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a b s t r a c t

Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell division,

cell motility, and shape change. Actomyosin dynamics are themselves regulated by proteins that

control actin filament polymerization and depolymerization, and myosin motor contractility. Previous

theoretical work has focused on translational movement of actin filaments but has not considered the

role of filament rotation. Since filament rotational movements are likely sources of forces that direct

cell shape change and movement we explicitly model the dynamics of actin filament rotation as myosin

II motors traverse filament pairs, drawing them into alignment. Using Monte Carlo simulations we find

an optimal motor velocity for alignment of actin filaments. In addition, when we introduce

polymerization and depolymerization of actin filaments, we find that alignment is reduced and the

filament arrays exist in a stable, asynchronous state. Further analysis with continuum models allows us

to investigate factors contributing to the stability of filament arrays and their ability to generate force.

Interestingly, we find that two different morphologies of F-actin arrays generate the same amount of

force. We also identify a phase transition to alignment which occurs when either polymerization rates

are reduced or motor velocities are optimized. We have extended our analysis to include a maximum

allowed stretch of the myosin motors, and a non-uniform length for filaments leading to little change in

the qualitative results. Through the integration of simulations and continuum analysis, we are able to

approach the problem of understanding rotational alignment of actin filaments by myosin II motors.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Filamentous actin or F-Actin and its associated motor protein
myosin II are fundamental cytoskeletal proteins essential to the
physiological function of cells, establishment and maintenance of
cell shape, and enabling cell motility. Actomyosin regulates cell
shape and cell motility by restricting contractility to specialized
regions in the cell such as the apical cell cortex (Martin, 2010), or
the trailing edge of migrating cells (Yam et al., 2007; Kim and
Davidson, 2011). In these cases the role of actomyosin is experi-
mentally tested by perturbing either the assembly of F-actin or
the cross-linking and contractility of myosin II. However, given
the ubiquity of actomyosin within non-muscle cells it has been
difficult to resolve the specific role of actomyosin and related
regulatory proteins within multicellular tissues. Actin rotation is
believed to play a role in stress fiber formation, formation of the
cytokinetic actin ring, initiation of filopodia, and podosome
extension (Condeelis, 1993; Yamaguchi et al., 2006).
ll rights reserved.
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Recent advances in mathematical and biophysical models of
cytoskeletal filaments and motors have provided an important
framework in which to analyze the dynamic properties of the
cytoskeleton. Theoretical studies of cytoskeletal dynamics of
microtubules and their associated motor protein kinesin (Karsenti
et al., 2006; Nedelec et al., 2003) have been used to elucidate the
formation and function of spindles during mitosis. In vitro studies
of the rheology of purified protein have found a multiple stage
aggregation process by which myosin motors organize actin
filaments into contracted states (Soares e Silva et al., 2011). Similar
models of the actin cytoskeleton have been used to study the role
of actin polymerization in powering intracellular movement of
Listeria monocytogenes (Alberts and Odell, 2004). Although there
are many theoretical models for actomyosin dynamics (Sommi
et al., 2011; Kruse and Jülicher, 2006; Kruse et al., 2004; Spiros and
Edlestein-Keshet, 1998), these analyses have used ‘‘agent-based’’
computer simulations in which discrete elements, individual fila-
ments, and structural elements are modeled within a complex
geometry. Such models create a virtual assembly of ‘‘agents’’ with
association rules and biochemical rates describing all interactions
mediated by the physics of diffusion, chemistry, and mechanics. To
simplify the physically and biochemically complex cytoskeleton, a
range of alternative theoretical approaches have been adopted to
break the complex biology of actomyosin into simpler systems
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whose behaviors can be explored analytically rather than compu-
tationally (Mogilner and Oster, 1996; Chan and Odde, 2008; Zemel
and Mogilner, 2009). However, few of these studies have investi-
gated the role of polymerization and motor contractility in aligning
filaments. Given that filament alignment may be involved in
diverse processes that reorganize F-actin, we developed theoretical
models to directly explore these processes.

We hold the filaments pinned at their minus ends in order to
prevent translational movements of filaments and expose
mechanisms which play a role in aligning filaments. The polarity
of the actin filament and its motor protein myosin II is a critical
property and distinguishes the cytoskeleton from more generic
types of polymer gels. In order to understand the complex
behavior of actomyosin in complex morphologies we must con-
sider the polarity and assembly of actin filaments, actin filament
bending, the dual role of myosin motors as cross-linkers, and how
motors shape and contribute to the mechanical properties of
solid-like multi-filament structures. Through our simulations and
analysis we found that filaments will always align and the time
needed for alignment to occur depends on an optimal velocity for
the myosin motors. We also investigated what mechanisms
would inhibit alignment, and found that actin polymerization is
a natural source of noise that destabilizes alignment. We found
that a phase transition to strong alignment occurs when either
polymerization rates are reduced or the velocity for the myosin
motor is changed toward an optimum.
2. Model and methods

2.1. Simple geometry of actin–myosin interaction

Within the cell cortex actin filaments are present with arbi-
trary orientations and myosin motors attach to the filaments,
move toward filament plus-ends exerting a force which acts to
align the filaments. If confined to a two-dimensional plane each
actin filament has three degrees of freedom: the position of its
center of mass in the plane and its orientation with respect to that
center of mass. We first consider a simplified actomyosin array of
one motor and two filaments (Fig. 1A). In the cell, myosin II is
organized into anti-parallel arrays of bundled motors (Niederman
and Pollard, 1975). In our model we represent a single bundle as a
mini thick filament and refer to such a bundle as a single ‘‘motor.’’
Filaments are only allowed to change their orientation. Minus
ends which remained pinned at a fixed location we call the
‘‘origin.’’ Motors first attach at the pinned minus ends of a pair
of filaments and move toward the plus end, exerting a spring-like
force on the filament pair (Fig. 1B). We can define the angle of
orientation for each filament (y1 and y2), and the distance from
the minus-end to the attached motor (s1 and s2, Fig. 1C). The
position of the two motors can be written in a Cartesian frame of
Fig. 1. Description of geometry and method. (A) Cartoon depicting the biological

interaction between actin filaments (red) and myosin II motors (green).

(B) Simplified depiction of interaction between two actin filaments and one

motor. (C) Idealized geometry for the motor-filament configuration used in our

models. We refer interested readers to the Supplementary material for simulation

details. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
reference as ðs1 cos y1,s1 sin y1Þ and ðs2 cos y2,s2 sin y2Þ. As motors
move to filament plus-ends, we assume they move with a
constant velocity, v. As the two ends of the myosin motor move
apart toward the plus-ends of their respective filaments the
myosin acts as a dynamic spring exerting forces on each filament,
in the pair (Dunaway et al., 2002; Neumann et al., 1998;
Nagornyak et al., 2005), resulting in movement and rotation of
both filaments.

From this biophysical description of motors, actin filaments,
and their interactions we can describe the life-cycle of a myosin
motor. The motor begins its life-cycle unattached to any fila-
ments, waiting at the origin until it chooses to attach to a random
pair of filaments. Once the motor attaches to a pair of filaments,
the motor walks toward the plus-ends of the filament pair,
generating force which pulls the filaments towards each other.
The motor can detach from the filament pair as a result of a
random stochastic process, and if the motor detaches, returns to
the pool of unattached motors at the origin. On the other hand, if
the motor reaches the end of the filament pair, it will fall off and
return to the origin.

We have also simulated actin filament polymerization and
depolymerization by allowing randomly selected filaments to
disappear and be replaced by polymerization at the same time
at a new angle. Polymerization rates represented by a rate per
filament which allow the random, stochastic removal of a fila-
ment and placement of a new filament during our Monte Carlo
simulations. In the event that a motor is attached to a depoly-
merizing filament, the motor will detach.
2.2. Equations of motion for the myosin motor and filament pair

Based on these rules we derive and compute the equations of
angular motion for the filament pair as a myosin motor draws
them into alignment. To extend the equations to the N filaments
and M motors case, we only need to consider that the forces sum
linearly. We derive the equations of motion for two filaments and
one motor (Eq. (1)), where k is the spring constant and m is the
viscosity

_y1 ¼
k

m s2 sinðy2�y1Þ,

_y2 ¼
k

m
s2 sinðy1�y2Þ: ð1Þ

More generally, we can define the change in angle for filament i

from N total filaments as the sum of forces exerted by each motor
m from the pool of motors ðMðiÞÞ which are all attached to
filament i (Eq. (2))

_yi ¼
k

m
X

mAMðiÞ

s2
m sinðypðm,iÞ�yiÞ: ð2Þ

Since we have to calculate the change in angle between the
filament pair to which the motor, m, is attached, we define the
index for one filament to be i and the other filament’s index to be
pðm,iÞ.

From these equations of motion we can evaluate the mean of
the distance the motor travels along the filament, s. This term is
proportional to the mean rate of alignment and the average force
exerted by the system (Eq. (3))

/ForceSa/s2S¼ ¼ 1=T

Z T

0
s2ðtÞ dt: ð3Þ

We can also describe the morphology of the resulting actin
array with an order parameter (Z), a measure of alignment of the
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filaments in our system. Z is defined as follows:

SðtÞ :¼
1

N

XN

i ¼ 1

sinðyiðtÞÞ,

CðtÞ :¼
1

N

XN

i ¼ 1

cosðyiðtÞÞ,

Z :¼ lim
T-1

1

T

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
ðtÞþC2

ðtÞ

q
dt: ð4Þ

In the statistics of circular or periodic distributions ð1�ZÞ is often
called the circular variance (Zar, 1999). The order parameter can
be determined explicitly in the case of two filaments (Eq. (5)),
where the difference in the angle between the filament pair, fðtÞ,
is defined for �p to p

Z ¼ lim
T-1

1

T

Z T

0
cos

fðtÞ
2

����
���� dt: ð5Þ

The order parameter as it relates to our Monte Carlo simula-
tions describes the degree to which a set of filaments is co-
aligned. For instance, in the case where the order parameter is
one (Z¼1), all filaments are perfectly co-aligned with the same
orientation angle. Alternatively, when the order parameter is zero
(Z¼0), the filaments will have orientation angles uniformly
distributed around the circle.

2.3. Biophysical properties of actin filaments and myosin motors

All of the parameters and their associated most commonly used
value for the Monte Carlo simulations are found in table form with
the Supplementary information (Table S1), along with all of the
variables (Table S2). The Monte Carlo simulations were carried out
using MATLAB and the algorithm, represented as a simple flow
chart (Fig. S1), has been included in the supplementary information.

Actin filament polarity and length (L): Actin microfilaments or
F-actin vary from minimal lengths of a few G-actin subunits to
more than 10 mm with a distinct polarity of plus- and minus-ends.
For the majority of our simulations and continuum analyses we
set filament length to 1 mm. This may be considered either the
fixed length of a stable filament or the dynamic length of a tread-
milling filament.

Myosin motor geometry and velocity (v): Each functional myo-
sin II subunit is assembled from two heavy chains, two essential
light chains, and two regulatory light chains. Myosin II mini thick
filaments are assembled from multiple subunits into an antipar-
allel array with the globular ATPase head domains at the opposite
ends of the filament and the rod-like domain of the subunits
bound in antiparallel arrays in the center bare region of the mini-
filament. The composition and length of mini thick filaments vary
from cell type to cell type of � 20 myosin II complexes and are
approximately � 350 nm in length (Niederman and Pollard,
1975). Little is known experimentally about the force-producing
capabilities of mini thick filaments but they can stretch and act
like springs (Neumann et al., 1998; Nagornyak et al., 2005;
Dunaway et al., 2002; Smith et al., 2007). We assume that ATP
levels are high and myosin II motor ATPase activity is maximized.

Model time (t): Model time is reported in seconds and the
Monte Carlo simulations are advanced with individual time-steps
of 0.01 s.

Motor attachment rate (r0): In the cell, the rate of motor
attachment would reflect several factors including the rate of
diffusion of myosin mini-filaments, the volume each mini-fila-
ment can search, and the relative density of F-actin binding sites.
In our unique geometry the situation is considerably simplified
since all unbound motors are held within binding range of F-actin
at their minus-end. Thus, for a majority of our simulations we fix
the motor attachment rate at 0.7 per second.

Myosin detachment rate (r1): Myosin motors are highly proces-
sive but do occasionally dissociate from filaments before reaching
the plus-end. Since these rates are poorly characterized in vivo we
choose detachment rates that range from 0.1 to 0.8 per second.
This rate may also vary based on the amount that the motor is
stretched; e.g. load (see Section 3.5).

Depolymerization rate (r2): Actin filaments within cells are
constantly being turned over so we introduce a depolymerization
rate per filament. This rate may be dependent on the length of the
filament and may be controlled within the cell. Polymerization
rates are allowed to vary from 0.01 to 0.2 per second. In vivo, the
polymerization/depolymerization rates may control actin abun-
dance, however, within our simulations we enforce constant
F-actin density and promptly polymerize a new filament when
one filament depolymerizes.

Viscosity ðmÞ: In the cell, filaments experience viscous drag
forces as they rotate through the cytoplasm. By contrast, myosin
mini thick filaments, due to their smaller size, do not experience
such drag forces. In our model, we only consider the viscous drag
of water and explicitly simulate filament–filament interactions
that would contribute to cytoplasmic viscosity. If we increase the
viscosity parameter, we would see that the time it would take to
align would increase since the increase in viscosity would make it
more difficult for the filaments to rotate through the space. The
viscosity of water is defined as 1� 10�3 Pa s.

Motor stiffness (k): As the two ends of the myosin II motor
mini-filament move apart on pairs of actin filaments the mini-
filament exerts spring-like forces on the two filaments. Thus, our
simulations include a motor spring stiffness term k. Myosin mini-
filament stiffness has been measured from 1.7 to 5.0 pN/nm (Kaya
and Higuchi, 2010; Neumann et al., 1998; Nagornyak et al., 2005;
Dunaway et al., 2002).
ðm=kÞ: For our equations of motion and continuum analysis, we

do not use separate values of m and k but instead use the ratio of
stiffness to viscosity. Due to uncertainty in the exact value of this
term, ranging from 0.2 to 0.6 (s/m2) we set this ratio to 1.
3. Results

3.1. Two filaments, one motor

For simplicity, we first consider two filaments and one motor.
The two filaments lie at specific angles ðy1 and y2Þ and may be
bound together at a distance, s, from their origin by a motor. We
found it advantageous to consider the angle between the two
filaments ðf :¼ y2�y1Þ rather than the orientation angle of each
filament. We found a single equation of motion could replace the
two equations defined previously (see Section 2.2, Eq. (1))

_f ¼�2s2 k

m
sin f: ð6Þ

For the case of two filaments and one motor, we used this
equation of motion to follow events that occurred during a typical
simulation (Fig. 2A): (a) the motor attached to the filament pair
and started to pull filaments together as the motor traveled down
the filaments at a fixed velocity, (b) the motor fell off the
filaments before it reached the ends of the filament pair, (c) the
motor spent time waiting to attach to the filament pair, (d) the
motor reached the plus-end of the filament and fell off. For all
simulations perfect alignment is guaranteed since there were no
other processes which could cause the difference in filament
angle ðfÞ to increase. Thus, the changing morphology of the
system could be followed as the order parameter (Eq. (5))



Fig. 2. Monte Carlo Simulations for two filaments and one motor. (A) Visual of one Monte Carlo simulation time course for motor movement (red) and the resulting change

in angle of the filament pair (black) without polymerization: (a) motor attaches to the filament pair, (b) motor falls off before it reaches the end of the filaments, (c) motor

waits to attach, (d) motor falls off when it reaches the end of the filaments. (B) Plots of order parameter (blue), and force generated (black) for one Monte Carlo simulation.

(C) Color evolution plot of the order parameter for 100 Monte Carlo simulations. Given enough time, the two filaments become aligned by the motor. (D) Color evolution

plot for the force generated by the motor for the 100 Monte Carlo simulations in C. (E) Average order parameter (blue) and average force generated (black) for the 100

Monte Carlo simulations shown in C and D. (F) One Monte Carlo simulation time course for motor movement (red) and the change in angle of the filament pair (black) with

polymerization: (a) motor attaches to the filament pair, (b) motor falls off before it reaches the end of the filaments, (c) motor waits to attach, (d) motor falls off when it

reaches the end of the filaments, (e) one filament depolymerizes and a new filament instantaneously polymerizes at a new angle. (G) Plots of order parameter (blue), and

force generated (black) for one Monte Carlo simulation with polymerization. (H) Color evolution plot of the order parameter for 100 Monte Carlo simulations. In contrast to

C, the addition of polymerization impedes long-term alignment of the two filaments. (I) Color evolution plot for the force generated for the 100 Monte Carlo simulations in

H. (J) Average order parameter (blue) and average force generated (black) for the 100 Monte Carlo simulations shown in H and I. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

C. J. Miller et al. / Journal of Theoretical Biology 300 (2012) 344–359 347



C. J. Miller et al. / Journal of Theoretical Biology 300 (2012) 344–359348
increased to a value of one and the spring force generated by the
motor decreased to zero (Fig. 2B–F).

However, actomyosin in cells rarely assumes the form of static
bundles and we turned to investigate processes that could
destabilize or prevent formation of aligned bundles. Since actin
filaments are constantly turning over in the cell we introduced
the processes of polymerization and depolymerization. These
processes introduced a form of noise into our simulations; by
contrast, thermal noise could also prevent perfect alignment, but
for filaments in a viscous media this source of noise is negligible.

Allowing filaments to undergo depolymerization and polymer-
ization resulted in more complex dynamics for the two filament
case. We considered the events along a typical time course
(Fig. 2F): (a) the motor attached to the filament pair and pulled
filaments together as the motor traveled down the filament at a
fixed velocity, (b) the motor spontaneously fell off the filaments,
(c) the motor spent time waiting to attach, (d) the motor fell off
once it reached the end of the filaments, (e) a filament depoly-
merized while a new filament polymerized at a new angle,
discontinuously changing the value of the angle difference ðfÞ.
The motor worked to reduce the angle difference between
filaments only to have that angle reset by a depolymerization
and polymerization event. By including polymerization, perfect
alignment is no longer possible. We described the degree of
imperfect alignment through the time-evolution of the order
parameter and the spring forces generated (Fig. 2G–J). During
the course of a single representative simulation run, the order
parameter could rise to one and spring forces generated by a
shared motor dropped to zero as filaments were completely
aligned. However, once a filament depolymerized, the order
parameter decreased and the motor again generated force.
Fig. 3. Comparing effects of parameters on order with Monte Carlo simulations for two

the polymerization rate, r2, increased. (B) Distribution of the angle between filaments as

different rates of attachment, r0, and detachment, r1. (D) Order parameter (black) and

varied. r0¼0.4/s, r1¼0.1/s, r2¼0.05/s. (For interpretation of the references to color in t
Even though depolymerization destabilizes the actomyosin
system, we found that the angle difference between filaments in
a population was still reduced over time. To understand this
effect, we considered a histogram for the angle difference
between filaments ðfÞ. The distribution of angles for a long Monte
Carlo simulation for two-filaments, one-motor showed a large
number of perfectly aligned filament pairs which depended on
motor function (Fig. 3A). As the rate of depolymerization
increased, however, the angle distribution in the population
became flatter with more filament pairs having larger filament
angles.

When we varied the motor velocity instead of the rate of
depolymerization, we also observed a non-monotonic depen-
dence of filament alignment on motor velocity (Fig. 3B). In this
case, both low and high motor velocities acted to flatten the
distribution of angle differences. In order to understand the
relationship between motor velocity and the difference in fila-
ment angles, we considered the proportional average /forceS
generated (Eq. (3)) for a large number of simulations as we varied
motor velocity (Fig. 3C). We found that average /forceS (Eq. (3))
reaches a maximum value at a unique motor velocity and this
velocity in turn depends on the rates of motor attachment and
detachment.

These effects could be understood if one took the perspective
of a myosin motor. For any given set of motor filament interac-
tions, e.g. rates of attachment and detachment, the most rapid
alignment occurred when the motor spent the largest fraction of
its life-cycle bound to the filament pair. For example, if the rate at
which an unbound motor attached was reduced (that is, it took
longer for the motor to attach), then the percent of the motor’s
life-cycle devoted to aligning the filament pair was also reduced
filaments, one motor. (A) Distribution of the angle between the two filaments, f, as

motor velocity increased. (C) Average /forceS (Eq. (3)) as a function of velocity for

average /forceS (Eq. (3), red) for the Monte Carlo simulations as motor velocity

his figure legend, the reader is referred to the web version of this article.)
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(compare red and black curves in Fig. 3C). In order to increase the
time devoted to aligning the filament pair the motor needed to
slow down so it would not reach the end of the filament and fall
off. As a correlate, if the rate of the motor spontaneously falling off
was increased, then the velocity required for optimal alignment
increased (compare red and green curves in Fig. 3C). Thus, the
ability of myosin motors to align filaments depended on both its
velocity as well as its rates of attachment and detachment.

Intriguingly, motor velocities that produced maximal average
/forceS generation (Eq. (3)) also produced the most aligned
filament pairs (Fig. 3D). The functional dependence of morphol-
ogy and force production on motor velocity suggested we might
be able to analytically derive these functions from a continuum
representation of the dynamics of the two filament, one motor
system.

3.2. Recasting the stochastic model of two filaments and one motor

as a continuum model

In order to understand the relationship between actin filament
alignment and forces generated by the motor we derived con-
tinuum equations which described the two filament, one motor
dynamical system. Motor activity within a two filament network
could be thought of as an example of a ‘two-state process’: either
the motor was detached and waiting to attach to a filament at the
minus end (P0), or the motor was moving toward the plus ends of
the two filaments and pulling the pair into alignment (P1). We
considered the time evolution of populations of motors in each of
these two states

@P0ðf,tÞ

@t
¼ vP1ðf,L,tÞ þr1

Z L

0
P1ðf,s,tÞ ds �r0P0ðf,tÞ

Lost from plus�end Randomly detach Attach

þ
r2

2p

Z p

�p

Z L

0
P1ðc,s,tÞ ds dc:

Detach after depolymerization ð7Þ

The population or density of motors not bound to any filaments
(P0, Eq. (7)) changed by: (1) motors falling off the plus-end of any
filament (from the group of filaments with attached motors, P1),
(2) motors randomly detached as they moved toward the fila-
ment’s plus-end, (3) motors bind to filament minus-ends, and
(4) motors fell off filaments that depolymerized. Since motors
could detach at any distance, s, along a filament’s length (defined
from 0 to L), the second term in Eq. (7) was integrated over all
possible motor positions. We noticed that the first three terms in
Eq. (7), the loss and gain of motors, were independent of the
Fig. 4. Monte Carlo simulations and continuum solution. (A) Plot of the continuum

calculation of /s2S (red) for r0¼0.4/s, r1þr2¼0.15/s. (B) Plot of the continuum solution’

/s2S (red) for r0¼1.4/s, r1þr2¼0.6/s. (For interpretation of the references to color in t
filament pair’s orientation; only the last term depended explicitly
on the rate of depolymerization. It was important to note that
while filaments without attached motors could depolymerize, the
last term of this equation only considered depolymerization of
filaments with bound motors. The time evolution of motors
bound to filament pairs was similar but we needed to include
the density of motors at various positions along the length of the
filament pairs

@P1ðs,f,tÞ

@t
¼�v

@P1ðs,f,tÞ

@s
þ

k

m s2 @

@f
ðsin fP1ðs,f,tÞÞ

Motor movement Filament movement

�r1P1ðs,f,tÞ �r2P1ðs,f,tÞ:

Randomly detach Detach after depolymerization

ð8Þ

The density of motors attached to filaments must include
movement of motors: (1) as motors moved toward the plus-ends
of the filament pair, (2) as motors moved with the angular move-
ment of filaments, (3) as motors randomly detached from fila-
ments, and (4) as motors detached when filaments depolymerized.

We investigated solutions which led to stable assemblies of
filament systems, i.e. the steady state solution which yielded the
stationary distribution of filaments over filament angles, f, and
motor positions, s. We began by defining a distribution, Q1, which
denoted the stationary solution and obtained expressions for
/forceS and the order parameter (see Appendix B). Furthermore,
we were able to derive an equation for the steady state marginal
distribution of the distance along the filaments,

R p
�p Q1ðf,sÞ df and

thus compute /ForceS (Eq. (9); see Appendix B)

/ForceS¼/s2S¼
r0

r2
1

2v2�e�r1=vð2v2þ2vr1þr2
1Þ

r1þr0ð1�e�r1=vÞ
: ð9Þ

With this exact solution we calculated analytically how force
generation depended on motor velocity, rates of motor attachment
and detachment, and rates of filament polymerization (Figs. 3D and
4). We found that our continuum equations were able to exactly
replicate the Monte Carlo simulations for the two filament, one
motor actomyosin system (Fig. 4). For instance, we previously
considered the density of steady state angles from our Monte Carlo
simulations (Fig. 3A and B) and the continuum equations showed us
exactly how these densities depended on the parameters of
the model.

Further analysis of these equations and their steady state solu-
tions (see Appendix B) allowed us to investigate exact relationships
between rates of motor-filament attachment and detachment, motor
velocities, polymerization rates, filament morphology, and force
solution’s calculation of /s2S (black) compared to the Monte Carlo simulation

s calculation of /s2S (black) compared to the Monte Carlo simulation calculation of

his figure legend, the reader is referred to the web version of this article.)
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generation. For instance, as the rate of attachment decreased, the
motor spent more time off the filament; peak forces are produced
only when the motor velocity maximizes the amount of time the
motor spends attached to the filaments.

3.3. Multiple motors, multiple filaments

In order to understand more complex actomyosin networks
we investigated the behavior of multiple-motors and multiple-
filaments arranged with the same geometry as the simpler two
filament, one motor system discussed previously. Initially, we
suspected that the competition between multiple motors
attached to the same filament might impede the progress of
filament alignment. To test this hypothesis we returned to Monte
Carlo simulations. These simulations started with multiple fila-
ments randomly distributed around 3601 and multiple motors all
in an unbound state waiting to attach to the filament minus-ends.
Each simulation was run for 400,000 steps with a time step of
0.01 s. In order to compare steady state rates of filament align-
ment in each simulation, we averaged the order parameter over
the last 300,000 steps. The reason for this, was that once the
simulation started, if given enough time, the filaments would get
closer and closer to their natural alignment, e.g. filament
dynamics approached steady state.

Interestingly, we found that filaments aligned in a manner
analogous to the two filament, one-motor case (Figs. 5 and 6) and
exhibited the same dependence on parameters that were
observed previously. For example, as we allowed the rate at
which the motors spontaneously fell off the filaments to increase,
the velocity at maximal alignment also increased which was
accompanied by a decrease in the magnitude of alignment
(Fig. 5A). Thus, the process of filament alignment is slowed as
motors spend less time bound to the filaments. Furthermore, we
found that the velocity which produced maximal alignment was
independent of filament density (Fig. 5B). When the ratio of
filaments to motors had fewer motors, however, the maximal
degree of alignment decreased, even though the optimal motor
velocity remained the same.

When we considered the rate of depolymerization, we found
that the order or alignment of our system was extremely sensitive
to the rate of depolymerization (Fig. 5C) and that depolymeriza-
tion is the only stochastic process capable of impeding the
progress of filament alignment. Furthermore, the extremely steep
decrease in alignment with a small increase in the rate of
depolymerization suggested that a phase transition from a
Fig. 5. Same behavior for multiple filament, multiple motor case, as previously for two

the rate of detachment (r0) for 40 filaments and 20 motors. As expected, an increase in d

the relationship between the relative densities of motors to filaments. When the rat

however, the optimal motor velocity required to achieve maximum alignment was in

showing the sensitivity of the order parameter of the system to the rate of depolymeri

fine discretization of sampling order. (For interpretation of the references to color in t
completely disordered (in this case a perfectly uniform distribu-
tion of filaments) to an ordered or aligned state may occur.

From our parameter analysis, we concluded that the motor
velocity and depolymerization rate of filaments are key para-
meters that control alignment of actin filaments. In order to draw
a more descriptive conclusion as to how these two parameters
effect the alignment of our system, we next considered the
density angles between two filaments (Fig. 7). In the case where
filaments of the system were mostly aligned, the distribution has
a tall, sharp peak about the angle difference of zero and flattens
after the motor velocity is shifted from this optimal value
(Fig. 7A), or after the rate of depolymerization is increased
(Fig. 7B). To investigate the behavior of our actin network near
this phase transition we turned from the Monte Carlo simulations
to a continuum representation of our multiple filament, multiple
motor system.

3.4. Mean field analysis of multiple filaments and multiple motors

We considered an array of a large number of filaments, N,
where each filament was at a discrete angle ðyiÞ with a large
number of motors, M. From this discrete model we calculated
forces experienced by a single filament

f ðyiÞ ¼
k

m
XN

j ¼ 1

XM
r ¼ 1

pijrs2
r sinðyj�yiÞ: ð10Þ

The average force on a filament was found by linearly summing
all the forces exerted by the motors which were attached to that
filament. An attached motor, r, connects filament i and j. The term
pijr was the probability that motor r was attached to filaments i

and j. Since motors may contact any 2 out of N filaments, and
connections are chosen randomly this probability factor was
1=ðNðN�1ÞÞ.

In order to compute a mean field equation for the network of
motors and filaments, we let the number of motors and filaments
grow to infinity, keeping the ratio of motors to filaments as a fixed
number, c. When we did this, the sum in Eq. (10) became an
integral (Eq. (11))

f ðyi,tÞ ¼
kc

m

Z p

�p

Z L

0
s02 sinðy0�yiÞP1ðy

0,s0,tÞ ds0 dy0: ð11Þ

Next, we returned to the two-state model for myosin motors
within a much larger F-actin array. Recall the definitions of P1 and
P0 from the two filament, one motor case before where P1 was the
density of motors attached to filaments, and P0 was the density of
filaments, one motor. (A) Plot showing the dependence of the order parameter on

etachment resulted in a decrease in order. r0¼0.7/s, r2¼0.05/s. (B) Plot examining

io of filaments to motors was the same, the same amount of order is expected;

dependent of filament and motor density. r0¼0.7/s, r1¼0.1/s, r2¼0.05/s. (C) Plot

zation (r2). Blue shows a larger discretization than green, with red being the most

his figure legend, the reader is referred to the web version of this article.)



Fig. 6. Monte Carlo Simulations: multiple filaments, multiple motors. (A) Order parameter (blue) and force generated (black) for one Monte Carlo simulation with multiple

filaments and multiple motors without polymerization. Note the same characteristics as seen in Fig. 2B. (B) Color evolution plot of order parameter for 100 Monte Carlo

simulations without polymerization. (C) Color evolution plot for force generated by the 100 Monte Carlo simulations shown in B. (D) The average order parameter (blue)

and average force generated (black) by the 100 Monte Carlo simulations in B and C. (E) Order parameter (blue) and force generated (black) for one Monte Carlo simulation

with polymerization. (F) Color evolution plot of order parameter for 100 Monte Carlo simulations with polymerization. (G) Color evolution plot for force generated by

the 100 Monte Carlo simulations shown in F. (H) The average order parameter (blue) and average force generated (black) by the 100 Monte Carlo simulations in F and G.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Effects of motor velocity and rate of polymerization (r2) on multiple filament and multiple motor alignment. (A) The distribution of the difference in angle between

all filaments compared to filament #1. As motor velocity decreased from high (blue) to low (green), there was an intermediary velocity which caused the sharpest peak in

the distribution, and thus the most alignment (red). (B) The distribution of the difference in angle between all filaments compared to filament #1. As polymerization rate

increased from low (red) to high (blue), note the quick flattening of the distribution peak which suggested a phase transition dependent on the rate of polymerization.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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unbound motors. The time-evolution of motor density within
these two states was

@P1ðs,f,tÞ

@t
¼�v

@P1ðs,f,tÞ

@s
�
@

@y
ðP1ðs,f,tÞf ðyÞÞ

Motor movement Filament movement

�ðr1þr2ÞP1ðs,f,tÞ,

Detachment ð12Þ

@P0ðs,tÞ

@t
¼ vP1ðL,y,tÞ �r0P0 þ

Z L

0
r1P1ðs

0,y,tÞ ds0

Lost from plus-end Attach Randomly detach

þ
1

2p

Z L

0

Z p

�p
r2P1ðs

0,y0,tÞ dy0 ds0:

Detach after depolymerization ð13Þ

In contrast to the density functions for the simple case of two
filaments and one motor, we considered the actual angle rather than
the difference of angles. Since forces depend on the density of
motor-bound filaments we found a nonlinear term that represented
the movement of motors as filaments moved. Thus, unlike the two
filament case, the density equations were nonlinear due to the fact
that f ðyÞ was itself a function of P1.

Since motors can only attach to filaments at the minus ends,
we enforced a boundary condition that related motors leaving the
pool of unbound motors with the motors attached at the minus-
end of the filament pairs

P1ðy,0,tÞ ¼
r0

v
P0ðy,tÞ: ð14Þ

Readers familiar with the analysis of coupled oscillators will
see a strong similarity between Eq. (E.1) and the Kuramoto
equation (Kuramoto, 1984) (see Appendix E). Because this was a
nonlinear equation, there was no simple closed form solution;
however, we used these equations to investigate the transition
driven by high rates of depolymerization from a completely
disordered state to an aligned state (referred to as the ‘‘asynchro-
nous state’’ in coupled oscillators).

When we considered the density distribution of relative
filament angles and increasing rates of depolymerization, we
concluded that there existed a solution which was uniform in
the filament angle, y (Fig. 7B; see Appendix C). These solutions
were the marginal densities of the distance traveled for attached
motors, W1ðsÞ ¼

R p
�p Q1ðf,sÞ df, and the density of unattached
Fig. 8. Examining the relationship between polymerization, motor velocity, order, and

solutions show the domains of high and low order as a result of the polymerization rate

for force and order as the rate of polymerization increases. We observed that there exi
motors, W0 ¼
R p
�p Q0ðfÞ df (see Appendix C)

P1ðy,s,tÞ ¼
1

2pW1ðsÞ,

P0ðy,tÞ ¼
1

2pW0:

Returning with these solutions to our continuum equation for the
force on a single filament we found

f ðyÞ ¼
kc

m
1

2p

Z L

0
s2W1ðsÞ

Z p

�p
sinðy0�yÞ dy0 ds¼ 0:

The term f ðyÞ represented the angular flux of filaments moving
under the influence of bound motors. As the array of filaments
approached steady state this term disappeared and we were left
with a steady state analogous to that found in our earlier analysis
of two filaments and one motor.

This equilibrium solution corresponded to a completely dis-
ordered state in which the distribution of the filament angles was
uniform. Since the equations for the two filament, one motor case
were linear they do not include the integration of angular
filament flux, and the completely disordered state was never a
solution. The equation which described arrays of multiple fila-
ments and multiple motors was nonlinear, so there may be more
than one possible steady state. The most direct method to
determine if there were other possible stationary distributions
of motors was to examine the stability of the disordered state as
parameters, such as the motor velocity, were varied.

We searched for a possible nonlinear phase transition by investi-
gating the stability of different periodic modes of the disordered state
(see Appendix D). If the fully disordered state was unstable with
respect to perturbations to the distribution of filaments, then this
mode would grow and the distribution might remodel into a single
peak. With this approach we linearized the full equations about the
trivial steady state and then solved the resulting linear system.

We discovered that F-actin morphology alone was not a predictive
indicator of force production. We found an optimal rate of depoly-
merization that produced a maximal levels of force. While these
arrays exhibit a distinct morphology (asterisk, Fig. 8B) we found that
increasing or decreasing the rate of polymerization from that optimal
rate produced two morphologically distinct filament arrays (arrow-
heads, Fig. 8B), either tightly aligned or disorganized, that were
capable of producing identical levels of force. Thus, morphology alone
was not a sufficient index for the assessment of force production
within arrays of actin filaments which were free to rotate.
force with the continuum model. (A) Contour plot for the continuum equation’s

(r2) and the motor velocity (v). (B) Solutions predicted from the continuum model

sts a region where two differently ordered morphologies generate the same force.



Fig. 9. Introducing complexities to the model yields the same results. (A, A0) The model allowed motors to stretch as far as necessary in order to stay attached to the

filament pair; however, in vivo, it is more likely that the motor is limited in its stretch. We restricted the distance the motors can stretch which reduced the order of the

system. (B, B0) We assumed filaments had fixed lengths of one for our Monte Carlo simulations. We introduced complexity by varying the fixed length, which resulted in a

decrease in order for a shortened filament length. To increase complexity even further, we considered filaments with random lengths that had an average length of one and

found both the fixed length of one and random lengths with average length one, had the same order.
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3.5. Biological complexities: how does the behavior of this simplified

system change as more realistic conditions are introduced?

Thus far, our simulations and analysis did not limit the length
that myosin motors could stretch between pairs of actin filaments.
To test the importance of this assumption, we ran simulations
where motors detached once they exceeded a threshold length
(Fig. 9A). This change lowered the motor velocity needed for
optimal alignment of the filaments (Fig. 9A0). Simulations where
we introduced a threshold of myosin detachment behaved as if we
had simply increased the rate of detachment of the motor (e.g.
increased r1). Alternatively, when we increased the threshold we
found that the filaments aligned more strongly and the motor
velocities needed for optimal alignment also increased.

Up to this point our simulations used filaments of uniform
length (Fig. 9B); to test the importance of this assumption we ran
simulations with filaments having different fixed lengths. With
increased filament length, we found that filaments aligned to a
greater degree and that the motor velocity needed to optimally
align filaments also increased (Fig. 9B0). If we allowed filaments to
have random lengths between 0.75 and 1.25, so their average
length would be 1.0. We found almost no change in the velocity
needed to optimally align filaments, however, the magnitude of
alignment decreased slightly (Fig. 9B0).
4. Concluding remarks

Actomyosin networks shape a diverse array of cellular structures.
Many of these, such as the alignment of actin filaments into the
cytokinetic furrow or into the base of dynamic filopodia are likely to
involve filament rotation. To understand the principles that shape
these networks we have constructed a set of theoretical models to
study the evolution of F-actin morphology and dissected the relative
contributions of F-actin polymerization and myosin-motor based
alignment to changes in filament morphology and force production.
Monte Carlo simulations and continuum models identified regimes
where actin filaments are stably bundled and other regimes where
actin filament depolymerization leads to an asynchronous state
where actomyosin forms a perpetually contractile array. The models
suggest biophysical mechanisms through which myosin activity and
F-actin polymerization reshape the cytoskeleton and drive cell shape
change.

We first derived the equations of motion for a simple system of
two filaments and one myosin II motor complex and defined a
statistical property of circularly distributed actin filaments, the
order parameter, to assess the morphology of arbitrarily large
filament-motor arrays. Implementing simple stochastic processes
that allow motors to bind or detach from filament-pairs, walk
toward filament plus-ends, and pull filaments together, we
performed Monte Carlo simulations in order to understand how
these processes shape the morphology of filament pairs.

We found that maximal alignment of the filament pair occurred at
a unique motor velocity and depended on both the rates of the
stochastic processes and the length of the filaments. Motors aligned
filaments more rapidly when they spent the largest fraction of their
duty-cycle actively contracting the two filaments. At one extreme, if a
motor traveled too slowly it would fall off the filament pair before
reaching the end; and, at the other extreme, a motor that traveled too
rapidly spent too much time waiting to bind to the pair of filaments.

These relationships suggested the existence of an underlying
biophysical principle so we simplified the motor-filament inter-
action slightly and re-cast the problem using continuum equa-
tions for a ‘‘two-state process and investigated the evolution of
the filament-motor system as density functions. These equations
were solved explicitly, reproduced the findings from our Monte
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Carlo simulations and provided a direct link between parameters
governing motor-filament interactions, the resultant filament
morphology, and contractile strength. Remarkably, this analysis
demonstrated that no matter how many motors or filaments
there are, the density of motor positions is always the same.

In order to generalize these two-filament one-motor systems
to systems with multiple filaments and motors we returned to
Monte Carlo simulations. These systems reproduced the same
general behaviors seen in the simpler system, namely, that
filaments rapidly align over a wide range of model parameters
and that the alignment peaks for conditions where motors spend
the largest fraction of their duty cycle contracting filament-pairs.

Rapid alignment of filaments underlie a range of cellular
processes such as the formation of the cytokinetic furrow in
dividing cells and the convergence zone at the rear of lamellipodia
in migratory cells. During the initial steps of cytokinesis, myosin II
motors bind disordered actin filaments within the cortex and
reorient those filaments aligning them within the cytokinetic
furrow (Bonder et al., 1988; Vavylonis et al., 2008). Retrograde
flowing actin filaments within lamellipodia first encounter myo-
sin II at the rear of the lamellipodia. In this region, named the
convergence-zone, filaments are anisotropically contracted, reor-
iented perpendicular to the direction of the flow, and are rapidly
depolymerized (Ponti et al., 2004; Vallotton et al., 2004).

However, other cellular processes driven by actomyosin
dynamics progress without alignment, for instance actomyosin
assemblies at the rear of migrating cells, and a range of processes
that direct cell shape change during morphogenesis in embryos
(Blanchard et al., 2010; Kim and Davidson, 2011; Martin et al.,
2009; Rauzi et al., 2010; Solon et al., 2009). To investigate
processes that might destabilize filament alignment we modified
our models to include filament polymerization/depolymerization.
Both our two-filament, one-motor and multiple filament, multiple
motor models revealed that the rate of depolymerization can alter
the speed of alignment but could also produce morphologically
stable arrays of permanently contractile filaments.

These models revealed that motor activity and polymerization
underlie the ability of F-actin networks to undergo a phase-
transition from organized aligned filaments into dynamically dis-
organized, permanently contractile arrays. This transition could be
controlled by both the motor velocity and the frequency or rate of
depolymerization. We propose that cells manipulate the state of
actomyosin by controlling this phase transition. Actomyosin inter-
actions can result in distinct patterns of force generation in addition
to altering the morphology of filament arrays. In the absence of
F-actin polymerization, myosin II quickly align filaments into tight
bundles. However, such bundled filaments no longer generate
contractile forces. In contrast, once polymerization is introduced,
arrays of filaments can achieve some alignment, but instead of
forming stable bundles, they form a dynamically disorganized
contractile array. Polymerization, or rather depolymerization,
allows the actin network to continuously generate contractile force.
Thus, actin filament alignment combined with polymerization and
depolymerization allows the cytoskeleton to remain continuously
contractile even as its morphology is continuously changing.

To build our intuition about the performance of actomyosin
we intentionally omitted numerous details of both actin filament
and myosin II function. As we explored the behavior of the simple
system we extended our models to include many of these omitted
details and test their relevance as a more ‘‘realistic’’ biology. For
instance, after allowing varying or random length filaments we
found we could interpret the results in the context of our simpler
model. Our greatest simplification for the model was fixing the
minus-ends of filaments together in the center of an array. This
simplification allowed us to investigate the complex interactions
between polymerization and myosin motor function without the
confounding effects of filament translocation or lateral move-
ment. Clearly, more realistic models will require complex geo-
metries of free-associating actin filaments. However these future
efforts will build on both the Monte Carlo models and continuum-
level theory that we developed here.
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Appendix A. Deriving the equations of motion

We begin with the vector defining the position of the motor
along filament j ðxj ¼ sðcos yj,sin yjÞ for j¼1,2), and derive the
potential and kinetic energy for the system (Eq. (A.1)), where k is
the spring constant and m is the mass of the motor

P:E:¼ kJ x
!

1� x
!

2J
2
¼ ks2

½1�cosðy2�y1Þ�,

K:E:¼ 1
2 mðJ

_
x
!

1ðtÞJ
2
þJ

_
x
!

2ðtÞJ
2
Þ ¼ 1

2 ms2½ _y
2

1þ
_y

2

2�þ
1
2mv2: ðA:1Þ

In order to obtain equations of motion from the potential and
kinetic energy equations, we consider the Lagrangian equations
(Eq. (A.2))

@

@t

@K:E:

@ _yi

 !
�
@K:E:

@yi
¼
@P:E:

@yi
: ðA:2Þ

We assume that motors operate without a drag force, based on
the known sizes of myosin. However, we do consider a viscous
damping term ðmÞ which opposes the movement of actin fila-
ments and is analogous to the friction the filaments might
experience when moved through water. Substituting into the
potential and kinetic energies equations for filaments 1 and 2, we
can explicitly derive our Lagrangian equations (Eq. (A.3))

ms2 €y1þm _y1 ¼ ks2 sinðy2�y1Þ,

ms2 €y2þm _y2 ¼ ks2 sinðy1�y2Þ: ðA:3Þ

Since the masses of the motor and filaments are small, we ignore
the momentum term and solve for the equations of motion for the
change in filament angle (Eq. (A.4); Eq. (1) in the main text)

_y1 ¼
k

m
s2 sinðy2�y1Þ,

_y2 ¼
k

m
s2 sinðy1�y2Þ: ðA:4Þ
Appendix B. Solving the coupled integro-partial differential
equations

For the distribution Qj which denotes a stationary solution, we
can write an equation for /forceS (/s2S) and the order



Fig. B1. Examining the relationship between attachment and detachment rates on

optimal motor velocity for maximizing /forceS. The curves depict the maximal

values of /forceS (Eq. (B.6)) for two filaments and one motor with varying rates of

detachment and attachment, and the resulting optimal motor velocity. The green

curve depicts a small rate of detachment (r1¼0.2/s), the red curve a medium rate

of detachment (r1¼0/s), and the blue curve a high rate of detachment (r1¼5/s). For

the curves we do not consider the rate of polymerization, but we are able to

deduce the relationship between all the variables that affect force. (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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parameter (Z)

/s2S¼
Z p

�p

Z L

0
Q1ðf,sÞs2 ds,

Z ¼

Z p

�p=2
cos f=2

Z L

0
Q1ðf,sÞ dsþQ0ðfÞ ds

� �
df:

The histogram of the values of the angle difference, f, is a plot of
QMðfÞ ¼Q0ðfÞþ

R L
0 Q1ðf,sÞ ds, the marginal distribution of the

angles. These stationary solutions are represented by a pair of
coupled integro-partial-differential equations and are generally
difficult to solve numerically or analytically. However, in this case
we can get a closed expression for the filament distributions and
thus an exact expression for /forceS, /s2S (Eq. (10)). We can
then use this distribution to approximate the dependence on the
difference in angles, f, and estimate the order parameter Z.

The marginal densities with respect to the motor distance
down the filament pair, s, is found by integrating Q0;1 with respect
to f:

0¼

Z p

�p
�v@sQ1ðf,sÞþ

k

m @f½ sin fQ1ðf,sÞ��ðr1þr2ÞQ1ðf,sÞ

� �
df,

0¼

Z p

�p
vQ1ðf,sÞþ

Z L

0
r1Q1ðf,sÞþ

1

2p

Z p

�p
Q1ðy,sÞ dy

� �
ds�r0Q0ðfÞ

� �
df:

ðB:1Þ

Let

W1ðsÞ ¼

Z p

�p
Q1ðf,sÞ df,

W0ðsÞ ¼

Z p

�p
Q0ðfÞ df

denote the marginal densities. Then from Eq. (B.1), we see that

0¼�vW 0
1�ðr1þr2ÞW1, ðB:2Þ

0¼ vW1ðLÞ�r0W0þðr1þr2Þ

Z L

0
W1ðsÞ ds, ðB:3Þ

W1ð0Þ ¼
r0

v
W0: ðB:4Þ

Finally, we must have the normalization

W0þ

Z L

0
W1ðsÞ ds¼ 1:

Remarkably, the marginal density for the motor position involves
no unknown integrals with respect to f and so we can solve it
exactly. Furthermore, we can easily compute /s2S. To save on
some notational headaches, we set L¼1 without loss in general-
ity. We also note that as far as the marginal motor position is
concerned, r1 and r2 serve only to dislodge the motors; this is
evident by the observation that they always appear as a sum
r1þr2: For the moment, we absorb the effects of r2 into an
effective r1 to simplify the algebra. That is, if r1¼0.1 and
r2¼0.05, as was the case in Fig. 3 from the paper, then the
effective r1 is 0.15, the sum. Eq. (B.2) and the boundary condition
in Eq. (B.4) imply

W1ðsÞ ¼
r0

v
W0 exp �

r1

v
s

� 	
:

Normalization allows us to solve for W0

W0 ¼
r1

vðr1þr0ð1�e�r1=vÞÞ
:

So that

W1ðsÞ ¼
r0r1

v

e�r1s=v

r1þr0ð1�e�r1=vÞ
: ðB:5Þ
We can now integrate Eq. (B.5) against s2 to compute (Eq. (10);
Eq. (E.2) from the text)

/s2S¼
r0

r2
1

2v2�e�r1=vð2v2þ2vr1þr2
1Þ

r1þr0ð1�e�r1=vÞ
: ðB:6Þ

Eq. (B.6) allows us to see how the optimal velocity depends on
the parameters. If we set the derivative of Eq. (B.6) to zero, we get
an expression to determine the maximum. It is not possible to
solve the resulting derivative for v since the equation involves a
mix of exponentials and rational functions. However, we can solve
the resulting equation for r0 and thus we obtain an expression,
r0 ¼ r0ðv,r1Þ such that Eq. (B.6) is maximal. Fig. B1 shows plots of
this expression for three different values of r1. The way to
interpret this plot is to, say, fix r0 ¼ 1, r1 ¼ 1 then observe that
this corresponds to a value of vC0:8 on the red curve (which
corresponds to r1 ¼ 1). As r0-0, the three curves appear to
intersect the v-axis at values which depend on r1. In the loglog
plot (Fig. B1), all three curves asymptote with the same slope, the
translation depends only on r1. The intersection with the v-axis
can be found by letting r0 tend to zero in the expression for @F=@v;
we find that this expression vanishes when

expðr1=vÞ ¼ 1þr1vþð1=2Þðr1=vÞ2þð1=4Þðr1=vÞ3:

There is a unique positive root, r1=vC1:45, so we see that for r0

small, the optimal velocity is linearly proportional to r1. We can
also understand this intuitively. As r0 tends to zero, this means we
spend a great deal of time with the motor unattached to the
filaments. We thus want to choose v to maximize the amount of
time spent on the filaments and in particular, we want to choose v

so that we get as far out as possible toward the ends of the
filaments where the most work is done. Since the expected time
to remain on the filament is 1=r1, then by choosing vCr1, we can
get to the end of the filament before falling off while at the same
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time, not going so fast that we reach the ends. The linear
asymptotes in the loglog plot can also be easily found by letting
v-1 whence, we find that v�

ffiffiffiffiffiffiffiffiffi
r1r0
p

=2. This is satisfying since it
says that for large rates, the optimal velocity is the geometric
mean of the rate of falling off and the rate of attaching.
Appendix C. Calculating the marginal density of the angle
differences

We now turn to the marginal density of the angle differences.
To obtain an equation for this, we integrate Eq. (B.1) with respect
to s. Let S0ðfÞ ¼Q0ðfÞ and let S1ðfÞ ¼

R L
0 Q1ðf,sÞ ds. Note that

S0;1ðfÞ are the densities for the angle between the filaments when
the motors are off, on respectively and independent of the motor
position. S1ðfÞ satisfies

0¼ v½Q1ðf,0Þ�Q1ðf,LÞ�þ

Z L

0
s2 k

m
@ sin fQ1ðf,sÞ

@f
ds�ðr1þr2ÞS1ðfÞ:

Unfortunately, this expression does not just involve S1, but also
requires knowledge of the joint distribution, Q1ðf,sÞ. We now
make an approximation; we suppose that Q1ðf,sÞ ¼ S1ðfÞW1ðsÞ.
That is, we assume that the variables s and f are independent.
While it is true that the value of s is independent of f (which is
why we could solve for the marginal density, W1ðsÞ), the angle
difference, f should depend on s as this governs the effective
strength of the spring. With this approximation, we get

0¼ v½W1ð0Þ�W1ðLÞ�S1ðfÞþ
k/s2S
m
½sin fS1ðfÞ�0�ðr1þr2ÞS1ðfÞ,

ðC:1Þ

0¼ vW1ðLÞS1ðfÞþr1S1ðfÞ�r0S0ðfÞþr2
1

2p

Z p

�p
S1ðcÞ dc, ðC:2Þ

vS1ðfÞW1ð0Þ ¼ r0S0ðfÞ: ðC:3Þ

Eq. (C.3) is the approximate boundary condition. Let
S1 ¼ 1=ð2pÞ

R p
�p S1ðfÞ df and X2 :¼ /s2S. Then we can solve Eq.

(C.2) to get

r0S0 ¼ vW1ðLÞS1ðfÞþr1S1ðfÞþr2S1,

and use Eq. (C.3) to obtain a single equation for S1ðfÞ

d

df
½sin fS1� ¼

mr2

kX2
½S1�S1 �: ðC:4Þ

For notational simplicity, let r¼ ðmr2Þ=ðkX2Þ: In order to solve
Eq. (C.4), we observe that it is symmetric about zero, and singular
at �p, 0, and p. So we just have to solve it in the interval ð0,pÞ, and
then can reflect this solution about zero to obtain the solution for
the interval ð�p,0Þ. Then, we must take appropriate limits. We
remark that it is not necessary that S1ðfÞ has a well-defined limit
as f-0; we only require integrability. For simplicity we let
S1ðp=2Þ ¼ 1, which we can always scale later since Eq. (C.4) is
linear and homogeneous in S1. (The actual value will come about
from normalization). Solving the ODE, we obtain

S1ðfÞ ¼ 1�rS1

Z f

p=2

1�cos c
sin c

� ��r

dc

" #
1�cos f

sin f

� �r 1

sin f
: ðC:5Þ

We rewrite the expression for S1 as

S1ðfÞ ¼ FðfÞ tan
f
2

� �r 1

sin f
,

FðfÞ ¼ 1�ra

Z f

p=2
cot

c
2

� �r

dc,

m¼ S1 :
We notice that ðtan f=2Þr1=sin f goes towards infinity like the
function ðp�fÞ�ðrþ1Þ as f goes to p, which is not integrable on our
interval of ð0,pÞ. So in order for S1ðfÞ to be integrable on the
interval of ð0,pÞ, FðpÞ must go to zero as f goes to p. We choose a

to make FðfÞ-0. Then, applying L’Hopital’s rule it is easy to show
that limf-pS1ðfÞ is finite. Next, we need to address the case of f
going to zero. We can approximate the behavior of FðfÞ as f-0
as the function k1f

1�r
þk2, and tanðf=2Þr= sin f as the function

fr�1. Then S1ðfÞ � k1þk2f
r�1, which is singular for 0oro1 near

f¼ 0, but is integrable. So if we integrate S1ðfÞ from zero to p, we
find, using integration by parts the following:Z p

0
S1ðfÞ df¼

1

r
tan

f
2

� �r

1�ra

Z f

p=2
cot

c
2

� �r

dc

 !" #p
0

�
1

r

Z p

0

tan
f
2

� �r

r
�ra cot

f
2

� �r� �
df

¼ 0þap¼ ap:

We use L’Hopital’s rule to show the first expression is zero. This
integration shows that

R p
�p S1ðfÞ ¼ 2pa so that S1 ¼ a as required

for self-consistency. We can rewrite the expression and use
Eq. (C.2) to write

S1ðfÞ ¼
1

sin f
tanr f

2

Z p

f
cotr c

2
dc, ðC:6Þ

S0ðfÞ ¼
1

r0
½ðvW1ðLÞþr1ÞS1ðfÞþr2a�: ðC:7Þ

Appendix D. Determining the stability of the trivial state

We write P1ðy,s,tÞ ¼ ð1=2pÞW1ðsÞþp1ðy,s,tÞ and P0ðy,tÞ ¼ ð1=2pÞ
W0þp0ðq,tÞ and find that to linear order

@p1

@t
¼�v

@p1

@s
�K

W1ðsÞ

2p
@

@y

Z L

0

Z p

�p
sinðy0�yÞs2p1ðy

0,s,tÞ ds dy0
� �

�ðr1þr2Þp1, ðD:1Þ

@p0

@t
¼ vp1ðy,L,tÞ�r0p0þ

Z L

0
r1p1ðy,s0,tÞþ

1

2p

Z p

�p
r2p1ðy

0,s0,tÞ dy0
� �

ds0,

ðD:2Þ

p1ðy,0,tÞ ¼
r0

v
p0ðy,tÞ: ðD:3Þ

Where K ¼ kM=mN, M is the number of motors and N is the
number of filaments. In addition, we must have the normalization
of the perturbationZ L

0

Z p

�p
p1ðy,s,tÞþp0ðy,tÞ dy ds¼ 0:

Eq. (D.1) is a convolution in y and is homogeneous with respect to
t and y, so that we can look for solutions of the form

p1ðy,s,tÞ ¼c1ðsÞe
imyelt ,

p0ðy,tÞ ¼c0eimyelt ,

where m is an integer and cj are unknown. If, for some m, the real
part of l is positive, then solutions will grow with respect to that
mode, m, and the completely disordered state will be unstable.
We plug this form into Eqs. (D.1)–(D.3) to get a sequence of linear
eigenvalue problems. We consider three distinct cases: m¼0,
m¼1, and mZ2: First, we will address the first and last cases, and
then turn to the more difficult m¼1 case. The cases for which
ma1 are simplest because the integral term in Eq. (D.1) vanishes
since the convolution over y involves only sin y.
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D.1. Case 1: m¼0

When m¼0, the eigenvalue problem is

lc1 ¼�vc01�ðr1þr2Þc1,

lc0 ¼ vc1ðLÞ�r0c0þðr1þr2Þ

Z L

0
c1ðs

0Þ ds0:

The solution to the first equation along with the boundary
condition implies

c1ðsÞ ¼
r0c0

v
e�ðlþ r1þ r2Þs=v:

We exploit a special property of m¼0. The normalization implies
that

c0þ

Z L

0
c1ðs

0Þ ds0 ¼ 0:

Plugging the formula for c1ðsÞ into the normalization yields

c0þc0

r0

lþr1þr2
½1�expð�½lþr1þr2�L=vÞ� ¼ 0:

Dividing by c0 and rearranging, we get

ðlþr1þr2þr0Þe
lL=v ¼ r0e�ðr1þ r2ÞL=v:

Multiply both sides by L=v and call z¼ lL=v to obtain

ezzþaez ¼ b,

where a¼ ðr1þr2þr0ÞL=v and b¼ r0ðL=vÞexpð�ðr1þr2ÞL=vÞ: We
rewrite one more time as

�aezþb�zez ¼ 0:

Bellman and Cooke (1963) prove that all roots, z, to this equation
have negative real parts if and only if �ao1, �ao�b, and one
more condition that requires that �b be less than a positive
number. Clearly all three conditions hold since a4b40. Thus, we
conclude that with respect to perturbations with m¼0, the trivial
state is stable.

D.2. Case 2: m41

When m41, then the eigenvalue equation is

lc1 ¼�vc01�ðr1þr2Þc1,

lc0 ¼ vc1ðLÞ�r0c0þr1

Z L

0
c1ðs

0Þ ds0:

As in the m¼0 case, we have

c1ðsÞ ¼
r0c0

v
e�ðlþ r1þ r2Þs=v:

Unfortunately, we can no longer make use of the normalization
condition since

R p
�p eimy dy¼ 0 for ma0: We now plug this into

the second equation to obtain

l¼�r0 1�
r1

lþr1þr2

� �
ð1�e�ðlþ r1þ r2ÞL=vÞ:

There are no positive values of l that satisfy this equation since the
right-hand side will be negative. We can rewrite the equation as

lðlþr1þr2Þ

lþr2
¼�r0ð1�e�lL=ve�ðr1þ r2ÞL=vÞ: ðD:4Þ

For L=v large enough, there can be no roots with positive real parts
since the right-hand side goes to �r0 and thus, we must have

lðlþr1þr2Þþr0ðlþr2Þ ¼ 0,

which has only roots with negative real parts. Thus, as L=v gets
smaller, the only way to get positive real parts is that a root must
have a zero real part. Since we have eliminated any possible real
zero roots, we must then have an imaginary root, io. In this case
we substitute l¼ io into Eq. (D.4) and obtain

r1o2

r2
2þo2

þ i
oðr2r1þr2

2þo2Þ

rÞ22
þo2

¼�r0ð1�e�ðr1þ r2ÞL=veioL=vÞ:

As o varies, the right-hand side traces out a circle centered on the
real axis and entirely in the left-half plane. The left-hand side
traces out a curve that is in the right-half plane. Thus, there can
never be an intersection so that there can never be an imaginary
root. Thus there is no way to get roots with a positive real part as
L=v varies and we conclude that all roots to Eq. (D.4) must have
negative real parts.

D.3. Case 3: m¼1

We finally turn to the most interesting case. So far, we have
seen that perturbations in modes of the form expðimyÞ where
ma1 decay exponentially. For m¼1, the linear equation is

lc1 ¼�vc01�ðr1þr2Þc1þ
K

2
W1ðsÞ

Z L

0
s02c1ðs

0Þ ds0,

lc0 ¼ vc1ðLÞ�r0c0þr1

Z L

0
c1ðs

0Þ ds0,

c1ð0Þ ¼
r0

v
c0:

One could solve these linear equations explicitly to find an
equation for the eigenvalues, l. However, the resulting equation
is very complicated and offers little analytic insight. Thus, rather
take the difficult approach, we make the following observations.
First, if K¼0, then the eigenvalue equations are the same as for
the mZ2 case and we know that there are no eigenvalues with
positive real parts. Thus, we can ask if increasing K can cause
some of these ‘‘stable’’ eigenvalues to cross the imaginary axis.
There are two ways that this can happen: (i) a negative real
eigenvalue becomes a positive real eigenvalue; or (ii) a pair of
complex conjugate eigenvalues crosses at an imaginary eigenva-
lue. Our numerical simulations show that the alignment seems to
always produce a stationary peak rather than a peak that rotates
at a constant velocity. This empirical fact suggests that the loss of
stability of the uniform state occurs through a real eigenvalue
crossing zero as in the second case, time periodic (rotating)
solutions would be expected. Thus, we will ask if there is a value
of K such that there is a zero eigenvalue. Hence we must solve

0¼�vc01�ðr1þr2Þc1þ
K

2
W1ðsÞ

Z L

0
s02c1ðs

0Þ ds0,

0¼ vc1ðLÞ�r0c0þr1

Z L

0
c1ðs

0Þ ds0,

c1ð0Þ ¼
r0

v
c0:

There is one differential equation and two algebraic conditions, so
we cannot expect there to be a nonzero solution for any K. However,
picking the correct K will tell us the critical value, K above which
there will be alignment and below which there will be a uniform
distribution of filament angles. For notational simplicity, we write
c1ðsÞ ¼c0fðsÞ, s :¼ ðr1þr2Þ=v, and W1ðsÞ ¼ A expð�ssÞ. Let

D :¼

Z L

0
s2fðsÞ ds:

Then fðsÞ satisfies

df
ds
¼�sfþ KAD

2v
e�ss,



Fig. D1. Determining how Kcrit is a function of motor velocity. Kcrit, shown in Eq.

(41) depends on all the variables of the model: motor velocity, and rates of

attachment, detachment, and polymerization. The curves specifically show how

Kcrit depends on motor velocity, but also how it depends on the three variable

rates. The blue curve shows a low rate of attachment (r0¼0.7), a low rate of

detachment (r1¼0.1), and a high rate of polymerization (r2¼0.1). The rest of the

curves are as follows: green (r0¼0.7 (low), r1¼0.4 (high), r2¼0.025 (low)), black

(r0¼0.7 (low), r1¼0.1 (low), r2¼0.025 (low)), and red (r0¼2.8 (high), r1¼0.1

(low), r2¼0.025(low)). Notice that the minimum value of Kcrit depends most on

the sum of the rate of detachment and polymerization. The asymptotic approx-

imation yields the range of motor velocities for which maximal alignment is

expected. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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which with the boundary condition yields

fðsÞ ¼
r0

v
þ

KAD

2v
s

� �
e�ss:

Let

mn :¼

Z L

0
sne�ss ds:

Then the unknown constant, D satisfies

D¼

Z L

0
s2fðsÞ ds¼

r0m2

v
þD

KAm3

2v

or

D¼
2r0m2

2v�KAm3

:

We finally use the equation for c0 to obtain

0¼�r0c0þvc0fðLÞþr1

Z L

0
c0fðsÞ ds:

Dividing this by f0, we obtain an equation of the form

0¼�r0þr0e�sLþ
r0r1

r1þr2
ð1�expð�sLÞÞþ

KAD

2v
ðvLe�sL

þr1m1Þ:

A final bit of rearranging and use of the definition of D yields

r0r2

ðr1þr2ÞðLve�sL
þr1m1Þ

ð1�e�sLÞ ¼
KAr0m2

vð2v�KAm3Þ
: ðD:5Þ

The left-hand side is strictly positive. The right-hand side is a
function of K which vanishes when K¼0 and tends to infinity as K

tends to 2v=ðAm3Þ. Thus, for any parameters, we can find a unique
value of K, call it Kcrit solving Eq. (D.5)

Kcrit ¼
2zv2

Aðzvm3þr0m2Þ
, ðD:6Þ

where the left-hand side of Eq. (D.5) is abbreviated as z. Since all of
these functions and constants are known, we can plot Kcrit as a
function of any parameter, in particular, v.

Fig. D1 shows the value of Kcrit as the velocity of the motors
varies. If K4Kcrit , then there is a real positive eigenvalue and the
uniformly distributed orientation is unstable. That is, we expect
to see the beginnings of alignment along a single direction. First,
note that in all cases the curve has a single minimum value at a
particular velocity. Kcrit goes to infinity as v goes to both 0 and
infinity. We can interpret the curves as follows. Suppose for
example, that K ¼ 0:6,r0 ¼ 0:7,r1 ¼ 0:1,r2 ¼ 0:1. Then for a band
of velocities between 0.05 and 0.35, K4Kcrit so that we expect to
see alignment only when the velocity is in this narrow band.

The position of the minimum of Kcrit is most dependent on
r1þr2 (compare black, green, and blue curves). The parameter r0

tends to pull down the right part of the curve; large r0 makes Kcrit

independent of v for large velocities. This is because, when r0 is
large, you spend almost all your time on the filaments so the
velocity does not matter so much, there is no ‘‘penalty’’ for
going fast.

We can use MAPLE to compute an asymptotic approximation
for Kcrit at the extremes of v-0 and v-1. We find that as v-0

Kcrit �
r2ðr2þr1Þðr2þr1þr0Þ

r0

1

v
,

and as v-1

Kcrit �
6r2

r0
v:

The latter is independent of r1, which makes sense for when v is
very large, the probability of ever falling off the filament is
virtually zero and the key parameters are the waiting time r0
and the depolymerization, r2. We note that for small r2, both of
the asymptotic expressions are proportional to r2; the more
orientation ‘‘noise’’, the larger is the spring strength needed to
overcome it. The asymptotic expansions can be added together to
get a qualitatively good approximation of the true curve

Kapprox ¼
r2ðr2þr1Þðr2þr1þr0Þ

r0

1

v
þ

6r2

r0
v:

This simple function has a minimum at

v¼ vmin :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1þr2Þðr0þr1þr2Þ=6

p
,

which is a reasonable approximation of the minimum of Kcrit :

What the minimum tells us is the velocity for which the weakest
motors (lowest value of K) could cause some alignment. We
emphasize that the analysis here is a linearized analysis, so that it
does not necessarily tell us about what happens far from the
onset of the alignment instability. Thus, we cannot necessarily
infer the optimal velocity from this calculation; we can only
determine the range of velocities for which alignment is possible.
Appendix E. Kuramoto model similarities

@P1ðs,f,tÞ

@t
¼�v

@P1ðs,f,tÞ

@s
�
@

@y
P1ðs,f,tÞf ðyÞð Þ�ðr1þr2ÞP1ðs,f,tÞ,

ðE:1Þ

@P0ðs,tÞ

@t
¼ vP1ðL,y,tÞ�r0P0þ

Z L

0
r1P1ðs

0,y,tÞ ds0
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þ
1

2p

Z L

0

Z p

�p
r2P1ðs

0,y0,tÞ dy0 ds0: ðE:2Þ

Eqs. (E.1) and (E.2) (Eqs. (16) and (17) from the paper) bear a
close resemblance to the well-studied Kuramoto model for
synchronization of a pool of globally coupled oscillators

dyi

dt
¼oiþ

K

N

XN

j ¼ 1

sinðyj�yiÞþoxi:

In the Kuramoto model, yi represents the phase of the ith
oscillator, K the coupling strength, oi, the uncoupled frequencies
of the oscillators and sxi the external noise. In the limit as N goes
to infinity, we write an equation for the density, rðy,o,tÞ of the
oscillators

@r
@t
¼�

@

@y
rðy,o,tÞ oþK

Z 1
�1

gðoÞ
Z 2p

0
sinðf�yÞrðf,otÞ df do

" # !

þ
s2

2

@2r
@y2

:

Here gðoÞ is the density for the distribution of oscillator
frequencies. There are two sources of disorder in the Kuramoto
model, extrinsic noise, s, and the heterogeneity of the frequen-
cies. In our model, the noise comes from the de/polymerization of
the filaments and since the new filaments occur at any angle, the
noise does not appear locally as phase diffusion as in the
Kuramoto model. Both our equations and the Kuramoto equations
have a similar nonlinearity and both equations admit a comple-
tely disordered state as a solution. In our analysis and the
Kuramoto analysis, the key to the onset of order (synchronization
in the Kuramoto model) is that this disorder state becomes
unstable as some parameter increases. Thus, while the two
equations come from completely different motivating systems,
they bear a close resemblance simply because they both describe
dynamics of systems which lie on the circle.
Appendix F. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2012.01.036.
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