtÞ �DðIx; tÞ; g�

where g is the recovery rate.

2.2. Between-patch dynamics

So far we have constructed a set of random variables that
represent the demographic and infection processes occurring
within the various patches. The final step is to model the
movements of individuals between patches that might allow an
infectious agent to spread through the metapopulation.

We denote the number of patches in the metapopulation by P.
Taking into account the individuals that have died, recently
became infected or just recovered, the numbers of susceptible,
infectious and recovered individuals in patch x that may move to
another patch during the time interval (t, t+1) are, respectively,
Sx(t)�D(Sx, t)�Inf(Sx, t), Ix(t)�D(Ix, t)+Inf(Sx, t)�Rec(Ix, t) and
Rx(t)�D(Rx, t)+Rec(Ix, t). Note that the number of susceptible
individuals that may move to another patch does not include
newborn individuals.

The numbers of susceptible, infectious and recovered indivi-
duals that move away from patch x at the end of the time interval
[t, t+1) are given by the set of random variables:

MoutðSx; tÞ�Bin½SxðtÞ �DðSx; tÞ � InfðSx; tÞ;m�

MoutðIx; tÞ�Bin½IxðtÞ � DðIx; tÞ þ InfðSx; tÞ � RecðIx; tÞ;m�

MoutðRx; tÞ�Bin½RxðtÞ � DðRx; tÞ þ RecðIx; tÞ;m�

where m is the movement rate during a single time step. This
probability is, for simplicity, assumed to be the same regardless of
the state of an individual or the number of individuals in the patch. It
is assumed that all movements take place instantly and successfully,
meaning that no mortality or infection takes place during move-
ment. The total number of moving individuals is then distributed
randomly over all the patches, i.e. this distribution is multinomial
with probability 1/P to arrive in any particular patch. Note that it is
possible for a migrant to arrive in the same patch it has just left.

Now let Mz
inðx; tÞ be the set of random variables denoting the

number of individuals in infection state ZA{S, I, R} that arrive in
patch x at the end of the interval [t, t+1).

With this final piece of notation we can write down a complete
set of stochastic difference equations for the system:

Sxðt þ 1Þ ¼ SxðtÞ � DðSx; tÞ � InfðSx; tÞ þ BðNx; tÞ

�MoutðSx; tÞ þMS
inðx; tÞ

Ixðt þ 1Þ ¼ IxðtÞ �DðIx; tÞ þ InfðSx; tÞ � RecðIx; tÞ

�MoutðIx; tÞ þMI
inðx; tÞ

Rxðt þ 1Þ ¼ RxðtÞ �DðRx; tÞ þ RecðIx; tÞ

�MoutðRx; tÞ þMR
inðx; tÞ.

3. Initial conditions, outputs and global model behaviour

The infection and demographic processes in the model are
stochastic and hence there can be large variation between runs of
the model even though the sets of parameter values are identical.
This is particularly relevant when the patch size (or rather, the
carrying capacity of the patches) is small. The set of stochastic
difference equations described in the previous section were
simulated for a wide range of parameter values. The programme
code we used to do this, written in Fortran, is provided as
Supplementary Material. The number of time steps for each
simulation was set to 520 where one time step denotes 1 week. At
time t ¼ 1 one infectious individual is introduced into one patch
in a completely susceptible metapopulation.

We arbitrarily define the infectious agent to be endemic when
it is still present in the metapopulation after 520 time steps,
which corresponds to 10 years. For the calculation of the median
epidemic duration at least 500 simulations for 100 different
movement rates at the interval [0, 0.1] were run for a given set of
parameters. Because the time step is a week, a movement rate of
0.01 means that one individual moves once per 100 weeks and
this translates to an average of four out of 10 individuals in a patch
leaving over 1 year (if x�Bin (10, 1�0.9952), then E[x] ¼ 0.41). The
maximal movement rate (0.1) corresponds to one movement per
individual once every 10 weeks, i.e. it is highly likely that all
individuals will have left a patch within a period of 1 year.

The qualitative behaviour of the model is, in broad terms, not
unlike that of a simple SIR model for a single large population: the
infectious agent may (i) not spread at all in the initial patch,
(ii) spread in the initial patch, but not between patches,
(iii) spread within and between patches and then fade out or
(iv) spread within and between patches and persist in the
metapopulation. We will refer to the first two outcomes as ‘no
outbreak’ or ‘immediate extinction’. In the situation where the
infection spreads between patches (situations (iii) and (iv)) we
speak of ‘an epidemic’. However, whether an infectious agent
spreads at all and whether it persists once it does spread, is, in
addition to the values of the infection parameters, influenced by the
rate of movement between patches. These movements determine
the extent to which the infectious agent ‘perceives’ the spatially
structured nature of its host population (Cross et al., 2005).
4. Epidemic duration, synchrony during invasion and
between-patch movements

We focus here on the relation between the movement rate
between patches and the duration of infection presence in the
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metapopulation as a whole. Our model is for a directly
transmitted, innocuous infection that is transported between
subpopulations by movement of individuals.
4.1. Basic pattern

We explored the dynamics of the model in several ways and
summarized the results in Figs. 1–4. In Fig. 1, the median of the
epidemic duration is shown together with the first and third
quartile to indicate the variation in epidemic duration between
simulations; for most movement rates this variation is quite high.
A striking result is the non-linear response of the median
epidemic duration to the movement rate between patches
(Fig. 1). Initially the epidemic duration increases rapidly with
the movement rate but changes abruptly such that a peak in the
Fig. 1. The dependence of the epidemic duration in weeks on the movement rate,

with bars indicating the first and third quartile. The default parameter values

P ¼ 100, K ¼ 10, b ¼ 1, g ¼ 0.05, b ¼ 0.02 and m ¼ 0.001 are used. The results are of

500 simulations.

Fig. 2. The dependence of the epidemic duration in weeks with the default parameters

prevalence correlation coefficient with the default parameters b ¼ 0.02 and m ¼ 0.001 (

infected at least once with the default parameters (dotted line) on the movement rate. T

results are the median values of at least 250 simulations.
duration of the epidemic appears at relatively small movement
rates. It then decreases for intermediate values of the movement
rate until the movement rates become large enough such that the
third quartile jumps to values larger than the simulation time, i.e.
the increase of the curve is caused by the endemic behaviour that
is possible for large movement rates. However, the infection was
never observed to persist in a single patch, because the carrying
capacity of a patch is always set to values presumably far lower
than what is required for this.
4.2. Maxima in epidemic duration

We now consider more closely the first peak. The number of
patches that are infected at least once are shown in Fig. 2 (dotted
line), together with the curve representing median epidemic
b ¼ 0.02 and m ¼ 0.001 (line 1) and with b ¼ m ¼ 0 (line 2), of the between-patch

line 3) and with b ¼ m ¼ 0 (line 4) and of the proportion of patches that have been

he other default parameter values P ¼ 100, K ¼ 10, b ¼ 1 and g ¼ 0.05 are used. The

Fig. 3. The dependence of the median epidemic duration on the movement rate

with insets showing the different behaviour of three movement rates (0.006, 0.012

and 0.046) with the same median epidemic duration of 315 weeks. For these rates

the total number of susceptible individuals in the metapopulation is given over

1000 time steps for 50 simulations. The default parameter values P ¼ 100, K ¼ 10,

b ¼ 1, g ¼ 0.05, b ¼ 0.02 and m ¼ 0.001 are used.
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Fig. 4. The dependence of the epidemic duration in weeks on the movement rate

for transmission rate b ¼ 1 (default) and b ¼ 10 and recovery rates g ¼ 0.04,

g ¼ 0.05 (default) and g ¼ 0.1. The other default parameter values P ¼ 100, K ¼ 10,

b ¼ 0.02 and m ¼ 0.001 are used. The graphs are the median values of 500

simulations.
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duration, and we see that the rapid increase leading to the first
peak coincides with a similar increase in the number of patches
that become infected at least once. So for small movement rates,
an infectious individual moving to another patch has a large
probability to arrive in a patch with a completely susceptible
subpopulation and transmit the infection. However, there is also a
high probability at small movement rates that infectious indivi-
duals recover before they move, so that at the scale of the
metapopulation the epidemic tends to be short-lived. Indeed,
even though a typical epidemic is short-lived at small movement
rates, the median number of infectious individuals per infected
patch is higher than for large movement rates (results not shown).
At movement rates larger than that producing the first peak in
epidemic duration almost all patches are infected (Fig. 2).

At a large movement rate the global maximum (where
endemic behaviour begins to occur) is reached. For these move-
ment rates a typical infectious individual will visit several patches
during its infectious period. This is particularly important just
after the first epidemic when very few infectious individuals
remain (the vast majority of the population having reached the
recovered state). At this point their frequent movement increases
the probabilities of meeting the few susceptible individuals that
have either just entered the population (births) or have so far
escaped infection. This mixing enables the infectious disease to
persist in the metapopulation.

In order to better understand the second peak and global
maximum in epidemic duration, we recalculated the median
epidemic durations, but this time set the birth and mortality rates
to zero (line 2 in Fig. 2). This means there is no population
turnover, and hence no new susceptible individuals are intro-
duced at any time step. For this situation the second increase in
epidemic duration disappears and there is a single global
maximum at small movement rates; this shows that the arrival
of new susceptible individuals is a necessary condition for
endemic behaviour.
4.3. The effect of the movement rate

As an aid to interpreting our results on epidemic duration, we
show in Fig. 3 more detailed simulation results for three
movement rates that produce the same median epidemic dura-
tion. The rates are 0.006, 0.012 and 0.046, all of which have a
median epidemic duration of 315 time steps (i.e. 6 years). These
rates represent that one individual moves once per 160, 83 or 22
weeks, respectively. One difference for these three movement
rates is the number of patches that become infected at least once
during the time the infection is present in the metapopulation of
100 patches. For the smallest movement rate, around 21 patches
will have been infected at least once, for the middle rate 91
patches, and for the largest rate every patch (dotted line in Fig. 2).
Perhaps more informative is the total number of susceptible
individuals in the metapopulation over time for the three different
movement rates. These curves reveal that the model exhibits
three kinds of behaviour: (i) there is immediate extinction of the
infection, i.e. there is no outbreak, (ii) there is one epidemic
followed by fade out, and (iii) there are several consecutive
epidemics and the infection persists in the metapopulation. At the
small movement rate (0.006) two kinds of behaviour are possible:
immediate extinction or a single epidemic. After the peak at
movement rate 0.012, immediate extinction occurs less often and
single epidemics become the rule. At the largest movement rate
(0.046) both immediate extinction and single epidemics are still
possible, but there are also simulations where several consecutive
epidemics occur. Furthermore, as the movement rate increases,
the minimum number of susceptible individuals during an
epidemic decreases and is reached at an earlier time step
(Fig. 3). At this point, where only a few susceptible individuals
are left, fade out can occur, which gives smaller epidemic
durations. Also, the time it takes the infection to reach a particular
patch becomes shorter and synchrony in the infection dynamics
in the separate patches emerges.

Not only the minimum number of susceptible individuals, but
also the period during which a patch is uninterruptedly infected,
decreases with increasing movement rates (result not shown).
This is because of a stronger coupling between patches for
increasing movement rates such that epidemics occur locally
faster.

4.4. Synchrony

We confirm the argument in the preceding paragraph by
measuring synchrony in the infection dynamics of the patches.
We also note that synchrony between patches increases the
probability of global extinction of the infection. The between-
patch prevalence correlation (Hagenaars et al., 2004), C, is
calculated, which is a measure of the synchrony between the
different patches:

C ¼
2=PðP � 1Þ

PP
i�1

Pi�1
j¼1hSiðtÞSjðtÞi � 1=P2 PP

i¼1hSiðtÞi
� �2

1=P
PP

i¼1hSiðtÞ
2
i � 1=P2 PP

i¼1hSiðtÞi
� �2

.

We examined the synchrony between the susceptible indivi-
duals, rather than the infectious individuals (Hagenaars et al.,
2004), in the patches, because the numbers of infected individuals
can be very small (simulations begin with only one infected
individual in the metapopulation). The correlation coefficient was
calculated for 250 simulations at each movement rate (lines 3 and
4 in Fig. 2), where / �S is the time-average over the first 250 time
steps of the simulation and the number of runs. We took the first
250 time steps, because the first epidemic takes place within
these time steps and this is where the effect of synchrony plays a
large role.

The minimum of the between-patch prevalence correlation
coincides roughly with the peak in epidemic duration. After this
minimum, the correlation coefficient increases again, albeit
slowly at the scale shown in Fig. 2. Also shown is the correlation
coefficient for the model without population turnover (line 4 in
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Fig. 2), which increases somewhat faster compared to simulation
results from the model with population turnover (line 3 in Fig. 2);
without population turnover there is no rise in susceptible
individuals causing endemic behaviour and thus there is more
synchrony between the patches for larger movement rates.

4.5. Robustness

The non-linear response of the median epidemic duration to
increasing movement rate is not restricted to a small part of
parameter space, but also occurs for other values of the recovery
and transmission rates (Fig. 4). The recovery rate has a large
impact on the spread of the infection through the metapopula-
tion: a smaller recovery rate (i.e. a longer infectious period)
results in penetration of the infection in the metapopulation at
smaller movement rates, because an infectious individual has
more time to infect susceptibles. For larger recovery rates, relative
to the demographic rates, the endemic behaviour occurs at larger
movement rates and finally disappears from the system, leaving
only one maximum in median epidemic duration at small
movement rates. Intuitively this can be understood as follows: a
larger recovery rate yields a shorter infectious period and in this
period an infectious individual has to infect enough susceptible
individuals to sustain the infectious disease in the metapopula-
tion. This becomes more difficult for larger recovery rates and
eventually impossible, resulting in the disappearance of the
endemic behaviour.

Furthermore, a larger transmission rate influences neither the
spread of the infection nor the median epidemic duration at small
movement rates. For larger movement rates, a larger transmission
rate does influence the epidemic duration. This is probably
because after the first epidemic there are only a few susceptible
individuals left, but an infectious individual has to meet a
susceptible in order to pass on the infection and ensure that the
infection does not fade out. At a large movement rate, an
infectious individual can visit more patches which increases the
probability of meeting susceptible individuals. However, an
infectious individual not only has to meet them, but infect them
as well. For a higher transmission rate, the probability of actually
infecting, and therefore sustaining the infection in the metapo-
pulation, increases, resulting in a larger median epidemic
duration. This observed effect, however, may be due to the small
patch sizes used here.

The median epidemic duration for a different number of
patches shows (result not shown) that there is a critical
community size (Bartlett, 1957; Grenfell and Harwood, 1997)
above which the infection will persist in the metapopulation and
below which the infection will disappear. For a certain movement
rate increasing the number of patches, but not the total
population size, can cause the endemic behaviour to disappear.
5. Discussion

We have presented a model for the dynamics of an infectious
disease in a metapopulation that is fully coupled but not
individual based. Patch-based epidemic models assume that if a
patch becomes infected, it reaches an equilibrium state immedi-
ately such that individuals arriving later (or leaving the patch
later) do not influence the course of the infection within the patch.
For large subpopulations, or if the rate of movements is much
slower than the transmission rate, then this may be an appro-
priate simplification. However, it is an uncomfortable simplifica-
tion. In reality there will be variation among subpopulations in
what happens once a single infectious individual arrives. Patch-
based epidemic models also ignore some of the potential effects of
host movements. For example, the frequent arrival of susceptible
individuals into an infected patch may extend the infection in that
patch in the same way as host turnover does. Models representing
the within-patch infection dynamics explicitly account for the
effect of additional introductions into a given patch on the
probability of infection persistence in this patch. The disadvantage
is that analytic results are no longer possible and one can only
establish the mean behaviour of the model for a small part of the
parameter space. It is hence difficult to use such models to draw
general conclusions about the dynamics of infectious disease in
metapopulations.

In the proposed approach, the within-patch infection dynamics
of an infectious agent is represented and we have chosen a SIR-
type model for this. The model can be adapted (e.g. to SI or SIS
models) and can be extended to include, for example, higher
mortality or smaller movement rates among infectious indivi-
duals compared to uninfected. In a first approach, movements
were defined as random between patches, with all patches being
equally likely destinations, similar to the island model of Hess
(1996). In many wildlife metapopulations, movement will not be
to a random patch. For example, if movements are related to the
dispersal behaviour of maturing animals then there may be a
tendency to avoid neighbouring patches (e.g. male cats; Fromont
et al., 2003). Another example is phocine distemper virus in the
North Sea population (Swinton et al., 1998); this infection causes
mortality in harbour seals. The infection is transmitted directly
and appears to spread from one subpopulation to another through
the movements of individuals. In this example the infectious
agent does not persist, at least not in the North Sea harbour seal
population. If data are available on animal movements (e.g. in
domestic cattle; Ezanno et al. (2006) and Kao et al. (2007)) it is
possible to define a specific metapopulation structure. An
adjacency matrix can be used to describe such a structure, for
instance when not all patches are (equally) connected to each
other (Keeling and Eames, 2005).

Empirical studies that address the effect of population
structure on the dynamics of infectious agents appear to be rare.
One exception is the study by Lopez et al. (2005) on the spread of
an ectoparasitic mite in a metapopulation of flour beetles.
Interestingly, the experimental system studied was fully coupled
(movement of hosts was imposed at weekly intervals whereas the
time taken to reach local equilibrium within a patch was around
30 days) and transmission was mechanistic (spread of the parasite
was entirely dependent on movements of infectious hosts). Lopez
et al. (2005) did not study the effect of movement rate on
epidemic duration (there were no epidemics as such and they
were concerned largely with the endemic prevalence of the
parasite) but, in agreement with our results and those of other
theoretical studies, they found that host movement had a large
impact on the proportion of infected patches.

We show that the median epidemic duration does not increase
monotonically with movement rates and that this is not restricted
to a small range of parameter values. In fact, the relationship is
highly non-linear. This contradicts some of the results of other
modelling studies on the persistence of infectious disease in
metapopulations, stating that persistence is always improved by
increasing movement between patches (Hagenaars et al., 2004;
Lindholm and Britton, 2007). However, care must be taken when
comparing the results of studies of persistence as persistence can
be defined in several ways. Both Hagenaars et al. (2004) and
Lindholm and Britton (2007) measure persistence as the expected
time to extinction (of the infectious agent) when all patches were
infected at the beginning of the simulations and all patches were
assumed to be at the quasi-equilibrium state, representing an
endemic infection of the metapopulation. This is quite different to
introducing the infection into a fully susceptible metapopulation
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with a single infectious individual and then noting when the
infection dies out and to looking at the number of patches that
have been infected at least once (Cross et al., 2005). That is, we
studied the transient infection period, during which many early
extinctions occur and this is qualitatively different to studying the
extinction of infectious disease from an endemic state or studying
if the infectious disease has invaded all the patches in the
metapopulation.

Hagenaars et al. (2004) also looked at the fade-out fraction as a
measure of persistence in a situation where an infection starts
with a single infectious individual, but there the infection can
later be reintroduced from an external source. Park et al. (2002) is
another study of persistence of infectious disease in structured
host populations. They model the force of infection on susceptible
individuals in a patch phenomenologically and found a non-linear
relation between the median epidemic duration and the patch
size. The patch size was shown to directly relate to the probability
of transit of the infection between patches and Park et al. (2002)
suggest that the peak in epidemic duration is a consequence of
when and how often transit of the infection occurs. They suggest
lower median extinction times for the largest patch sizes are due
to more rapid transit of the infection, because increasing the patch
size increases the force of infection from infected patches (in their
phenomenological model the force of infection is proportional to
the number of infectious individuals). Our results are easier to
grasp in the sense that only the rate of movement is varied and
hence we have shown that simply increasing movements of
individuals between patches can first cause an increase in the
median epidemic duration, then a decrease and then going to an
endemic state.

The theory of metapopulation persistence, where the persis-
tence of populations is considered as a balance between
colonization and local extinction, and the persistence of an
infectious agent in a metapopulation are closely related (Grenfell
and Harwood, 1997; Hanski, 1999): the process of colonization
corresponds to the establishment of the infection into a
completely susceptible patch in epidemiological models and
local extinction corresponds to the death or recovery of hosts
(Grenfell and Harwood, 1997; Hanski, 1999). In metapopulation
persistence, persistence occurs at intermediate levels of coupling
(Lande et al., 1998). According to Hanski (1999) this is due to
asynchrony of the dynamics between patches: moving individuals
can reoccupy a patch to prevent extinction (the so-called ‘rescue
effect’).

Persistence of an infectious disease in a structured population
has been studied by several authors. Keeling (2000) showed that
the probability of global extinction of an infectious disease has a
minimum at intermediate levels of coupling, which can be
explained by asynchrony between patches (Hagenaars et al.,
2004), wherein moving infectious individuals can reintroduce the
infectious agent into a patch that had no infectious individuals.
This is only possible at relatively small movement rates after
which the patches become highly synchronized. We also show
that asynchrony between patches is the driving force for the peak
in epidemic duration for small movement rate.

Persistence is further studied in ecological models like
predator–prey interactions in a metapopulation (Leibold et al.,
2004; Sabelis et al., 2005), where the persistence of both the
predators and the prey in a metacommunity is examined. These
models show resemblance to epidemiological models (Earn et al.,
1998) in the sense that the prey are the susceptible individuals,
the predators are the infectious individuals and the dispersal of
the predators corresponds to the spread of an infection. In the
simple predator–prey models, where predators can cause local
extinction of prey, it has been shown that persistence of
both species is only possible at intermediate dispersal rates
(Leibold et al., 2004). This is in contrast to our result that
persistence is only possible at larger movement rates.

Our results are possibly more relevant to outbreak manage-
ment than studies of extinction of infection from an endemic state
or studies in which patch size is varied. For example, if for an
infectious disease in livestock a peak in the median epidemic
duration is expected, then it is useful for health authorities to
understand that restricting movement of animals between farms
or holdings may not reduce the epidemic duration, although the
number of farms or holdings that suffer from the infection is
reduced. That is, a possible outcome of intervention is that the
total number of infectious individuals is reduced, but not the
duration of the epidemic.

At relatively large movement rates, the model predicts that
endemic behaviour is possible. That is, rather than a single
epidemic the first wave of infection is followed by several others.
At these movement rates the infectious agent may ‘perceive’ the
metapopulation as if it is one large population. For several
consecutive epidemics to occur, a critical community size (Bartlett,
1957; Grenfell and Harwood, 1997) is needed such that the
number of new susceptible individuals replacing older, recovered
individuals is high enough to prevent extinction. At large move-
ment rates, the infectious agent must therefore ‘experience’ or
‘perceive’ the metapopulation as if it is effectively larger than the
critical community size. We emphasise, that whether several
consecutive epidemics actually occur at these movement rates,
also depends on the number of patches the population is divided
into, while keeping the total population size constant; an
individual will ‘experience’ a metapopulation consisting of a few
large patches as a larger population than one consisting of many
small patches. In the case of epidemics on a lattice, where each
node represents an individual rather than a subpopulation, it has
been concluded that for persistence both a population size
threshold and a population mixing threshold must exist (Rhodes
and Anderson, 1996). It would be useful to assess how the
population size experienced by an individual is related to the
actual total population size, the patch size and the movement rate.

We have proposed a relatively generic model to represent the
infection dynamics of a metapopulation composed of patches
connected by explicit individual movements. The effect of
population structure on epidemic duration is one of several topics
that fall under the more general concern about how spatial
heterogeneity affects the dynamics and fate of infectious disease.
Numerous modelling approaches have been suggested to study
these questions and while analytic progress can be made with
simpler models we would also suggest that the results of fully
coupled models are an important contribution.
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