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Majority rule has transition ratio 4 on Yule trees under a 2-state symmetric model
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a b s t r a c t

Inferring the ancestral state at the root of a phylogenetic tree from states observed at the leaves is a
problem arising in evolutionary biology. The simplest technique – majority rule – estimates the root
state by the most frequently occurring state at the leaves. Alternative methods – such as maximum
parsimony - explicitly take the tree structure into account. Since either method can outperform the other
on particular trees, it is useful to consider the accuracy of the methods on trees generated under some
evolutionary null model, such as a Yule pure-birth model. In this short note, we answer a recently posed
question concerning the performance of majority rule on Yule trees under a symmetric 2-state
Markovian substitution model of character state change. We show that majority rule is accurate
precisely when the ratio of the birth (speciation) rate of the Yule process to the substitution rate exceeds
the value 4. By contrast, maximum parsimony has been shown to be accurate only when this ratio is at
least 6. Our proof relies on a second moment calculation, coupling, and a novel application of a reflection
principle.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Given a binary tree, T, suppose that a state from some set S is
assigned uniformly at random to the root of T. This state then evolves
down the tree to the tips of the tree according to a continuous-time
Markovian process on S, acting along the edges of the tree. Given the
states at the tips of a tree, ancestral state reconstruction aims to
estimate the state that was present at the root of the tree. This
problem is particularly relevant to certain questions in evolutionary
biology (Liberles, 2007; Royer-Carenzi et al., 2013).

The performance of any ancestral state reconstruction methods
depends on the underlying tree (its topology and branch lengths);
accordingly, to compare the performance of different ancestral
state reconstruction methods, it is helpful to sample trees from
some underlying null distribution. In evolutionary biology, a
natural and widely used null process is the Yule pure-birth model
(Stadler and Steel, 2012; Yule, 1925), starting with a single lineage
at time 0 and grown for time t with birth rate λ, and this is the
model we study here. Moreover, for the rest of this paper, we will
consider the simple continuous-time Markov process, on the state
space S¼ fþ1; �1g with an instantaneous substitution rate m
between the two states. Notice that there are two random processes
at play here – the generation of the tree and the substitution
process that then applies along the edges of this tree.

A straightforward information-theoretic argument shows that
any method for estimating the root state at a Yule tree cannot
achieve an accuracy that is strictly bounded above 1/2 as t grows,
when λo4m, even when the tree and its branch lengths are given
(Gascuel and Steel, 2014). If just the tree topology is known (but
not necessarily its branch lengths) then a natural and often used
ancestral state reconstruction approach is to assign a root state
that minimizes the number of state changes in the tree required to
explain the states at the leaves. This method is known as maximum

parsimony and it was shown in Gascuel and Steel (2010) and Li
(2011) that when λ=mo6, this method does no better than
guessing the root state, as t-1 (for λ=m46, the probability of
correct reconstruction (as t-1) is strictly greater than 1/2 and
converges to 1 (as λ=m-1). The difference between these two
ancestral state reconstruction methods is illustrated in Fig. 1.

There is an even simpler way to estimate the root state from the
leaf states, which does not even require us to know the tree
topology. This is to simply count the number of leaves in each state
and use a majority state as the estimate (ties are broken randomly).
For this majority rule method, the question of determining the ratio
of λ=m at which root state estimation retains some accuracy as
t-1 was posed in Gascuel and Steel (2014). In this note, we show
that this transition occurs for majority rule at λ=m¼ 4, which is
therefore the smallest possible ratio. In particular, there is a range
(4oλ=mo6) within which simple majority rule will outperform a
recursive method that explicitly uses the tree topology information
(maximum parsimony), despite the fact that for some trees, max-
imum parsimony can have higher accuracy than majority rule
(Gascuel and Steel, 2014). Our findings are consistent with simula-
tions that have suggested that majority rule tends to have higher
overall accuracy for ancestral state reconstruction on Yule trees than
maximum parsimony (Gascuel and Steel, 2014), and complement a
recent study of ancestral state reconstruction on Yule trees for
continuous characters evolving under an Ornstein–Uhlenbeck pro-
cess (Bartoszek and Sagitov, 2013).

It is interesting to compare our results to results on census
reconstruction from Mossel and Peres (2003). Theorem 1.4 in
Mossel and Peres (2003) implies that when λ44m, then the
reconstruction problem is census solvable. This means that there is
a linear estimator ∑avσv of the root in terms of the leaves σv
which is correlated with the root of the tree. The coefficients of
this linear estimator depend on the topology and edge lengths of
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the tree. In contrast, we are interested in the simpler estimator
which is simply given by the majority of the leaf values and show
that it results in correlated reconstruction for λ44m. Interestingly,
our proof shows that for the Yule tree, the majority reconstruction
estimator maximizes the reconstruction probability among all
reconstruction methods which are functions of the number of
þ1 and �1 leaves only.

We note further that the threshold λ44m is the threshold for
reconstruction of spherically symmetric trees if the number of
leaves at distance t is ΘðeλtÞ and that, in this case, majority
reconstruction achieves the threshold. See Evans et al. (2000) for
more details and the definition of spherically symmetric trees.

1.1. Preliminaries

First recall that under the symmetric 2-state process, if the
initial state is þ1, the state σtAS after time t is the random
variable with distribution:

σt ¼
þ1 with probability 1

2 ð1þe�2mtÞ;
�1 with probability 1

2 ð1�e�2mtÞ:

(

Notice that

E½σt � ¼ e�2mt : ð1Þ
Let Lt be the set of leaves at time t. It is well known that Nt≔jLt j has
a geometric distribution with parameter p¼ e�λt (and so Nte�λt

converges in distribution to an exponential distribution with
mean 1). In particular, we have

E½Nt � ¼ eλt : ð2Þ
Let

St ¼ ∑
iA Lt

σtðiÞ;

where σtðiÞ is the state at leaf i on the resulting Yule tree, conditional
on the root of the tree being in state þ1. We first compute the first
moment of St. Eq. (1) gives E½St � ¼ E½E½St jNt �� ¼ E½Nt � e�2mt � from
which Eq. (2) gives

E½St � ¼ eðλ�2mÞt : ð3Þ

2. Second moment calculation

Calculating the second moment of St requires a little more care.
First, observe that we may write

S2t ¼ ∑
iALt

σtðiÞ2þ ∑
ði;jÞA ~Lt

σtðiÞσtðjÞ;

where ~Lt ¼ fði; jÞALt � Lt : ia jg: Consequently, since∑iA LtσtðiÞ2 ¼Nt ,
we have

E½S2t � ¼ eλtþFðtÞ; ð4Þ
where FðtÞ ¼ E½ ~St � for ~St ¼∑ði;jÞA ~Lt

σtðiÞσtðjÞ.

Now, suppose that, for the Yule tree grown for time t, two
leaves i and j have a most-recent common ancestor at time t�t0.
Then conditional on this,

E½σtðiÞσtðjÞ� ¼ e�4mt0 ; ð5Þ
where expectation is with respect to the substitution process
alone.

The function F(t) satisfies Fð0Þ ¼ 0, and, by the nature of the
Yule pure-birth process, and Eq. (5), we have

FðtþδÞ ¼ ð1þ2λδþOðδ2ÞÞ � ðe�4mδFðtÞÞ
þðλδþOðδ2ÞÞð1�OðδÞÞE½Nt � ð6Þ

Here the first of the two summands

ð1þ2λδþOðδ2ÞÞ � ðe�4mδFðtÞÞ;
is the total contribution to FðtþδÞ coming from all pairs of
different leaves at time t. The main contribution is e�4mδFðtÞ from
all pairs at time t but we have to include the additional contribu-
tion when one of the two leaves in a pair splits into two lineages
given by the 2λδe�4mδFðtÞ term; the probability that two neigh-
boring leaves split is Oðδ2Þ. The second summand

ðλδþOðδ2ÞÞð1�OðδÞÞE½Nt �
is the contribution made by all pairs of children of the same leaf
that splits in the δ period. More precisely, conditional on Nt,
exactly one leaf will split into two leaves (call them l and l0) in the
interval ðt; tþδÞ with probability λδNtþOðδ2Þ (the probability of
more than one leaf splitting in this interval is Oðδ2Þ). Moreover, the
length of the two new branches ending in l and l0 is OðδÞ, and so
σtþδðlÞσtþδðl0Þ equals þ1 with probability 1�OðδÞ. Taking expec-
tation gives the second summand (i.e. ðλδþOðδ2ÞÞð1�OðδÞÞE½Nt �).

Now, e�4mδ ¼ 1�4mδþOðδ2Þ, so if we apply this, along with
Eq. (2) in Eq. (6), and collect together all terms of quadratic or
higher order in δ, we obtain

FðtþδÞ ¼ ð1�ð4m�2λÞδÞFðtÞþλδeλtþOðδ2Þ:
Rearranging this, and letting δ-0, we obtain the following linear
differential equation for F(t):

dF
dt

þ2ð2m�λÞF ¼ λeλt : ð7Þ

Solving for F is standard (using the integrating factor IðsÞ ¼ eð4m�2λÞs

and the initial condition Fð0Þ ¼ 0 gives FðtÞ ¼ eð2λ�4mÞt R t
0 λe

�ðλ�4mÞs

ds) and so

FðtÞ ¼ eð2λ�4mÞt � λ
λ�4m

ð1�e�ðλ�4mÞtÞ: ð8Þ

This and Eq. (3) leads to the following result:

Proposition 2.1. E½S2t � ¼ eλtþFðtÞ, where F(t) is given by (8). In
particular, when λ44m, then for all tZ0:

E½S2t �
E½St �2

¼ e� rtþ 1
ð1�4m=λÞð1�e� rtÞ;

where r¼ λ�4m40.

We note that exactly the same proof can be applied to St;þ
(resp. St;� ) which is St conditioned on the root being in state þ1
(resp. �1). We will use this to establish our desired result.

3. A lower bound on the total variation distance
of St;� and St;þ

Out next goal is to show the following.

Fig. 1. A tree generated under a Yule process for time twith seven leaves. For the states
at the leaves shown, majority rule will assign state þ1 to the unknown root state
X¼71, while maximum parsimony will assign state �1 to X (since X¼� 1 requires
just two state changes in the tree, while X¼þ1 requires at least three).
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Lemma 3.1. Provided λ44m, then for r¼ λ�4m40:

dTV ðSt;þ ; St;� ÞZ
1�4m=λ

1�4me� rt=λ
;

and the expression on the right is a monotone decreasing function of
t, from 1 (at t¼0) to 1�4m=λ (as t-1).

Proof. We first recall that the total variation distance between any
two random variables X, Y on the same probability space Ω is
defined by

dTV ðX;YÞ≔
1
2

∑
ωAΩ

P½X ¼ω��P½Y ¼ω� :j
�� ð9Þ

A dual definition, which will be used in the proof of the lemma, is
given by:

dTV ðX;YÞ≔inffP½X0aY 0� : X 0 � X;Y 0 � Yg; ð10Þ
where the infimum is taken over all random variables on Ω2 with
X0 having the same distribution as X, and with Y 0 having the same
distribution as Y (such ðX0;Y 0Þ is called a coupling of X and Y).

Let (X, Y) be a coupling of St;þ and St;� . We will use (10) to
place a lower bound on the total variation distance by providing a
lower bound on P½XaY �. This is a standard application of the
second moment method (see e.g. Levin et al., 2010, Proposition
7.8). Using Paley–Zygmund's second moment inequality, one has

P½XaY �Z ðE½jX�Y j�Þ2
E½ðX�YÞ2�

:

By Jensen's inequality one has

ðE½jX�Yj�Þ2Z ðE½X��E½Y �Þ2 ¼ 4E½St;þ �2:
Moreover,

E½ðX�YÞ2�r2E½X2�þ2E½Y2� ¼ 4� 1
2
ðE½S2t;þ �þE½S2t;� �Þ ¼ 4E½S2t;þ �:

Thus we have proved that

PðXaYÞZE½St;þ �2
E½S2t;þ �

;

and Lemma 3.1 now follows from Proposition 2.1 (noting that St
in that proposition is St;þ ). This completes the proof of the
lemma. □

4. Majority reconstruction

In order to complete the proof, we will establish the following
lemma.

Lemma 4.1. For all tZ0, the probability Mt that majority rule
reconstructs the root state correctly is given by

Mt ¼
1
2
þ1
2
dTV ðSt;þ ; St;� Þ:

Proof. Let σ denote the root value. Then, by rewriting (9), we see
that

Dt≔dTV ðSt;þ ; St;� Þ ¼
1
2
∑
s
P½St ¼ s σ ¼ þ1��P½St ¼ s σ ¼ �1� :j

������ ð11Þ

Moreover, the probability of reconstruction by majority rule is
given by

Mt ¼ ∑
s40

P½St ¼ s�P½σ ¼ þ1jSt ¼ s�þ ∑
so0

P½St ¼ s�P½σ ¼ �1jSt ¼ s�þ1
2
P½St ¼ 0�:

ð12Þ
Since P½σ ¼ þ1jSt ¼ s�þP½σ ¼ �1jSt ¼ s� ¼ 1, we can rewrite
P½σ ¼ þ1jSt ¼ s� as 0:5þ0:5ðP½σ ¼ þ1jSt ¼ s��P½σ ¼ �1jSt ¼ s�Þ
and similarly for the other terms. We thus obtain the following

from (12):

Mt ¼ 1
2
þ1
2
∑
s
P½St ¼ s�ðP½σ ¼ þ1 St ¼ s��P½σ ¼ �1 St ¼ s�Þ sgnðsÞ

����
ð13Þ

Mt ¼ 1
2
þ1
4
∑
s
ðP½St ¼ s σ ¼ þ1��P½St ¼ s σ ¼ �1�Þ sgnðsÞ:

���� ð14Þ

Comparing (14) and (11), we see that in order to prove the lemma,
it suffices to show that if s40 then P½St ¼ sjσ ¼ þ1�4
P½St ¼ sjσ ¼ �1�, while if so0 then P½St ¼ sjσ ¼ þ1�oP½St ¼
sjσ ¼ �1�.

The proof of this follows from the reflection principle. Consider
the Markov chain ðNt ; StÞ where Nt is the population size. Let T be
the first stopping time where ST¼0 (T ¼1 if it does not happen).
Then for s40, we have (where σ is the root state)

P½St ¼ sjT4t;σ ¼ þ1�40; P½St ¼ sjT4t;σ ¼ �1� ¼ 0; and
P½St ¼ sjTrt;σ ¼ þ1� ¼P½St ¼ sjTrt;σ ¼ �1�:
From this, it follows that

P½St ¼ sjσ ¼ þ1�4P½St ¼ sjσ ¼ �1�;
as needed. The symmetric argument applies when so0. □

Recall that when λ=mo4 then limt-1 Mt ¼ 1
2 (from Gascuel

and Steel, 2014 or Li, 2011). We can now state our main result
which describes what happens when λ=m44, and whose proof is
immediate from Lemmas 3.1 and 4.1.

Theorem 4.2. Let Mt denote the probability that majority rule
correctly infers the root state for a Yule tree grown at speciation rate
λ for time t, and with a character evolved on this tree under a 2-state
symmetric process with transition rate m, where λ=m44. Then for all
tZ0

MtZ
1
2
þ1
2

1�4m=λ
1�4me� rt=λ

� �
;

where the term on the right is monotone decreasing from 1 (at t¼0)
to 1�4m=λ (as t-1). In particular, for all finite tZ0:

Mt4
1
2
þ1
2

1�4m
λ

� �
:
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