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Madrid 28040, Spain

Received 7 December 2006; received in revised form 20 February 2007; accepted 20 February 2007

Available online 4 March 2007
Abstract

We develop a probabilistic approach to optimum reserve design based on the species–area relationship. Specifically, we focus on the

distribution of areas among a set of reserves maximizing biodiversity. We begin by presenting analytic solutions for the neutral case in

which all species have the same colonization probability. The optimum size distribution is determined by the local-to-regional species

richness ratio k. There is a critical kt ratio defined by the number of reserves raised to the scaling exponent of the species–area

relationship. Below kt, a uniform area distribution across reserves maximizes biodiversity. Beyond kt, biodiversity is maximized by

allocating a certain area to one reserve and uniformly allocating the remaining area to the other reserves. We proceed by numerically

exploring the robustness of our analytic results when departing from the neutral assumption of identical colonization probabilities across

species.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The theory of island biogeography predicts the number
of species in an island as a balance between colonization
and extinction events (MacArthur and Wilson, 1967). The
number of species s (hereafter biodiversity) of an island of
area A can be described by the following power-law
relationship:

s ¼ cAz, (1)

where c is a fitted constant and the scaling exponent z has
values in the range 0.2–0.4 (Williamson, 1988). Several
explanations for the above species–area relationship have
been proposed, including species abundance distributions
(May, 1975), population dynamics (Hubbell, 2001), and the
interplay between a skewed species abundance distribution
and intraspecific spatial aggregation (Garcı́a Martı́n and
Goldenfeld, 2006). The small range of empirical z-values
has recently been derived from the specific form of the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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canonical lognormal species abundance distribution
(Southwood et al., 2006), which served to unify the
species–area relationship with two other power laws in
ecology: species frequency versus species length, and
maximal body size versus area (Southwood et al., 2006).
The theory of island biogeography has been used to

generate simple rules of thumb in conservation biology.
One classical example is the problem of choosing between
one large or two small reserves. Higgs and Usher (1980)
used the species–area relationship and elegantly showed
that the answer depends on the species overlap, that is, the
fraction of common species contained in both smaller
reserves. Thus, it is better to have two reserves for low
overlaps, whereas one reserve maximizes biodiversity if the
overlap is larger than a specific threshold.
Here we extend the one versus two reserves approach

(Higgs and Usher, 1980) for the case of multiple reserves.
Given a set of r reserves, we ask the following questions:
(i) what is the size distribution among these reserves
that maximizes biodiversity? and (ii) how does this solu-
tion depend on the total protected area and regional
diversity?
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Our analytic approximation assumes neutrality.
MacArthur and Wilson (1967) assumed that all species
are equivalent in the sense of having the same extinction
and colonization rates (see also Hubbell, 2001 for an
important generalization at the individual level). However,
research in island biogeography since the decade of the
1980s has unequivocally shown that species are distributed
non-randomly across reserves. Specifically, due to different
colonization (and/or extinction) rates, some species are
more widespread than others. The observed pattern is
nested, in which species inhabiting small reserves form
perfect subsets of the species inhabiting larger reserves
(Darlington, 1957; Patterson, 1987; Atmar and Patterson,
1993; Cook and Quinn, 1998; Fischer and Lindenmayer,
2002). To assess to what extend these non-random patterns
of species distribution affect our analytic results, we end up
by analyzing numerically an extension of our model. We
thus ask: (iii) how robust are our analytic results when non-
neutral, species-specific colonization rates are incorpo-
rated? Our analytical approach differs from alternative
approaches in reserve design such as site-selection algo-
rithms (Nicholson et al., 2006; Cabeza and Moilanen, 2003;
Arponen et al., 2005; Halpern et al., 2006; Wilson et al.,
2006) that analyze real systems and predict the optimum set
of reserves given some finite budget. Our paper presents an
idealized system that, although necessarily simplistic, it is
able to predict general, robust rules of thumb based on a
few ubiquitous general laws such as the species–area
relationship.

2. Maximizing biodiversity: two reserves

Let us start by illustrating the case of two reserves.
Although this reproduces Higgs and Usher (1980), it will be
important for our generalization to r reserves in the next
section. Higgs and Usher (1980) assumed a fixed area
distribution between both reserves and derived the critical
species overlap dictating whether it is better to have a large
reserve or two small ones. Our approach in here is slightly
different: we assume that we have two reserves (r in the
following section) and are able to tune the area distribu-
tion. That is, having in mind that the total area A satisfies
A ¼ A1 þ A2, we can determine to our convenience p

satisfying A1 ¼ pA and A2 ¼ ð1� pÞA . Let us assume that
n is the regional number of species (i.e., the total number of
species in the nearby continent). Each one of these species
has a probability of colonizing any of the above reserves.
The number of species s1 in reserve 1 will be:

s1 ¼ cAz
1 ¼ cAzpz, (2)

and similarly, the second reserve will host s2 species given
by

s2 ¼ cAz
2 ¼ cAzð1� pÞz. (3)

The problem is then to calculate the value of p

maximizing biodiversity, i.e., the total number of species
in both reserves.
In a realistic scenario there are species with high
colonization rates (these ones will likely appear in both
reserves), and species with low colonization rates (we will
hardly see any of these). Let us assume the following
probability distribution of reserve colonization across the n

species in the pool:

PðxÞ / x�g, (4)

with x ¼ 1; 2; . . . ; n.
Notice that the above probability distribution would

produce a nested pattern as found in island biogeography
(Darlington, 1957; Patterson, 1987; Atmar and Patterson,
1993). For example, only the species with the highest
colonization probability would be found in the far dis-
tant reserve, while this and the other species would be
found in the closest reserve. That is, species in remote
reserves form well-defined subsets of the species found in
close reserves.
To be able to derive analytical results, we start by

assuming that every species has the same colonization rate.
This corresponds to the limiting case g ¼ 0, that is, a
uniform colonization probability distribution. This neutral
scenario will provide the minimum overlap between species
in the two reserves. In the last section we will relax this
neutral assumption.
Let’s take a number s1 of different species randomly

from the n species pool to occupy the first reserve. For the
second reserve we must choose randomly s2 different
species from the pool. We can now imagine that the pool
has been divided in two urns: the first with s1 species and
the second with n� s1 different species. We will compute
the probability qm that, after taking s2 random species, m of
them were actually present in the first urn. qm is thus the
probability of having an overlap of m common species
between the two reserves.
The s2 species group will be constituted by m species

from the urn with s1 species and s2 �m from the urn with

n� s1 species. There are s1
m

� �
different, even possibilities of

choosing m species from the first urn. Similarly, there are
n�s1
s2�m

� �
different, even ways of choosing s2 �m species from

the second urn. Having in mind that every choice is
independent, that we assume a uniform probability
distribution of colonization, and that the total number of

choices is n
s2

� �
, the probability qm of having m common

species is given by the hypergeometric distribution:

qm ¼

s1
m

� �
n�s1
s2�m

� �
n
s2

� � , (5)

where, if s2Xs1, m ¼ 0; 1; 2; . . . ; s1; and if s2ps1,
m ¼ 0; 1; 2; . . . ; s2.
The mean species overlap between both reserves is deter-

mined by the mean of the hypergeometric distribution:

hqi ¼
s1s2

n
, (6)
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Fig. 1. Relative biodiversity Bðp; kÞ versus relative reserve size p between two reserves for different values of the local-to-regional species richness ratio k:

(a) k ¼ 0:1; 0:2; . . . ; 0:9 from top to bottom; and (b) k ¼ 0:91; 0:93; 0:95; 0:96; 0:97, and 0:98 from top to bottom. Dots represent numerical simulations

(average over 100 realizations, where the regional pool is n ¼ 10000 species), and lines depict the theoretical equation (9). (a) Bðp; kÞ41 Indicating that it is

always better to choose two reserves to maximize biodiversity. (b) When k4kc � 0:947, choosing one or two reserves will depend on p: for low to

moderate values of p, Bðp; kÞo1 indicating that the best option is now choosing only one reserve. Note also that for values of k below kt � 0:862, two
identical reserves (p ¼ 0:5) gives the maximum biodiversity for all k, but beyond this threshold, p ¼ 0:5 changes from a maximum to a minimum of

biodiversity. This situation can be easily understood by looking at Fig. 3; z ¼ 0:3.
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Fig. 2. The isocline Bðp; kÞ ¼ 1 in the space p� k separates the regions

where the optimal choice in order to maximize biodiversity is either one

reserve or two reserves.
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We are interested in maximizing biodiversity. Therefore,
we need to maximize the following function (Higgs and
Usher, 1980):

F ðp; s; nÞ ¼ s1 þ s2 � hqi ¼ s1 þ s2 �
s1s2

n
. (7)

Taking into account the species–area relationship (1, 2, 3),
biodiversity is given by

F ðp; s; nÞ ¼ s½pz þ ð1� pÞz� �
s2

n
pzð1� pÞz. (8)

Let us define the ratio k ¼ s=n, where once more s is the
number of species supported by a single reserve of total
area A (1), and n is the regional species pool. k is thus a
local-to-regional species richness ratio; small k-values
indicate rich continents, diverse taxons, and/or a small
protected area. If we now divide Eq. (8) by s, we can define
an index of relative biodiversity Bðp; kÞ:

Bðp; kÞ �
F ðp; kÞ

s
¼ pz þ ð1� pÞz � kpz

ð1� pÞz, (9)

The solution Bðp; kÞ ¼ 1 defines a critical line in such a
way that for Bðp; kÞ41, having two small reserves
maximizes biodiversity, whereas if Bðp; kÞo1, having only
one reserve is the best option. Note that, as long as the
species pool n is larger than s, 0ok ¼ s=np1 so as a fact of
symmetry, we only have to consider the situation 0:5ppp1.

The behavior of Bðp; kÞ for several values of k is plotted
in Fig. 1. Hereafter we assume without lack of generality
z ¼ 0:3. Note that for values of k between 0:1 and 0:9
(Fig. 1a), the relative biodiversity Bðp; kÞ is always larger
than 1. This means that regardless of the reserve size
distribution p, it is always better to have two small reserves
than a big one.

Above some critical value kc ¼ 0:94655 . . ., choosing one
or two reserves depends strongly on the size distribution p
(see Fig. 1b). For low p-values, one reserve is better
ðBðp; kÞo1Þ, but after a large enough p-value, two reserves
maximize biodiversity as before ðBðp; kÞ41Þ. kc can be
derived easily by solving Bðp; kÞjp¼1=2 ¼ 1.
The above results are summarized in Fig. 2, where the

isocline Bðp; kÞ ¼ 1 is plotted in the space p� k. Points
ðp; kÞ below the critical line indicate situations in which two
reserves maximize biodiversity.

k does not only determine whether one or two reserves
maximize biodiversity through the critical kc value
explored above. Within the domain of two reserves, there
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is another critical k value (kt) that determines the optimum
size allocation between the two reserves. Note in Fig. 1a
that for every value of kp0:8, relative biodiversity reaches
its maximum when p ¼ 0:5, that is, for two reserves of the
same size. However, for kX0:91, p ¼ 0:5 still represents an
extrema of the biodiversity index, but has changed from
maximum to minimum (Fig. 1b). The maximum relative
biodiversity is now associated to higher values of p. All
these conclusions can be derived in detail from the extrema
analysis of Bðp; kÞ. In order to find directional extrema
ðp; kÞ� of Bðp; kÞ, we fix k. This converts Bðp; kÞ into a
parametric function of k, say Bk. We then solve:

qBkðpÞ

qp
¼ 0. (10)

A first solution of this equation is p ¼ 0:5 8k. Now we
tackle the second derivative, which gives information both
on the function’s convexity and on the nature of the
extrema. Now we can evaluate for which value of k ¼ kt,
the size allocation p ¼ 0:5 changes from maximum to
minimum. That is

q2Bk

qp2

����
p¼1=2

¼ 0. (11)

The solution to this equation is

kt ¼ ð1� zÞ2z, (12)

that in our case (z ¼ 0:3) is kt ’ 0:862. This is the threshold
that distinguishes the domain where p ¼ 0:5 represents
either a maximum or a minimum of biodiversity. In Fig. 3
we represent the extrema ðp; kÞ� of Bðp; kÞ. We can clearly
observe the extrema bifurcation: under kt, p ¼ 0:5 (two
k
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Fig. 3. Extrema ðk; pÞ of the relative biodiversity function Bðp; kÞ. Note

that at the threshold kt � 0:862 an extrema bifurcation takes place. Below

this threshold, p ¼ 0:5 is a maximum of Bðp; kÞ. Above it, p ¼ 0:5 converts

into a minimum of Bðp; kÞ, and a new maximum of Bðp; kÞ appears for

p40:5. This maximum strongly depends on p.
reserves of the same size) maximizes the function. This
extrema turns into a minimum above kt, and a new
maximum appears with p40:5 (favoring an asymmetric
distribution of reserves).
3. Generalization to r reserves

The problem can be generalized from two reserves to a
generic number r. The argument is as follows:
First, suppose again that we can determine the area

distribution of the reserves, so that the area of the ith
reserve will be Ai ¼ piA (with A ¼

Pm
i¼1piA). Then, for

each reserve i, we have

si ¼ cAzpz
i ¼ spz

i , (13)

where again, s ¼ cAz.
If we have only one reserve, the function that we

should maximize will be, trivially, the constant function
F1 ¼ s1. We have just seen that in the case of two reserves,
we could divide the pool in two urns, one with s1 species
and the other one with n� s1. This fact leads us to
maximize the function F2 ¼ F ðp; s; nÞ ¼ s1 þ s2 � ðs1s2=nÞ

giving the total number of different species in both
reserves.
In the case of three reserves, we can repeat the process of

dividing the pool in two urns: now the first urn will contain
F2 different species and the other one n� F2. Reasoning as
before, we would obtain a new function F 3 ¼ F 2þ

s3 � ðF 2s3=nÞ. We can generalize for r reserves through
the following recurrence equation:

Fr ¼ Fr�1 þ sr �
Fr�1sr

n
. (14)

It is easy to demonstrate by induction that

Fr ¼ n 1�
Yr

i¼1

1�
si

n

� �( )
. (15)

Using the species–area relationship (1), defining again
k ¼ s=n and dividing it by s, we find a generalized
expression for the relative biodiversity:

Brðfpig; kÞ �
Fr

s
¼

1

k
1�

Yr

i¼1

1� kpz
i

� �( )
. (16)

Thus, the problem now becomes a search of the area
distribution fpig that maximizes Brðfpig; kÞ. This corre-
sponds to minimizing the following function:

GrðfxigÞ ¼
Yr

i¼1

ð1� xz
i Þ, (17)

for i ¼ 1; . . . ; r, where we have defined the variables xi such
that xi ¼ k1=zpi.
We use the Lagrange multipliers method to perform this

task. As long as the logarithmic operator is a mono-
tonically increasing function, the minimum of Gr will
coincide with the minimum of logðGrÞ. Applying this
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transformation:

logGrðfxigÞ ¼
Xr

i¼1

logð1� xz
i Þ, (18)

will be the function to minimize. Note that

Xr

i¼1

xi ¼
Xr

i¼1

k1=zpi ¼ k1=z
Xr

i¼1

pi ¼ k1=z, (19)

so that we can write the Lagrangian associated to (18) as

L ¼
Xr

i¼1

logð1� xz
i Þ � l

Xr

i¼1

xi � k1=z

" #
. (20)

Solving the system and undoing the changes to xi we get

l ¼
pz�1
1

kpz
1 � 1

¼ � � � ¼
pz�1

i

kpz
i � 1

¼ � � � ¼
pz�1

r

kpz
r � 1

. (21)

A trivial solution is the uniform distribution:

p1 ¼ � � � ¼ pi ¼ � � � ¼ pr ¼
1

r
. (22)

A second solution is

p1 ¼ p,

pi ¼
1� p

r� 1
; i ¼ 2; . . . ; r. ð23Þ

Note that when r ¼ 2 we get our previous results. In fact,
if we fix r ¼ 2 in (21), we get Eq. (10) as expected (the
solution of Lagrange multipliers gives us the extrema).

Again, if we set r42, we have that the uniform
distribution (22) acts as a maximum until a critical value
kt is reached, from which it acts as a minimum, letting
distribution (23) act as the maximum.

From now on we will focus on the uniform case, where
(22) maximizes biodiversity. Starting from Eq. (16) and
assuming a uniform distribution (22) of reserve sizes, the
relative biodiversity will be

Brðp; kÞ ¼
1

k
1� 1�

k

rz

� �r	 

. (24)

As in the case of r ¼ 2, we have to check that this
distribution maximizes biodiversity until some threshold kt

(that is, that this distribution, being an extrema of Brðp; kÞ,
changes from maximum to minimum). For this, we have to
solve Hr ¼ ðhijÞr�r, the Hessian of Brðp; kÞ, fixing k and
assuming p ¼ 1=r. Thus, the diagonal terms of the Hessian
will be

hii ¼
zðz� 1Þ

rz�2
1�

1

rz

� �r�1

� a, (25)

and the non-diagonal terms

hij ¼
�z2k

r2z�2
1�

1

rz

� �r�2

� b. (26)

Note that when we set r ¼ 2, the conditions under which
p ¼ 1=r represents a maximum of biodiversity are h11o0
and j H2 j40. Solving this set of inequalities, we find
again the expected solution kokt ¼ ð1� zÞ2z.
In the general case r42, we proceed as follows:
The first condition is hiio0, which is satisfied trivially 8r.

The second condition is that the determinant of the
Hessian changes from positive to negative at some value
kt. That is, we need to find kt that satisfies jHrj ¼ 0. To
solve the determinant of an r-order matrix is in general a
tough problem. However, due to the fact that the
determinant is an algebraic invariant, we just have to
diagonalize the Hessian, and ask when any eigenvalue
becomes null. As a fact of symmetry, we find that the
Hessian has the following shape:

Hr ¼

a b b � � � b

b a b � � � b

b b a � � � � � �

� � � � � � b a b

b � � � � � � b a

0
BBBBBB@

1
CCCCCCA
,

which is a circulant matrix r� r with r eigenvalues:

l1 ¼ a� b with multiplicity sðl1Þ ¼ r� 1,

l2 ¼ aþ ðj � 1Þb with multiplicity sðl2Þ ¼ 1.

Hence, jHrj ¼ 0 provides two solutions depending on
whether a ¼ b or a ¼ ð1� rÞb.
The first possibility gives us a mathematical solution

with kt41, which has no physical meaning. The second
possibility gives us the relation:

kt ¼
rzðz� 1Þ

zð2� rÞ � 1
, (27)

which is on good agreement with the case r ¼ 2 and is the
general solution of the problem. We can conclude that in
the case of r reserves, the size distribution p ¼ 1=r

maximizes biodiversity as long as the local-to-regional
species richness ratio k is lower than the critical value kt.
Beyond this threshold and as a fact of consistency, the size
distribution that will maximize biodiversity will be the
other extreme found in (23).

4. Relaxing the neutral assumption

Up to here we have assumed neutrality, i.e., that all
species have the same colonization probability. This
allowed analytic tractability. In order to see how robust
previous results are in the face of relaxing neutrality, we
will now present numerical results for the general case with
a more realistic colonization probability distribution.
Finding an analytical expression of the distribution

overlap similar to Eq. (5) is a difficult problem when the
colonization probability distribution is no longer uniform,
but a power law (Eq. (4)). However, we are only interested
in the mean of that distribution, i.e., the mean overlap. We
can assume, for a fixed k, the following ansatz for the mean
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of that distribution:

hqi ¼
s1s2

n
PðgÞ2�g, (28)

where PðgÞ is a polynomial whose coefficients will have to
be estimated through fitting. In Fig. 4 we compare some
numerical results with this ansatz for the case k ¼ 0:9. Note
that the agreement is quite good. We find as the best fitting
for PðgÞ a second order polynomial of the following shape:
PðgÞ � 1:0þ 0:7gþ 0:41g2. Unfortunately, we have not
found a general simple ansatz so that this polynomial
must be fitted for each value of k.

The numerical results shown in Fig. 4 clearly illustrate
that for values of go1, the species-specific colonization
probabilities reduce relative biodiversity by less than 3%.

5. Discussion

We have developed a probabilistic framework to
optimum reserve design. It dictates the optimum size
allocation among a set of r reserves. We have found that a
simple variable k depending on the area allocated to
reserves and the regional species richness is a key
determinant of the best size distribution. For high regional
species richness and low reserve areas, a uniform area
distribution maximizes biodiversity. For low regional
species richness and high reserve areas, the optimum size
allocation consists of allocating a certain area to one
reserve and uniformly distributing the remaining area
among the remaining reserves.

Recent research has linked the species–area relationship
with two other independently derived power laws in
ecology (Southwood et al., 2006), namely species frequency
versus species length, and maximum body size versus area.
Here we add to this work by showing yet another
relationship of the species–area exponent z. Interestingly
enough, the critical value kt separating the two optimum
reserve size allocation is determined by the number of
reserves raised to the power-law exponent of the specie-
s–area relationship (see Eq. (27)). This connection between
identical variables sets up the possibility of extending some
of the current findings in the context of other ecological
laws. For example, the commonly observed value of the
exponent z is related to the underlying lognormal species
abundance distribution (Southwood et al., 2006; Garcı́a
Martı́n and Goldenfeld, 2006), and thus one could explore
how species abundance distributions may affect optimum
reserve design. Exponent z also depends on habitat and
scale (Garcı́a Martı́n and Goldenfeld, 2006), so despite the
spatially implicit assumptions of our model, such details
could be incorporated through z.
Our analytical solutions depend only on the underlying

species–area relationship, which although seems to be a
good descriptor of real distributions if: (i) individuals
cluster in space and (ii) if abundance distribution is similar
to Preston’s lognormal, it is independent on specific details
of these properties (Garcı́a Martı́n and Goldenfeld, 2006).
This suggests that our approach is also independent on
details.
The numerical solutions in the previous section allow us

to relax the neutrality assumption. Our analytic results are
robust for moderate departures from neutrality. This implies
that specific complexities in the colonization rates across
species would probably affect only quantitatively but not
qualitatively our analytic results. This suggest the value of
simple, yet general analytic predictions, which despite their
simplicity can be used to provide general rules of thumb.
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