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H I G H L I G H T S

� Optimization principles are useful tools to study metabolic network organization.
� A metabolic optimization problem with general kinetics is formulated and studied.
� A rigorous proof is given that optimal solutions are elementary flux modes.
� The proof uses the theory of oriented matroids.
� The result helps to understand metabolic switches and the occurrence of low-yield pathways.
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a b s t r a c t

The survival and proliferation of cells and organisms require a highly coordinated allocation of cellular
resources to ensure the efficient synthesis of cellular components. In particular, the total enzymatic
capacity for cellular metabolism is limited by finite resources that are shared between all enzymes, such as
cytosolic space, energy expenditure for amino-acid synthesis, or micro-nutrients. While extensive work has
been done to study constrained optimization problems based only on stoichiometric information,
mathematical results that characterize the optimal flux in kinetic metabolic networks are still scarce.
Here, we study constrained enzyme allocation problems with general kinetics, using the theory of oriented
matroids. We give a rigorous proof for the fact that optimal solutions of the non-linear optimization
problem are elementary flux modes. This finding has significant consequences for our understanding of
optimality in metabolic networks as well as for the identification of metabolic switches and the
computation of optimal flux distributions in kinetic metabolic networks.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Living organisms are under constant evolutionary pressure to
survive and reproduce in complex environments. As a direct
consequence, cellular pathways are often assumed to be highly
adapted to their respective tasks, given the biochemical and
biophysical constraints of their environment. Optimality principles
have proven to be powerful methods to study and understand the
large-scale organization of metabolic pathways (Berkhout et al.,
2012; Heinrich and Schuster, 1996; Schuetz et al., 2012; Steuer and

Junker, 2008; Molenaar et al., 2009). A variety of recent computa-
tional techniques, such as flux-balance analysis (FBA), seek to
identify metabolic flux distributions that maximize given objective
functions, such as ATP regeneration or biomass yield, under a set
of linear constraints. As one of their prime merits, FBA and related
stoichiometric methods, including the generalization to time-
dependent metabolism (Mahadevan et al., 2002; Antoniewicz, 2013),
only require knowledge of the stoichiometry of a metabolic network –

data that are available for an increasing number of organisms in the
form of large-scale metabolic reconstructions (Oberhardt et al., 2009;
Orth et al., 2010).

However, despite their explanatory and predictive success,
constraint-based stoichiometric methods also have inherent lim-
its. Specifically, FBA and related methods typically maximize
stoichiometric yield. That is, the value of a designated output flux
is maximized, given a set of limiting input fluxes. As emphasized
in a number of recent studies, the assumption of maximal
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stoichiometric yield is not necessarily a universal principle of
metabolic network function (Schuster et al., 2008, 2011; Goel
et al., 2012; Molenaar et al., 2009). Quite on the contrary, examples
of seemingly suboptimal metabolic behavior, at least from a
stoichiometric perspective, are well-known for many decades.
Among the most prominent instances are the Warburg and the
Crabtree effect (Warburg et al., 1924; Crabtree, 1928; Hsu and
Sabatini, 2008). Under certain circumstances, cells utilize a fer-
mentative metabolism rather than aerobic respiration to regener-
ate ATP, despite the presence of oxygen and despite its
significantly lower stoichiometric yield of ATP per amount of
glucose consumed.

To account for such seemingly suboptimal behavior, several
modifications and extensions of FBA have been developed recently.
Conventional FBA is augmented with additional principles concern-
ing limited cytosolic volume (Beg et al., 2007; Vazquez et al., 2008,
2010; Vazquez and Oltvai, 2011; Shlomi et al., 2011), membrane
occupancy (Zhuang et al., 2011), and other, more general capacity
constraints (Schuster et al., 2011; Goelzer et al., 2011). Each of these
extensions allows for new insights into suboptimal stoichiometric
behavior, and additional constraints often also induce the utilization
of pathways with lower stoichiometric yield. However, none of the
modifications of FBA addresses a metabolic network as a genuine
dynamical system with particular kinetics that depend on a number
of parameters. The neglect of the dynamical nature is a direct
consequence of the extensive data requirements for parametrizing
enzymatic reaction rates. Correspondingly, and despite its impor-
tance to understand metabolic optimality, only few mathematically
rigorous results are currently available that allow to characterize
solutions of constrained non-linear optimization problems arising
from kinetic metabolic networks.

In this work, we formulate and study constrained enzyme
allocation problems in metabolic networks with general kinetics.
In particular, we are interested in enzyme distributions that
maximize a designated output flux, given a limited total enzymatic
capacity. We show that the optimal distributions of metabolic
fluxes differ from solutions obtained by FBA and related stoichio-
metric methods. Most importantly, we give a rigorous proof for the
fact that optimal flux distributions are elementary flux modes.
Therein, we make use of results from the theory of oriented
matroids that were hitherto only scarcely applied to metabolic
networks (Beard et al., 2004), but offer great potential to unify and
advance metabolic network analysis, as mentioned in Gagneur and
Klamt (2004) and Müller and Bockmayr (2013). Our finding has
significant consequences for the understanding of metabolic
optimality as well as for the efficient computation of optimal
fluxes in kinetic metabolic networks.

The paper is organized as follows. In Section 2, we introduce
kinetic metabolic networks and state the enzyme allocation
problem of interest. In Section 3, we illustrate our mathematical
results and the ideas underlying our proofs by a conceptual
example of a minimal metabolic network. In Section 4, we address
the connection between metabolic network analysis and the
theory of oriented matroids. In particular, we reformulate the
optimization problem and show that, if the enzyme allocation
problem has an optimal solution, then there is an optimal solution
which is an elementary flux mode. Finally, we provide a discussion
of our results in the context of metabolic optimization problems.

2. Problem statement

After introducing the necessary mathematical notation, we
define kinetic metabolic networks and elementary flux modes,
and state the metabolic optimization problem that we investigate
in the following.

2.1. Mathematical notation

We denote the positive real numbers by R4 and the non-
negative real numbers by RZ . For a finite index set I, we write RI

for the real vector space of vectors x¼ ðxiÞiA I with xiAR, and RI
4

and RI
Z for the corresponding subsets. Given xARI , we write x40

if xARI
4 and xZ0 if xARI

Z . We denote the support of a vector
xARI by suppðxÞ ¼ fiA I ∣ xia0g. For x; yARI , we denote the
component-wise (or Hadamard) product by x○yARI , that is,
ðx○yÞi ¼ xiyi.

2.2. Kinetic metabolic networks

A metabolic network ðS;R;NÞ consists of a set S of internal
metabolites, a set R of reactions, and the stoichiometric matrix
NARS�R, which contains the net stoichiometric coefficients for
each metabolite sAS in each reaction rAR. The set of reactions is
the disjoint union of the sets of reversible and irreversible
reactions, R2 and R-, respectively.

In the following, we assume that each reaction can be catalyzed
by an enzyme. Let xARS

Z denote the vector of metabolite con-
centrations, cARR

Z the vector of enzyme concentrations, and
pARP a vector of parameters such as turnover numbers, equili-
brium constants, and Michaelis–Menten constants. We write the
vector of rate functions v : RS

Z � RR
Z � RP-RR as

vðx; c; pÞ ¼ c○κðx; pÞ
with a function κ : RS

Z � RP-RR. In other words, each reaction
rate vr is the product of the corresponding enzyme concentration
cr with a particular kinetics κr .

A kinetic metabolic network ðS;R;N; vÞ is a metabolic network
ðS;R;NÞ together with rate functions v as defined above. The
dynamics of ðS;R;N; vÞ is determined by the ODEs

dx
dt

¼N vðx; c; pÞ:

A steady state xARS and the corresponding steady-state flux
v ¼ vðx; c; pÞARR are determined by

0¼N v:

2.3. Elementary flux modes

A flux mode is a non-zero steady-state flux f ARR with non-
negative components for all irreversible reactions. In other words,
a flux mode is a non-zero element of the flux cone

C ¼ ff ARR jN f ¼ 0 and frZ0 for all rAR-g:
An elementary flux mode (EFM) eARR is a flux mode with minimal
support:

f AC with f a0 and suppðf ÞDsuppðeÞ
) suppðf Þ ¼ suppðeÞ: ðefmÞ

In fact, suppðf Þ ¼ suppðeÞ further implies f ¼ λ e with λ40. Other-
wise, one can construct another flux mode from e and f with
smaller support. As a consequence, there can be only finitely many
EFMs (up to multiplication with a positive scalar). For references
on elementary flux modes and related computational issues, see
(Schuster and Hilgetag, 1994; Schuster et al., 2002; Klamt and
Stelling, 2003; Gagneur and Klamt, 2004; Wagner and Urbanczik,
2005; Larhlimi and Bockmayr, 2009).

2.4. Enzyme allocation problem

We are now in a position to state the optimization problem that
we study in this work.
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Let ðS;R;N; vÞ be a kinetic metabolic network with flux cone C.
Fix a reaction rnAR, positive weights wARR

4 , a subset XDRS
Z ,

and parameters pARP . Maximize the component vrn 40 of the
steady-state flux v ¼ c○κðx; pÞ by varying the steady-state meta-
bolite concentrations xAX and the enzyme concentrations cARR

Z .
Thereby, fix the weighted sum of enzyme concentrations and
require the steady-state flux to be a flux mode:

max
xAX; cARR

Z

vrn ð1aÞ

subject to

∑
rAR

wrcr ¼ ctot; ð1bÞ

vAC; vrn 40: ð1cÞ
Note that the constraint vAC implies 0¼N v ¼N ðc○κðx; pÞÞ which
is non-linear, in general.

Further, note that the enzyme allocation problem may be
unfeasible, in particular, the constraint (1c) may be unsatisfiable.
In this case, the flux cone and the kinetics are “incompatible”.
Moreover, even if the problem is feasible, the maximum may not
be attained at finite metabolite concentrations. On the other hand,
if the problem is feasible, the kinetics is continuous in x, and X is
compact (bounded and closed), then the maximum is attained.

Problem (1) defines a very general metabolic optimization
problem, in which the set of enzyme concentrations is adjusted
in order to maximize a specific metabolic flux within the steady-
state flux vector. In this respect, the weighted sum (1b) may
encode different enzymatic constraints, such as limited cellular or
membrane surface space, limited nitrogen or transition metal
availability, as well as other constraints for the abundance of
certain enzymes. In each case, the weight factors denote the
fraction of the resource used per unit enzyme. Likewise, the flux
component vrn may stand for diverse metabolic processes, ranging
from the synthesis rate of a particular product within a specific
pathway to the rate of overall cellular growth. The optimization
problem seeks to identify the maximum value of vrn , the asso-
ciated enzyme and steady-state metabolite concentrations, c and
x, as well as the corresponding flux v.

3. A conceptual example

In order to illustrate our mathematical results and the ideas in
its proofs, we first study a minimal metabolic network for the
production of a precursor molecule from glucose. In particular, we
consider two alternative pathways: fermentation (low yield) and
respiration (high yield), cf. Fig. 1. The actual metabolic network
ðS;R;NÞ is further simplified and involves the internal metabolites
S ¼ fGlc;O2;ATPg, the set of reactions R consisting of

1 : Glcex⇌Glc
2 : Glc⇌2 ATP
3 : O2;ex ⇌O2

4 : GlcþO2⇌10 ATP
5 : Glcþ2 ATP-Preex;

and the resulting stoichiometric matrix

N ¼

1 2 3 4 5
Glc
O2

ATP

þ1 −1 0 −1 −1
0 0 þ1 −1 0
0 þ2 0 þ10 −2

0
B@

1
CA :

The external substrates/products Glcex;O2;ex;Preex do not appear in
ðS;R;NÞ, but their constant concentrations can enter the rate
functions as parameters. In a kinetic metabolic network

ðS;R;N; vÞ, the rate of reaction r is given as

vr ¼ crκr ;

that is, as a product of the corresponding enzyme concentration cr
and a particular kinetics κr . In this example, we use the kinetics

κ1 ¼ k1ð½Glcex��K1½Glc�Þ
κ2 ¼ k2ð½Glc��K2½ATP�Þ
κ3 ¼ k3ð½O2;ex��K3½O2�Þ
κ4 ¼ k4ð½Glc�½O2��K4½ATP�Þ
κ5 ¼ k5½Glc�½ATP�;
however, our main result does not depend on the kinetics. In
vector notation, we write

vðx; c; pÞ ¼ c○κðx; pÞ;
thereby introducing the concentrations x of the internal metabo-
lites and the parameters p,

x¼ ð½Glc�; ½O2�; ½ATP�ÞT ;
p¼ ð½Glcex�; ½O2;ex�; k1; k2; k3; k4; k5;K1;K2;K3;K4ÞT :
The dynamics of the network is governed by the ODEs

dx
dt

¼N vðx; c; pÞ:

A steady state x and the corresponding steady-state flux
v ¼ vðx; c;pÞ are determined by

0¼N v:

The goal is to maximize the production rate of the precursor Preex,
that is, the component v5 of the steady-state flux v ¼ c○κðx; pÞ, by
varying the steady-state metabolite concentrations xAR3

Z and the
enzyme concentrations cAR5

Z . Thereby, the (weighted) sum of
enzyme concentrations is fixed and the steady-state flux must be a
flux mode:

max
x ; c

v5 ð2aÞ

subject to

∑
5

r ¼ 1
cr ¼ ctot; ð2bÞ

N v ¼ 0; v540: ð2cÞ
For convenience, we use equal weights in the sum constraint.

To simplify the problem, we consider a restriction on the
steady-state metabolite concentrations x, in particular, we require
κðx; pÞ40. In chemical terms, we assume the thermodynamic
feasibility of a situation where all reactions can proceed from left
to right. Since v ¼ c○κ, this implies vZ0. That is, every component
of the steady-state flux is non-negative; in fact, it is zero if and
only if the corresponding enzyme concentration is zero.

Fig. 1. A minimal metabolic network. The pathway consists of two uptake reactions
(1,3), two intracellular conversions (2,4), and the formation of a precursor molecule
(5). The resulting EFMs are e1 ¼ ð2;1;0;0;1Þ and e2 ¼ ð65;0; 15; 15;1Þ with overall
reactions 2 Glcex-1 Preex (fermentation) and 6 Glcexþ1 O2;ex-5 Preex (respiration).
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Every feasible steady-state flux v is a flux mode. In particular,
v ¼ v5 f where f is a flux mode with f Z0 and f5 ¼ 1. From
v ¼ c○κ ¼ v5 f , we further obtain

cr ¼ v5
fr
κr
:

Now, we can rewrite the constraint on the enzyme concentrations as

ctot ¼ ∑
5

r ¼ 1
cr ¼ v5 ∑

5

r ¼ 1

fr
κr
:

Instead of maximizing v5, we can minimize ctot=v5 ¼∑5
r ¼ 1 fr=κr ðx; pÞ

by varying the steady-state metabolite concentrations x and the
flux mode f. Hence, the enzyme allocation problem (2) with the
restriction κðx; pÞ40 is equivalent to

min
x ; f

∑
5

r ¼ 1

fr
κrðx;pÞ

ð3aÞ

subject to

κðx; pÞ40; f Z0; ð3bÞ

N f ¼ 0; f5 ¼ 1: ð3cÞ
As shown in Section 4.2, every flux mode f Z0 is a non-

negative linear combination of elementary flux modes (EFMs)
eZ0. In fact, there are two such EFMs,

e1 ¼ ð2;1;0;0;1ÞT
e2 ¼ ð65 ;0; 15 ; 15 ;1ÞT ;

representing fermentation and respiration, and hence

f ¼ α1 e1þα2 e2 with α1; α2Z0:

Note that we have scaled the EFMs e such that e5 ¼ 1. The condition
f5 ¼ 1 implies α1þα2 ¼ 1. As a result, we obtain another equivalent
formulation of the restricted enzyme allocation problem:

min
x ; α1 ; α2

∑
5

r ¼ 1

α1 e1r þα2 e2r
κrðx; pÞ

ð4aÞ

subject to

κðx; pÞ40; ð4bÞ

α1þα2 ¼ 1: ð4cÞ
We observe that the objective function is linear in α1 and α2:

α1 ∑
5

r ¼ 1

e1r
κrðx; pÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
g1

þα2 ∑
5

r ¼ 1

e2r
κrðx;pÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
g2

with

g1ðx; pÞ ¼
2

κ1ðx; pÞ
þ 1
κ2ðx; pÞ

þ 1
κ5ðx; pÞ

g2ðx; pÞ ¼
6
5

κ1ðx; pÞ
þ

1
5

κ3ðx; pÞ
þ

1
5

κ4ðx; pÞ
þ 1
κ5ðx; pÞ

:

Clearly, g1ðx; pÞ40 and g2ðx; pÞ40, since κðx; pÞ40. Assume that
the minima of g1 and g2 are attained at x1 and x2, respectively.
That is, ĝ1 ¼minx g1ðx; pÞ ¼ g1ðx1; pÞ and ĝ2 ¼minx g2ðx; pÞ ¼
g2ðx2; pÞ. If ĝ1o ĝ2, then the objective function attains its mini-
mum ĝ1 at x ¼ x1, α1 ¼ 1 and α2 ¼ 0, that is, for f ¼ e1. To see this,
assume α240; then, for all x,

α1g1ðx; pÞþα2g2ðx; pÞZα1ĝ1þα2ĝ24α1ĝ1þα2ĝ1 ¼ ðα1þα2Þĝ1 ¼ ĝ1:

Conversely, if ĝ14 ĝ2, the minimum is attained for f ¼ e2, and
finally, if ĝ1 ¼ ĝ2, both f ¼ e1 and f ¼ e2 are optimal. In the
degenerate case where ĝ1 ¼ g1ðx0; pÞ ¼ g2ðx0; pÞ ¼ ĝ2 at the same
minimum point x0, any f ¼ α1 e1þα2 e2 (with α1; α2Z0 and
α1þα2 ¼ 1) is optimal.

We can summarize our result as follows: generically, the steady-
state flux v related to an optimal solution of the restricted enzyme
allocation problem (3) is an EFM. The same holds for all appropriate
restrictions and hence for the full enzyme allocation problem (2).

For variable external substrate concentrations ½Glcex� and ½O2;ex�,
we are interested in which EFM is optimal and when a switch
between EFMs occurs. To this end, we determine the optimal
solution for each EFM. The optimization problem restricted to EFM
e1 is equivalent to

min
x

g1ðx; pÞ

subject to

κ1ðx;pÞ40; κ2ðx; pÞ40; κ5ðx; pÞ40:

In EFM e1, reactions 3 and 4 do not carry any flux, that is,
e13 ¼ e14 ¼ 0. Hence, the corresponding enzyme concentrations are
zero, that is, c3 ¼ c4 ¼ 0, and there are no constraints involving
κ3ðx;pÞ and κ4ðx; pÞ. From the optimal metabolite concentrations x,
we determine the optimal enzyme concentrations c1, c2, and c5 as

cr ¼ v5
e1r
κr

¼ ctot

e1r
κrðx; pÞ
∑

r ¼ 1;2;5

e1r
κrðx; pÞ

:

Explicitly, the optimization problem for EFM e1 amounts to

min
½Glc�;½ATP�

2
k1 ½Glcex��K1½Glc�ð Þþ

1
k2 ½Glc��K2½ATP�ð Þþ

1
k5½Glc�½ATP�

� �
subject to

½Glcex��K1½Glc�40; ½Glc��K2½ATP�40; ½Glc�½ATP�40;

where we omit the bar over the steady-state metabolite concen-
trations. From the optimal metabolite concentrations ½Glc�; ½ATP�,
we determine the optimal enzyme concentrations c1, c2, and c5.
For example,

c1 ¼ ctot

2
k1ð½Glcex��K1½Glc�Þ

2
k1ð½Glcex��K1½Glc�Þ

þ 1
k2ð½Glc��K2½ATP�Þ

þ 1
k5½Glc�½ATP�

:

The optimization problem restricted to EFM e2 is treated analogously.
Finally, we vary ½Glcex� and ½O2;ex�, solve the restricted optimi-

zation problems for EFMs e1 and e2, and compare the resulting

Fig. 2. Maximum production rate v5 as a function of external substrate concentrations
½Glcex� and ½O2;ex� plotted for EFM e1 (fermentation, blue) and EFM e2 (respiration,
green). Parameters: k1 ¼ k2 ¼ k3 ¼ k4 ¼ k5 ¼ 1, K1 ¼ K3 ¼ 1, K2 ¼ K4 ¼ 0:1. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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maximum values of v5, cf. Fig. 2. Clearly, the optimal solution of
the enzyme allocation problem switches between EFMs e1 and e2

which involves a discontinuous change of enzyme and metabolite
concentrations, cf. Fig. 3, where we fix ½O2;ex� ¼ 1 and vary ½Glcex�.

4. Mathematical results

We reformulate the enzyme allocation problem (1) and char-
acterize its solutions. To this end, we employ concepts from the
theory of oriented matroids like elementary vectors, sign vectors,
and conformal sums.

Realizable oriented matroids arise from vector subspaces.
Essentially, a realizable oriented matroid is the set of sign vectors
of a subspace or, equivalently, all sign vectors with minimal
support. Abstract oriented matroids can be characterized by axiom
systems for (co-)vectors (satisfied by the sign vectors of a sub-
space), (co-)circuits (satisfied by the sign vectors with minimal
support), or, equivalently, chirotopes. For an introduction to
oriented matroids, we refer to the survey (Richter-Gebert and
Ziegler, 1997), the textbooks (Bachem and Kern, 1992) and (Ziegler,
1995, Chapters 6 and 7), and the encyclopedic treatment (Björner
et al., 1999).

In applications to metabolic network analysis, the involved
oriented matroids are realizable. For example, the sign vector of a
thermodynamically feasible steady-state flux must be orthogonal
to all (internal) circuits (Beard et al., 2004). In the original proof,
the circuit axioms for oriented matroids are used explicitly;
however, the result also follows from basic facts about the
orthogonality of sign vectors of subspaces (Ziegler, 1995,
Chapter 6); alternatively, it can be proved using linear program-
ming duality (Müller, 2012; Noor et al., 2012). We note that
oriented matroids also appear in the study of directed hypergraph
and Petri net models of biochemical reactions (Oliveira et al.,
2001) and in the theory of chemical reaction networks with
generalized mass action kinetics (Müller and Regensburger, 2012).

4.1. Elementary vectors

An elementary vector (EV) eARR of a vector subspace SDRR is
a non-zero vector with minimal support (Rockafellar, 1969):

f AS with f a0 and suppðf ÞDsuppðeÞ
) suppðf Þ ¼ suppðeÞ: ðevÞ

It is easy to see that EFMs are exactly those EVs of kerðNÞ that are
flux modes. To our knowledge, this fact has not been clarified
before.

Lemma 1. Let ðS;R;NÞ be a metabolic network and eARR. The
following statements are equivalent:

(i) e is an EFM.
(ii) e is an EV of kerðNÞ and a flux mode.

Proof. (i) ) (ii): We have to show that EFM e is an EV of kerðNÞ.
Suppose (ev) is violated, that is, there exists f AkerðNÞ with f a0
and suppðf Þ � suppðeÞ. If frZ0 for all rAR-, then f AC in contra-
diction to (efm). Otherwise, consider f ′¼ eþλ f with the largest
scalar λ40 such that f ′rZ0 for all rAR-. Then, f ′AC with f ′a0
and suppðf ′Þ � suppðeÞ in contradiction to (efm). (ii) ) (i): Let e be
a flux mode and an EV of kerðNÞ. Clearly, (ev) implies (efm), since
f AC implies f AkerðNÞ. □

4.2. Sign vectors and conformal sums

We define the sign vector sðxÞAf� ;0; þgI of a vector xARI by
applying the sign function component-wise. The relations 0o�
and 0oþ induce a partial order on f� ;0; þgI: we write XrY for
X;YAf� ;0; þgI , if the inequality holds component-wise. For
x; yARI , we say that x conforms to y, if sðxÞrsðyÞ. Analogously,
for xARI and XAf� ;0; þgI , we say that x conforms to X, if
sðxÞrX.

The following fundamental result about vectors and EVs will be
rephrased for flux modes and EFMs. For a proof, see (Rockafellar,
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Fig. 3. Optimal fluxes v1 ; v3 ; v5, enzyme concentrations c1 ; c3 ; c5, and internal metabolite concentrations ½Glc�; ½O2�; ½ATP� as functions of external substrate concentration
½Glcex� plotted for EFM e1 (fermentation, blue) and EFM e2 (respiration, green). With increasing ½Glcex�, the optimal solution switches from respiration (thick green lines) to
fermentation (thick blue lines). Parameters: ½O2;ex� ¼ 1, k1 ¼ k2 ¼ k3 ¼ k4 ¼ k5 ¼ 1, K1 ¼ K3 ¼ 1, K2 ¼ K4 ¼ 0:1. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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1969, Theorem 1; Bachem and Kern, 1992, Proposition 5.35;
Ziegler, 1995, Lemma 6.7).

Theorem 2. Let SDRR be a subspace. Then every vector f AS is a
conformal sum of EVs. That is, there exists a finite set E of EVs
conforming to f such that

f ¼ ∑
eAE

e:

The set E can be chosen such that every eAE has a component
which is non-zero in e, but zero in all other elements of E. Hence,
jEjrdimðSÞ and jEjrjsuppðf Þj.

It is easy to see that every flux mode is the conformal sum of
EFMs. For later use, we present a slightly rephrased version of this
result. We note that, if e is an EFM, then any element of the ray

fλ e j λ40g
is an EFM. Hence, wemay refer to one representative EFM on each ray.

Corollary 3. Let ðS;R;NÞ be a metabolic network, τAf� ;0; þgR be
a sign vector and Eτ be a set of representative EFMs conforming to τ.
Then, every flux mode f AC conforming to τ is a non-negative linear
combination of elements of Eτ:

f ¼ ∑
eAEτ

αe e with αeZ0:

Proof. Clearly, f AC implies f AkerðNÞ. By Theorem 2, f is the
conformal sum of EVs of kerðNÞ. However, for an EV eAkerðNÞ to
conform to f AC, it is required that eAC. Hence, by Lemma 1, e is
an EFM, which can be written as a positive scalar multiple of a
representative EFM. □

4.3. Problem reformulation

We start with the formal statement of an intuitive argument.
Consider a feasible solution of the enzyme allocation problem (1)
and the corresponding steady-state flux: if a reaction does not carry
any flux, then the corresponding optimal enzyme concentration is
zero. We add an appropriate constraint to the enzyme allocation
problem and obtain an equivalent optimization problem.

Lemma 4. Let ðS;R;N; vÞ be a kinetic metabolic network. The
enzyme allocation problem (1) is equivalent to the following optimi-
zation problem:

max
xAX; cARR

Z

vrn ð5aÞ

subject to

cr ¼ 0 if vr ¼ 0; ð5bÞ

∑
rAR

wr cr ¼ ctot; ð5cÞ

vAC; vrn 40: ð5dÞ

Proof. For every feasible solution ðx; cÞ of (1) with objective
function vrn , we construct a feasible solution ðx; c′Þ of (5) with
objective function v′rn Zvrn : Let Sv ¼ suppðvÞ. Using
λ¼ ctot=ð∑rA Sv wrcrÞZ1, we set

c′r ¼
λ cr if rASv ;

0 if r=2Sv :

(

Clearly,

∑
rAR

wrc′r ¼ ∑
rA Sv

wrc′r ¼ λ ∑
rA Sv

wr cr ¼ ctot:

Further, v′¼ c′○κ ¼ λ ðc○κÞ ¼ λv implies N v′¼ 0 and sðv′Þ ¼ sðvÞ,
that is, v′AC. Hence, ðx; c′Þ fulfills constraints (5b), (5c) and (5d)
and v′rn ¼ λvrn Zvrn . □

As a consequence, variation over enzyme concentrations can be
replaced by variation over flux modes.

Lemma 5. Let ðS;R;N; vÞ be a kinetic metabolic network. The
enzyme allocation problem (5) is equivalent to the following optimi-
zation problem over xAX and f AC:

min
xAX; f AC

∑
rA suppðκÞ

wr fr
κrðx; pÞ

ð6aÞ

subject to

sðf ÞrsðκÞ; frn ¼ 1: ð6bÞ
Let ðx; cÞ and ðx; f Þ be corresponding feasible solutions of (5) and (6),
respectively. The product of the related objective functions amounts to

vrn ∑
rA suppðκÞ

wr fr
κr

¼ ctot: ð7Þ

Proof. We show that, for every feasible solution ðx; cÞ of (5), there
exists a feasible solution ðx; f Þ of (6), and vice versa. Moreover, that
the related objective functions fulfill Eq. (7).
Assume that ðx; cÞ is a feasible solution of (5). Define f ¼ v=vrn .

Clearly, f AC, frn ¼ 1, and sðf Þ ¼sðvÞ ¼ sðc○κÞrsðκÞ. Hence, ðx; f Þ is
a feasible solution of (6). Let Sκ ¼ suppðκÞ. Using v ¼ c○κ ¼ vrn f and
hence cr ¼ vrn fr=κr for rASκ , we rewrite the sum constraint and
obtain the desired Eq. (7):

ctot ¼ ∑
rAR

wr cr ¼ ∑
rASκ

wr cr ¼ vrn ∑
rASκ

wr fr
κr

:

Conversely, assume that ðx; f Þ is a feasible solution of (6). Since
sðf ÞrsðκÞ, we can define vrn 40 by Eq. (7), and we set
cr ¼ vrn fr=κr for rASκ and cr ¼ 0 for r=2Sκ . Clearly, cr ¼ 0 if
vr ¼ cr κr ¼ 0. Further,

∑
rAR

wrcr ¼ ∑
rA Sκ

wr cr ¼ vrn ∑
rASκ

wr fr
κr

¼ ctot:

By definition, vr ¼ cr κr ¼ vrn fr for rASκ , and, since sðf ÞrsðκÞ,
vr ¼ cr κr ¼ 0 and fr ¼ 0 for r=2Sκ . That is, v ¼ vrn f AC. Hence, ðx; cÞ is
a feasible solution of (5). □

We note that the inequality constraints involving the kinetics
may be unfeasible. For given flux mode f AC, the existence
of steady-state metabolite concentrations xARS

Z such that
sðf Þrsðκðx; pÞÞ is equivalent to the existence of chemical poten-
tials μARS such that sðf Þrsð�ðμNÞT Þ. Whereas conventional FBA
has to be augmented with thermodynamic constraints (Beard
et al., 2004; Müller and Bockmayr, 2013), they are incorporated
in the definition of a metabolic network with known kinetics.

4.4. Main results

The next statement characterizes optimal solutions of the
enzyme allocation problem for fixed metabolite concentrations.
Its proof involves the result on conformal sums obtained in Section
4.2.

Proposition 6. Let ðS;R;N; vÞ be a kinetic metabolic network.
Consider the enzyme allocation problem (1) for fixed xAX. If this
restricted optimization problem is feasible, then it has an optimal
solution for which the corresponding steady-state flux is an EFM.

Proof. By Lemmas 4 and 5, the enzyme allocation problem (1) is
equivalent to optimization problem (6). We consider (6) for fixed
xAX and assume that this restricted problem is feasible.
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We write κ short for κðx;pÞ and introduce τ¼ sðκÞ and
Sκ ¼ suppðκÞ. In (6), we vary over f AC such that sðf ÞrsðκÞ ¼ τ
and frn ¼ 1. By Corollary 3, every flux mode f AC conforming to τ is
a non-negative linear combination of elements of Eτ , which is a set
of representative EFMs conforming to τ. We assume the EFMs to
be scaled by component rn and divide the set Eτ into two subsets,
Eτ ¼ E1 [ E0, such that eAE1 implies ern ¼ 1 and eAE0 implies
ern ¼ 0. We have

f ¼ ∑
eAE1

αe eþ ∑
eAE0

βe e with αe; βeZ0:

From frn ¼ 1, we obtain the constraint

1¼ frn ¼ ∑
eAE1

αe ern þ ∑
eAE0

βe ern ¼ ∑
eAE1

αe:

Using the conformal sum for f in (6), we obtain an equivalent
formulation of the restricted problem:

min
αe ; βe

∑
rA Sκ

wr ∑eA E1αeerþ∑eAE0 βeer
� �

κr
ð8aÞ

subject to

∑
eAE1

αe ¼ 1: ð8bÞ

We observe that the objective function is linear in αe and βe:

∑
eAE1

αe ∑
rA Sκ

wrer
κr|fflfflfflfflffl{zfflfflfflfflffl}

ge

þ ∑
eAE0

βe ∑
rASκ

wrer
κr|fflfflfflfflffl{zfflfflfflfflffl}

ge

with

ge ¼ ∑
rA Sκ

wrer
κr

for eAEτ :

Since all eAEτ conform to τ¼sðκÞ, that is, sðeÞrsðκÞ, we have
wrer=κrZ0 for all eAEτ and rASκ . Moreover, for all eAEτ , there is
rASκ such that era0 and hence wrer=κr40. Consequently, ge40
for all eAEτ .
Since there is no further restriction on βeZ0, the minimum of

the objective function is attained at βe ¼ 0 for all eAE0. In other
words, EFMs eAE0 do not contribute to the optimal solution.
Let e′AE1 be an EFM such that ge′rge for all eAE1. Since αeZ0

and ∑eAE1 αe ¼ 1, we have

∑
eAE1

αe geZ ∑
eAE1

αe ge′ ¼ ge′;

and the minimum of the objective function is attained at αe′ ¼ 1
and αe ¼ 0 for all other eAE1, that is, for f ¼ e′. To conclude, we
consider a degenerate case: If there are several eAEminDE1 for
which ge is minimal, then any f ¼∑eAEmin

αe e (with αeZ0 and
∑eAEminαe ¼ 1) is optimal. □

The following statement is the main result of this work.

Theorem 7. Let ðS;R;N; vÞ be a kinetic metabolic network. If the
enzyme allocation problem (1) has an optimal solution, then it has an
optimal solution for which the corresponding steady-state flux is an
EFM.

Proof. Let an optimal solution of the enzyme allocation problem
(1) be attained at xAX. Clearly, optimization problem (1) restricted
to this particular x is feasible. By Proposition 6, this restricted
problem has an optimal solution for which the corresponding
steady-state flux is an EFM. □

In applications, we use Theorem 7 to study the switching
behavior of kinetic metabolic networks. Depending on external
parameters, the optimal solution of the enzyme allocation pro-
blem may switch from one EFM to another, involving a discontin-
uous change of enzyme and metabolite concentrations. In a first

approach, one may vary the external parameters and determine
the optimal solution for each EFM in order to find the optimal
solution of the full problem. To this end, we transform the
optimization problem restricted to an EFM.

Corollary 8. Let ðS;R;N; vÞ be a kinetic metabolic network. In the
enzyme allocation problem (1), let the steady-state flux be restricted
to fλ e j λ40g, where eAC is an EFM with ern ¼ 1. Then, this restricted
optimization problem is equivalent to the following optimization
problem over xAX:

min
xAX

∑
rA suppðeÞ

wrer
κrðx; pÞ

ð9aÞ

subject to

sðeÞrsðκÞ: ð9bÞ
The corresponding enzyme concentrations cARR

Z are given by

cr ¼ ctot

er
κrðx; pÞ
∑

sA suppðeÞ

wses
κsðx; pÞ

: ð10Þ

Proof. By Lemmas 4 and 5, the enzyme allocation problem (1) is
equivalent to optimization problem (6). Hence, we consider (6) for
fixed f¼e. Clearly, this restricted problem is feasible if and only
if optimization problem (9) is feasible. If sðeÞrsðκÞ, then
suppðeÞDsuppðκÞ and hence

∑
rA suppðκÞ

wrer
κrðx;pÞ

¼ ∑
rA suppðeÞ

wrer
κrðx; pÞ

:

That is, the objective functions of the two optimization problems
are identical.
By using c○κ ¼ λ e with λ40 and the constraint ∑rARwrcr ¼ ctot,

we obtain λ¼ ctot=ð∑rA suppðeÞwr er=κrÞ and hence cr ¼ λ er
κr for

rAR. □

5. Discussion and outlook

In this work, we have studied a general metabolic optimization
problem under enzymatic capacity constraints. Our analysis was
motivated by the fact that the total enzymatic capacity of a
metabolic network is limited by finite shared resources, such that
an increase in the concentration of one enzyme necessitates a
decrease in the concentration of one or more other enzymes. This
scenario can be caused by molecular crowding, where enzymes
compete for cytosolic space, limited membrane space, a finite
availability of macro-nutrients, such as nitrogen or phosphorus,
or micro-nutrients, such as transition metals, as well as a limited
energy expenditure for amino-acid synthesis. In each of these
instances, the global constraint can be formulated in terms of a
weighted sum of enzyme concentrations, where the weight factors
specify the fraction of the shared resource utilized per unit enzyme.

Recently, such global constraints have been incorporated into
large-scale stoichiometric models of metabolism, most notably
to explain the occurrence of low-yield pathways (Schuster
et al., 2011; Shlomi et al., 2011; Vazquez and Oltvai, 2011; Zhuang
et al., 2011). However, these works were restricted to linear
stoichiometric optimization problems and did not consider
enzyme concentrations within a kinetic description of a metabolic
network. Here, we have addressed a non-linear kinetic optimiza-
tion problem, where we assume that each reaction can be
catalyzed by an enzyme, but allow for arbitrary enzyme kinetics.
Most importantly, we have derived a rigorous proof that an
optimal flux distribution under global enzymatic constraints is
necessarily an elementary flux mode. This finding has significant
consequences for our understanding of metabolic optimality and
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metabolic switches as well as for the computational identification
of optimal fluxes in kinetic metabolic networks.

In particular, our results allow us to efficiently compute and
compare the optimal enzyme distributions for individual flux
modes. In a recent work (Flamholz et al., 2013), the trade-off
between energy yield and protein cost was studied for several
alternative prokaryotic glycolytic pathways. To this end, different
pathway designs were compared by fixing the output flux at a
certain value and estimating the necessary protein investments.
Clearly, such an approach does not exclude the possibility that a
combined pathway might incur an even lower enzymatic cost.
However, our result shows that it is indeed sufficient to compare
the solutions for EFMs.

Notwithstanding its theoretical merits, the practical implica-
tions of our approach have to be studied further. Firstly, for
genome-scale metabolic networks, an exhaustive evaluation of
all EFMs is computationally infeasible. A natural next step is to
design a combined linear/non-linear optimization algorithm for
the identification of optimal EFMs. Secondly, while the enzymatic
capacity constraint is applicable to a multitude of possible limita-
tions, our approach may be extended to include de novo synthesis
or uptake of limiting resources. We conjecture that the problem
can still be formulated in a way that our overall conclusions
remain valid if such more general models are considered. Thirdly,
the effects of co-limitation in cellular metabolism and the simul-
taneous optimization of more than one objective function pose
new challenges for theoretical analysis.

Finally, we note that experimentally observed flux distributions
are not necessarily always EFMs. While some well-known meta-
bolic switches indeed show an exclusive choice between alter-
native metabolic states, such as most instances of catabolite
repression, it is known that alternative metabolic strategies some-
times operate simultaneously, such as a residual respiration in
cancer cells (Moreno-Sanchez et al., 2007). Whether such a co-
occurrence of metabolic strategies arises due to additional con-
straints or optimality principles, or to what extent these instances
are sub-optimal adaptations, remains to be studied. We note that
mixed strategies were also observed in recent computational
studies using large-scale FBA models (Vazquez et al., 2010) as well
as for integrated models of enzyme synthesis and metabolism to
investigate shifts in growth strategies (Molenaar et al., 2009).
Again, our analytical results provide a strong incentive to study the
consequences of additional constraints or optimality principles on
the solutions of metabolic optimization problems. We believe that
only the further understanding of the properties of optimal flux
distributions will allow us to investigate the fundamental trade-
offs in cellular resource allocation.
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