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a b s t r a c t

We study the spread of susceptible-infected-recovered (SIR) infectious diseases where an individual’s

infectiousness and probability of recovery depend on his/her ‘‘age’’ of infection. We focus first on early

outbreak stages when stochastic effects dominate and show that epidemics tend to happen faster than

deterministic calculations predict. If an outbreak is sufficiently large, stochastic effects are negligible

and we modify the standard ordinary differential equation (ODE) model to accommodate age-of-

infection effects. We avoid the use of partial differential equations which typically appear in related

models. We introduce a ‘‘memoryless’’ ODE system which approximates the true solutions. Finally, we

analyze the transition from the stochastic to the deterministic phase.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Despite many medical advances in recent history, infectious
diseases continue to impact public health. The recent SARS
epidemic, the ongoing pandemic of novel H1N1 (swine) influenza,
and the simmering threat of H5N1 avian influenza or other
diseases call attention to the need to develop simple modeling
tools in preparation for future emerging pandemics. Such a
pandemic could have typical generation interval measured in
days or weeks, spread worldwide, and grow quickly. In the face of
such an emerging disease, there would be little time to develop
and implement interventions.

The ability to predict the timing and maximum patient load
imposed by an epidemic is essential to intervention design.
Overestimating the preparation time available or underestimating
the peak may result in well-designed measures which are
implemented too late or are too small.

The ability of an infectious disease to spread depends strongly
on the proportion of the population that is susceptible S=N. We
will find that the details of the spread are more sensitive to
changes in N=S than changes in S=N (as S decreases, a small
change in S=N may correspond to a large change in N=S), and so
we couch most of our discussion in terms of changes in N=S.
ll rights reserved.
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Fig. 1 shows the course of an epidemic of an infectious disease
whose characteristics are discussed later (Section 3.2.2 with
c ¼ 0:9). At very early times the disease spreads as a branching
process and stochastic effects are important. As the outbreak
grows, the spread continues as a branching process, but stochastic
effects lose importance. However, the epidemic timing always
feels the initial stochastic impact. Eventually the proportion of the
population still susceptible decreases and the epidemic dies out.

We also consider iðt; tÞ, the number of people infected at time t

who have been infected for t units of time (their ’infection-age’).
We plot the cumulative infection-age distribution in Fig. 1 at small
t (center) and larger t (right). At small t the distributions are
noisy, and converge to a steady-state distribution as t increases.
As spread continues, N=S begins to change perceptibly and the
steady-state adjusts quasistatically if N=S changes slowly enough.
If N=S does not change slowly, the system cannot adjust to the
changing equilibrium. During the growing phase of the epidemic,
the infected individuals are weighted toward more recent
infections, while during the declining phase the infected indivi-
duals have disproportionately older infections.

We focus on several stages in this paper: the early stochastic
phase, the later deterministic phase, and the transition phase
between these two. If S is initially small, then N=S can change
significantly during the stochastic phase. We do not address this
case.

Typically disease outbreaks are either subcritical (meaning
R0o1) for which epidemics have zero probability because an
average infected person infects fewer than one individual, or
supercritical (meaning R041) for which epidemics are possible.

www.elsevier.com/locate/yjtbi
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Fig. 1. The course of an epidemic with vertical logscale (left). The cumulative age-of-infection distribution
R t

0 iðt; t0Þdt0=IðtÞ at different times (center and right).
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We consider only supercritical outbreaks. Early in an outbreak’s
spread, growth is dominated by stochastic effects, and it may die
out stochastically. If it persists, it may grow faster or slower than
‘‘average’’. As long as N=S does not change significantly, the spread
can be modeled using Crump-Mode-Jagers (CMJ) processes
(Crump and Mode, 1968,; 1969; Jagers, 1975; Haccou et al.,
2005). A subcritical CMJ process dies out, while a supercritical
CMJ process either dies out or converges to Ceft where C is a
random value and f depends on the process.

If a supercritical outbreak becomes sufficiently large the
spread is effectively deterministic. The usual equations for this
phase are the susceptible-infected-recovered (SIR) equations

_S ¼ �bIS=N ð1Þ

_I ¼ bIS=N � gI ð2Þ

_R ¼ gI ð3Þ

These equations assume that infected people cause infections at
rate b and recover at rate g, giving an exponentially distributed
infection duration. The process is ‘‘memoryless’’. In contrast, for
real diseases the ‘‘age’’ of an individual’s infection affects his/her
infectiousness and probability of recovering.

Ignoring ‘‘age-of-infection’’ effects loses important details.
During the growth of an epidemic the infections are biased
toward young infection ages. If young infections are more (or less)
infectious, the SIR equations under- (or over-) estimate the growth
rate. Similar observations hold during decay.

Several approaches have been developed to study age-of-
infection models. Some explicitly track the history of the epidemic
(Breban et al., 2005; Hethcote and van den Driessche, 2000;
Brauer, 2005, 2008; Li and Brauer, 2008; Castillo-Chavez et al.,
1989; Thieme and Castillo-Chavez, 1993). Others maintain the
memoryless feature of Eqs. (1)–(3) by introducing a chain of
infected compartments I1; . . . ; In in order to approximate the
infectious period distribution (Anderson and Watson, 1980;
Wearing et al., 2005; Ma and Earn, 2006; Gunther et al., 2008;
Lloyd, 2001a, b). These chains of compartments usually do not
have biological meaning, but instead are a simplifying ‘‘trick’’.
Typically these assume constant b and that each of n infected
classes recovers at rate gn, resulting in gamma-distributed
infectious periods with constant infectiousness.

In this paper we investigate the growth of an outbreak from a
single infection to a full-scale epidemic, without the restrictive
assumptions underlying Eqs. (1)–(3). In Section 2, we show how to
model the early stochastic phase and give comparison with
deterministic predictions. In Section 3 we show how to find
deterministic equations governing the epidemic’s growth. We
take a different approach from most previous studies and arrive at
a system similar to the standard Eqs. (1)–(3) rather than a partial
differential equation. If the change in N=S is not large during a
typical infectious period, we can approximate the infectious
population as being in equilibrium given N=S and arrive at a
memoryless system that captures the dynamics well. In Section 4
we examine what it means for the outbreak to be large enough to
be effectively deterministic.
2. Stochastic phase

We assume that the disease spreads from individual to
individual in such a way that the ability of individual u to infect
a susceptible individual depends only on how long u has been
infected and whether or not u has recovered. We let PðtÞ be the
probability u is still infected t units of time after becoming
infected. If u is still infected, the rate u causes new infections is
bðtÞS=N. This enforces a possibly unrealistic assumption that
infectiousness is independent of total infection duration. It would
be straightforward to modify the model to incorporate this effect,
but we do not do it here.

We have Pð0Þ ¼ 1 and—assuming no one remains infectious
forever—Pð1Þ ¼ 0. We assume P is differentiable. The probability
of recovering in a short interval ðt; tþDtÞ is �P0ðtÞDtþOðDt2Þ,
and so as Dt-0, we may assume the probability approaches
�P0ðtÞDt. We let PrecðtÞ be the probability density function (pdf)
for recovery: PrecðtÞ ¼ �P0ðtÞZ0.

2.1. The equations

We have full derivations of the equations in Appendix A. If pkðtÞ

is the probability that k individuals are infected at time t, then
the probability generating function (pgf) f ðx; tÞ ¼

P1
k¼0 pkðtÞx

k

provides a useful tool to help calculate pk. We get

f ðx; tÞ ¼ xPðtÞgðx; tjtÞ þ

Z t

0
gðx; tjtÞPrecðtÞdt ð4Þ

Here gðx; tjtÞ ¼
P

qkðtjtÞxk is the pgf for the number of descen-
dants an individual has t units of time after its infection given that
it recovers trt units of time after infection. That is qkðtjtÞ is the
probability an individual has k infectious descendants t units of
time after becoming infected given that it recovers after trt units
of time.

We find (for trt)

gðx; tjtÞ ¼ exp

Z t

0
½f ðx; t � yÞ � 1�bðyÞdy

� �
ð5Þ

To find equations for pkðtÞ we take the k-th derivative of f, divide
by k!, and evaluate at x ¼ 0. We solve the equations as described in
Appendix B.

We compare the solutions with 50 000 simulations in Fig. 2.
We take the pdf of the infection duration to be a Weibull
distribution, Wð5:8; 2:59Þ, so PðtÞ ¼ e�ðt=5:8Þ2:59

. We take constant
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Fig. 2. The probability of having 0, 5, or 20 people infected as functions of time beginning with a single index case: comparison of theory (dashed) and 50 000 simulations

for Weibull distributed infectious durations W(5.8,2.59) with greek symbol beta ¼ 2.

Fig. 3. A comparison of the deterministically predicted time at which 1000

individuals are infected (vertical dashed lines) with the actual probabilities of

having 1000 individuals infected at each time given different numbers of initial

infections using an exponentially distributed infection duration with g ¼ 1 and

constant infectiousness with b ¼ 1.5.
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b ¼ 2. Although there is considerable noise in simulations, we find
close match with analytic results.

2.2. Asymptotic behavior at large I

If Sð0Þ is large, then N=S may still be approximately constant
even as I becomes much larger than 1. We are interested in the
behavior of I as it becomes large, but before N=S has changed
significantly. If we assume N=S ¼ 1 remains fixed, then under
weak assumptions it can be shown (Feller, 1941; Crump and
Mode, 1968, 1969) that IðtÞ either becomes zero at some finite time
or it converges to C eft where C is a random number determined
by stochastic effects and f solves

1 ¼

Z 1
0

e�ftbðtÞPðtÞdt

This equation is the Euler–Lotka (EL) equation, which we derive in
Section 3. The solution f is unique and known as the Malthusian

parameter. The most significant assumption we require for
convergence is that the infection is not a ‘‘lattice’’ process, that
is, possible times of infection are not discretized so I can change
continuously.1 This result guarantees that if the susceptible
population is sufficiently large, the outbreak either dies out or
grows and becomes effectively deterministic.

We have shown that Eqs. (4) and (5) accurately predict the
probability of having a given number of infections as a function of
time. Once the outbreak is sufficiently large, the impact of
stochastic effects is reduced and the infected population size
scales like C eft for fixed f. The random value of C determines how
much time is available to prepare for the epidemic.

2.3. Distribution of epidemic onset times

We use a simpler disease process to investigate the impact
of the stochastic phase on how quickly an epidemic ‘‘takes off’’.
We consider a population with constant infectiousness and
exponentially distributed infection durations (corresponding to a
constant recovery rate). We compare predictions of Eqs. (4) and
(5) with predictions from the deterministic Eqs. (1)–(3) which are
exactly valid precisely for this infection process. We take b ¼ 1:5
and g ¼ 1.

Fig. 3 shows that if the initial number of infections is low, it is
relatively likely that the number infected becomes large before
the deterministic equations predict it should. This has a number of
implications for interpreting early stages of an outbreak. If we
attempt to predict the present size of an outbreak given a known
introduction date using the assumption of deterministic growth,
1 For lattice processes, similar results apply with discrete rather than

continuous time.
we are likely to underpredict the current size. Consequently if
we make preparations to introduce interventions under the
assumption of deterministic growth, we may be using
interventions that are too small and implemented too late.

The mismatch decreases as the initial number of infections
increase. We explain this observation by noting that different
outbreaks with only a few infections grow on average at the
deterministically predicted rate. However, those at the lower
range of growth often go extinct, while those at the higher range
tend to become epidemics quickly. This leads to the important
conclusion that if an epidemic happens, it is likely to happen
faster than the deterministic equations predict.

Although we have been considering the distribution of times
given outbreak size, we could also consider the distribution of
sizes given time. The first is relevant to situations in which we
have an intervention which we plan to implement if the outbreak
reaches a given size, and so we want to know how long it may be
until we implement it. The second is relevant to situations in
which we will be able to implement an intervention at a given
time, and we want to know how large the outbreak may be.

We can make some analytic progress on calculating the
expected size of epidemics at sufficiently large times that the
non-epidemic outbreaks have died out. In general the expected
size of epidemics will be the expected size of all outbreaks divided
by the probability of an epidemic. We demonstrate this calcula-
tion under the assumption infectiousness is constant and equal to
b and infection duration is exponentially distributed with
parameter g. Assuming a single index case, during the exponen-
tially growing phase the expected size of outbreaks is

E½IðtÞ� ¼ eðb�gÞt

If we set Y to be the probability an epidemic happens given a
single index case and restrict our attention to those outbreaks
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which will become epidemics we get

E½IðtÞjepidemic� ¼
g

b� g
b
g eðb�gÞt � e�ðb�gÞt
� �

�
b

b� g eðb�gÞt � E½IðtÞ�=Y

because epidemics occur with probability Y ¼ ðb� gÞ=b. Thus
epidemics are shifted forward in time by an average of d units of
time where efd ¼ 1=Y.

If the disease does not have exponentially distributed infection
durations or constant infectiousness, then these calculations will
be modified, but the time shift will be the same.
3. Deterministic phase

In this section we develop the deterministic equations
governing epidemics once stochastic effects are unimportant.
Our exact equations are equivalent to many previous age-of-
infection models (Breban et al., 2005; Hethcote and van den
Driessche, 2000; Brauer, 2005, 2008; Li and Brauer, 2008; Castillo-
Chavez et al., 1989; Thieme and Castillo-Chavez, 1993), but we
avoid the usual use of PDEs. A related approach also avoiding PDEs
was used by Brauer (2005), but we cast our equations in a form
similar to the standard SIR equations (1)–(3). We then introduce
an approximation to these equations. We discuss the transition
from the stochastic phase to the deterministic phase in Section 4.

In the stochastic phase analysis, we assumed that infectious-
ness is independent of the recovery time (except that after
recovery infectiousness is zero). We can drop this assumption
here without any additional complications and redefine bðtÞ as the
average rate of infection t units of time after infection for those
individuals still infected. The product bðtÞPðtÞ represents the
expected rate of new infections (of which a fraction S/N are
successful) caused by an individual u infected t units of time
previously, where the expectation is taken without prior knowl-
edge of whether u has recovered. We normalize this by R0 ¼R1

0 bðtÞPðtÞdt to arrive at the generation interval distribution
bðtÞPðtÞ=R0 (Svensson, 2007; Wallinga and Lipsitch, 2007).

Let bðtÞ denote the rate of new infections occurring at time t

and dðtÞ the rate of recoveries. Let iðt; tÞ denote the number
of people who became infected at time t � t and are still
infected at time t. Then iðt; tÞ ¼ bðt � tÞPðtÞ. We can find b in
terms of i by bðtÞ ¼

R1
0 iðt; tÞðS=NÞbðtÞdt and d in terms of b by

dðtÞ ¼
R1

0 bðt � tÞPrecðtÞdt.
We look for a solution of the form bðtÞ ¼ C exðtÞ. We have

C exðtÞ ¼

Z 1
0

C exðt�tÞ
SðtÞ

N
bðtÞPðtÞdt

Rearrangement gives

exðtÞ
N

SðtÞ
¼F½x; t�

where we define F½x; t� ¼
R1

0 exðt�tÞbðtÞPðtÞdt.
We derive equations for I and S in terms of x as follows:

the derivative of S is �bðtÞ ¼ �C exðtÞ. We multiply by 1 ¼
I=
R1

0 iðt; tÞdt, using iðt; tÞ ¼ bðt � tÞPðtÞ ¼ C exðt�tÞPðtÞ to get

_S ¼ �
IexðtÞ

G½x; t�
¼ �

F½x; t�
G½x; t�

IS

N

where G½x; t� ¼
R1

0 exðt�tÞPðtÞdt. Repeating this for _I ¼ bðtÞ � dðtÞ

we get

_I ¼
I

G½x; t�
�
H½x; t�
G½x; t�

I ¼
F½x; t�
G½x; t�

IS

N
�
H½x; t�
G½x; t�

I

where H½x; t� ¼
R1

0 exðt�tÞPrecðtÞdt. This can be written in a
similar form to the standard SIR equations, except that the
coefficients change in time and depend on the history of the
epidemic

_S ¼ �b̂ðtÞ
IS

N
ð6Þ

_I ¼ b̂ðtÞ
IS

N
� ĝðtÞI ð7Þ

_R ¼ ĝðtÞI ð8Þ

F½x; t� ¼
N

S
exðtÞ ð9Þ

where b̂ðtÞ ¼F½x; t�=G½x; t� and ĝðtÞ ¼H½x; t�=G½x; t�. Because of
the similarity in notation, we distinguish b̂ðtÞ to be the average
rate of causing infection of all individuals infected at time t, while
bðtÞ is the average rate of causing infection by an individual still
infected t units of time after becoming infected. To initialize the
problem we need xðtÞ for all to0 as well as Sð0Þ and Ið0Þ. Typically
we will assume that xðtÞ ¼ �1 for to0 so that exðtÞ ¼ 0. As we
solve forward, new values of x are calculated based on the change
in S. The history of xðt � tÞ for t40 encodes all information
needed about the age-of-infection distribution at t. A less
intuitive, but simpler formulation of these equations appears in
Appendix C.

Note that if b is constant, then the ratio b̂ ¼F=G is constant
and equal to b. Similarly, if infection durations are exponentially
distributed with parameter g, then ĝ ¼H=G is also constant and
equal to g.

3.1. Approximating the solution

Storing the history of an outbreak introduces some mild
analytical and computational difficulties. It is convenient to work
with a system that depends only on its current state.

If N=S is constant the age-of-infection distribution converges to
a steady-state where iðt; tÞ=IðtÞ is independent of t. The infected
population size grows or decays exponentially, so bðtÞ ¼ C etf

where f solves the modified EL equation

C etf ¼

Z 1
0

C eðt�tÞf
S

N
bðtÞPðtÞdt

)
N

S
¼

Z 1
0

e�tfbðtÞPðtÞdt

This has been used at early times (Wallinga and Lipsitch, 2007)
when N=S � 1 to relate the exponential growth in time f with R0.

Of course N=S is not constant, but if it varies slowly relative to
how quickly x changes, we can assume that the system responds
quasistatically to changes in N=S and so the age-of-infection
distribution is at equilibrium with the current value of N=S.
This assumption will allow us to create equations analogous to
Eqs. (1)–(3) with changing coefficients, which may be solved by
standard ODE methods. This approach will break down if N=S

changes significantly during a typical infectious period. Fortu-
nately, we can use the results of the approximation to identify
when the approximation fails.

We replace xðt � tÞ by xðtÞ �
R t

0 fðt � yÞdy where fðtÞ ¼ x0ðtÞ
and approximate F=ex, G=ex, and H=ex by FðfÞ, GðfÞ, and HðfÞ
respectively assuming that fðt � tÞ � fðtÞ for the range of t which
make a significant contribution to the integral

FðfÞ ¼
Z 1

0
e�tfðtÞbðtÞPðtÞdt

GðfÞ ¼
Z 1

0
e�tfðtÞPðtÞdt
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HðfÞ ¼
Z 1

0
e�tfðtÞPrecðtÞdt

Note that each of these is a Laplace transform. The resulting
approximating equations are

_S ¼ �b̂0ðtÞ
IS

N
ð10Þ

_I ¼ b̂0ðtÞ
IS

N
� ĝ0ðtÞI ð11Þ

_R ¼ ĝ0ðtÞI ð12Þ

FðfÞ ¼
N

SðtÞ
ð13Þ

where b̂0ðtÞ ¼ FðfÞ=GðfÞ and ĝ0ðtÞ ¼ HðfÞ=GðfÞ.
Computationally this system of equations is only mildly more

difficult than the standard SIR equations. We can either find the
functional forms of the Laplace transforms, or simply calculate
them for various f in advance. Once that is done, then at each
time step, we need only look at N=S, identify f such that
FðfÞ ¼ N=S, and then find G and H. Then the integration proceeds
as in the standard SIR equations.

The approximation is valid as long as the amount of change of
N=S during a typical infectious period is small, and is therefore
valid well into the nonlinear regime after the exponential growth
phase has ended.

3.2. Examples

3.2.1. The usual suspects

If we make the usual assumptions of constant infectiousness
and exponentially distributed recovery time (b constant and
Fig. 4. Comparison of simulations with exact age-of-infection model and approximation

The temporal shift of the exact and approximate solutions is a result of difference in in

while the approximate solution assumes that xðtÞ ¼ tfð0Þ for to0. The temporal shift

deterministic.

Fig. 5. The standard SIR equations cannot closely capture the dynamics of the disease s

average generation interval.
PrecðtÞ ¼ g e�gt) the system is memoryless. The function x encodes
the age-of-infection distribution, which is irrelevant in a memory-
less system. Thus the equations for I and S should not depend on x.
We find F½x; t� ¼ bG½x; t�, and so _S ¼ �bIS=N. We similarly find
H½x; t�=G½x; t� ¼ g and so _I ¼ bIS=N � gI. So in this special case the
exact age-of-infection model (6)–(9) reduces to the standard SIR
equations (1)–(3). This holds even for our approximate system
(10)–(13).

3.2.2. A piecewise continuous example

We take

bðtÞ ¼
c 0rtr1 or 2rtr3

0 otherwise

�
ð14Þ

PrecðtÞ ¼
1=2 1rtr3

0 otherwise

�
ð15Þ

So people are initially infectious, then stop being infectious at
t ¼ 1 and begin to recover. At t ¼ 2, they continue recovering, but
become infectious once more. By t ¼ 3 all individuals have
recovered. Such a system could model a disease in which
individuals are infectious before and possibly after having
symptoms, but self-isolate during the symptomatic phase. The
generation interval distribution is given by

bðtÞPðtÞ
R0

¼

4=5 0rtr1

2ð3� tÞ
5

2rtr3

0 otherwise

8>><
>>: ð16Þ

In Fig. 4 we find that the exact model (6)–(9) fits the
simulations well (with the discrepancy due to stochastic shifts
in time). The difference in timing between the exact and the
for the system of section 3.2.2 with c ¼ 0.85, 1, and 1.5 in a population of size 106.

itial condition. The exact solution takes the initial condition that xðtÞ ¼ 0 for to0

relative to simulations results from the variable time simulations take to become

pread, regardless of whether we preserve the average duration of infection or the
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Fig. 6. For gamma distributed recovery time corresponding to an average duration of 1 with 100 exponentially distributed intermediate phases. Infectiousness is constant

b ¼ 1.5, 2, and 5 in a population of size 106. the exact system differs from simulations only in time shifts. The approximation closely matches the initial growth phase, but

begins deviating close to the peak.
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approximate solution (10)–(13) is due to differences in initial
conditions: the exact calculation assumes a single infection
beginning at t ¼ 0 while the approximate solution assumes that
the epidemic begins with the equilibrium age-distribution already
reached by t ¼ 0. The approximate model is a good fit for the
behavior at early times and remains a good approximation until
the change in N=S becomes significant over the duration of an
infection. The approximation performs best in those situations
where the number of infections remains smaller.

If we attempt to approximate the epidemic course using the
standard SIR model (1)–(3), then we have two free parameters, b
and g. We can identify (at least) three constraints: R0, average
duration of infection, and average generation interval. We can
only match two of these at a time, which we show in Fig. 5. If we
choose to match R0 and average duration of infection then the
total number of infected person-days is correct, but the timing
is far off. If we choose to match R0 and average generation
interval, then the timing is much closer, but the peak patient load
is significantly underestimated.
3.2.3. Gamma-distributed recovery times

Recently Wearing et al. (2005) investigated some of the role
the distribution of infection duration has on the dynamics of an
epidemic. They considered a gamma-distributed infectious period
with constant infectiousness. The model they studied corresponds
to a chain of 100 exponentially distributed infectious classes, each
with infectiousness b and expected duration 1

100. They showed that
the standard SIR equations (1)–(3) provide a poor approximation.

For this system, PrecðtÞ ¼ tn�1 expð�ntÞnn=ðn� 1Þ! where
n ¼ 100. The Laplace transform of this is ð1þ f=nÞ�n. From this
we can derive the transforms of P and bP, which allows us to
define the coefficients for our approximation. Fig. 6 shows that
the approximation closely follows the early growth even after the
exponential phase ends. It finally deviates close to the epidemic
peak, but it gives a reasonable estimate of the timing and
maximum load of the epidemic.
3.3. Comment

The approximation we have developed takes into account
details about the distribution of generation interval and infection
duration, and has nonconstant coefficients. We might alternately
try to use a chain progression model where infected individuals
travel through a sequence of infectious compartments in such a
way that each compartment has its own (fixed) infection and
recovery rates. This gives a system of constant coefficient
equations.
We saw above that using a single infectious compartment does
not give a good fit to the true dynamics. At first glance, with
careful choice of the recovery and infection rates for two
infectious compartments, we could match R0, the average
duration of infection, and two moments of the generation interval
distribution. However, such an approach sometimes fails to give
non-negative (or even real) coefficients, resulting in a system of
equations whose physical interpretation is difficult or impossible.
4. Transition phase

We have shown that stochastic effects play an important role
on whether an epidemic occurs and the timing of an epidemic
if it does occur. We have also seen that once the epidemic is
sufficiently large, it follows the deterministic predictions. We
borrow an approach from Gillespie (2000) to identify when the
transition from the stochastic phase to the deterministic phase
occurs. For simplicity in our analysis, we will assume that the
generation interval distribution is not highly peaked. This allows
us to assume that iðt; tÞ=IðtÞ is close to its equilibrium state.

In order to treat the dynamics as deterministic over a time

interval Dt, we must satisfy two competing conditions. First, we
need the time interval to be large enough that the number of
infections and recoveries that happen in that interval is well
approximated by the expected number. That is, we need the
expected error to be small compared to the expected value, and so
the coefficient of variation (the square root of the variance divided
by the expectation) is small. Assuming that the rates remain
constant, the infection and recovery processes are both Poisson, and
so their difference is a Skellam distribution, which has variance

IDtðb̂ þ ĝÞ (Skellam, 1946; Johnson et al., 2005). Consequently the

condition we need is that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IDtðb̂ þ ĝÞ

q
=IDtjb̂ � ĝj51. So

Dtb
b̂ þ ĝ

Iðb̂ � ĝÞ2
ð17Þ

Second, we need the time interval to be small enough that the rate
at which the infectious population size changes is not affected by
changes in the infectious population. That is we need

DI � ðb� gÞIDt5I. So

Dt5
1

jb̂ � ĝj
ð18Þ

For small values of I, conditions (17) and (18) cannot be satisfied
simultaneously.
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Combining these conditions we need that

Id
b̂ þ ĝ
jb̂ � ĝj

More strictly, we actually require that
ffiffi
I
p

dðb̂ þ ĝÞ=jb̂ � ĝj.
The analysis we have done does not apply close to the peak of

the epidemic (where b̂ ¼ ĝ). Here we can replace condition (17)
with the requirement that the error in the number of new
infections is small compared to the number of new infections and
similarly for the number of recoveries. In general we need
condition (18) combined with either this pair of conditions or
condition (17) to guarantee that the deterministic equations
apply. For practical purposes, once the deterministic equations
hold, we expect them to hold through the peak until I decays at
which point we can use Eq. (17) again.

If the generation interval distribution were highly peaked
around some typical time, then we could still argue that the
system is deterministic, but we would have to explicitly set the
history of x rather than assuming that it takes the equilibrium
form. By assuming the equilibrium distribution we can treat
infections as occurring at a slowly changing rate.
5. Discussion

A typical disease outbreak begins small and whether it grows
or becomes extinct is strongly influenced by stochastic effects. If it
grows, it generally does so faster than predicted deterministically
because those outbreaks which are most likely to not die out
stochastically are those which initially grow faster than average.
Consequently if we observe an epidemic, it is likely to have grown
to an epidemic faster than deterministic equations predict.

Once an outbreak becomes large, it transitions to a determi-
nistic phase. We can estimate the size an outbreak must reach to
be deterministic by identifying a time interval which is large
enough that many events happen in the interval (and so the error
of a deterministic prediction is small compared to the prediction),
while at the same time the interval is small enough that the size of
I and S does not change significantly. Such a time interval can only
exist if I is sufficiently large.

Once an outbreak is deterministic, we can use the deterministic
equations to accurately model the spread once a correcting time
shift is applied. These equations are somewhat difficult because
they require saving the history of an epidemic, and so it may
be more convenient to use approximate models. We have
introduced an approximate model of the same form as the standard
SIR equations. We assume that the system responds quasistatically
to changes in the susceptible fraction. It uses a single infectious
class, but has coefficients that change in time. It provides a good
estimate of the early behavior, but may deviate close to the peak.
We can estimate when it deviates by looking at how quickly the
susceptible fraction changes during a typical infectious period.

We have assumed throughout that the infectious population
can be modeled in continuous time. If the generation interval
is discrete, then these assumptions fail, but similar approaches
work in discrete time. A more complicated situation arises when
the generation interval distribution is close to discrete: if the
distribution is tightly peaked about a mean which is sufficiently
far from zero, then it may take many generations for the infectious
population to reach equilibrium. The dynamics may become
deterministic before the age distribution of the infected popula-
tion reaches equilibrium, in which case our exact equations will
provide a good model (assuming appropriate initial conditions)
while our approximation may fail badly.
The models we have developed are straightforward to adapt to
SIR with birth or death, SIS, or SIRS. In fact, such situations may be
more amenable to our approximating method because the rate of
change of N=S is reduced.
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Appendix A. Probability generating functions

A probability generating function (pgf) is a function f ðxÞ which
encodes a probability distribution of non-negative integers
(Herbert, 2005). Given that the probability of k is pk we define
the function

f ðxÞ ¼ p0 þ p1x1 þ p2x2 þ � � �

Probability generating functions have a number of useful properties.
The product of two pgfs is itself a pgf for the sum of two numbers
chosen independently from each distribution. From this fact, it can
be shown that for two pgfs f and g encoding the distributions Pg and
Pf respectively, the function f ðgðxÞÞ is the pgf for the distribution
found by choosing a random number s from Pf , and then taking the
sum of s independent random numbers from Pg .

This property of function composition is useful in our context
to deal with taking a random number of infected (corresponding
to Pf ), and each of them infects a random number of susceptibles
(from a distribution Pg). The resulting number of new infections is
given by the composition of the corresponding pgfs.

A.1. Derivation of equations

We assume that the population is sufficiently large relative to
the number of infections, that no infections are prevented by the
depletion of susceptibles. We focus our attention on a single
infected individual u and its descendants. We can assume that
t ¼ 0 when u becomes infected. Let f ðx; tÞ be the time-dependent
pgf for the number of individuals (descended from u, including u)
who are infected at t. That is f ðx; tÞ ¼

P1
n¼0 pnðtÞxn where pnðtÞ is

the probability that n individuals are infected at time t.
Let gðx; tjtÞ be the pgf for the number of infectious descendants

u has t units of time after becoming infected given that its
infection lasts t units of time. Note that if t4t, then
gðx; tjtÞ ¼ gðx; tjtÞ. Then the number of current infections is given
by a weighted average of the number of descendants (plus 1 if u is
still infectious). Encoding this as a statement for pgfs gives

f ðx; tÞ ¼ xPðtÞgðx; tjtÞ þ

Z t

0
gðx; tjtÞPrecðtÞdt

The number of infections resulting from an individual v infected
at time y has pgf f ðx; t � yÞ. This allows us to express g in terms
of f.

To find g, we consider an individual who recovers at time t and
divide the duration of infectiousness into small Dy sized blocks.
The pgf for the number of infections at time t due to an infection
that occurs in the interval ½y; yþ DyÞ is f ðx; t � yÞ þOðDyÞ.
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The infection occurs with probability bðyÞDyþOðDy2
Þ. The

probability that infection does not occur during that time period
is 1� bðyÞDyþOðDy2

Þ. Consequently the pgf for the number of
infections at time t resulting from infections in the time interval of
interest is

1� ½1� f ðx; t � yÞ�bðyÞDyþ OðDy2
Þ

The pgf for the number of infections occurring in any of the time
intervals is the product of the individual generating functions.
Consequently, taking Dy-0, the pgf for the number of descen-
dants an individual has at time t given that it recovers at trt is

gðx; tjtÞ ¼ lim
Dy-0

Yt=Dy
i¼0

ð1� ½1� f ðx; t � iDyÞ�bðiDyÞDyþ OðDy2
ÞÞ

¼ lim
Dy-0

exp
Xt=Dy
i¼0

lnð1þ ½f ðx; t � iDyÞ � 1�bðiDyÞDyþ OðDy2
ÞÞ

 !

¼ lim
Dy-0

exp
Xt=Dy
i¼0

½f ðx; t � iDyÞ � 1�bðiDyÞDyþ OðDy2
Þ

 !

¼ exp

Z t

0
½f ðx; t � yÞ � 1�bðyÞdy

� �

If the individual recovers at time t4t, then the pgf for the number
of descendants at time t including itself satisfies gðx; tjtÞ ¼
xgðx; tjtÞ.

This expression for g can be derived alternately by considering
a large population size N and noting that if the expected number
of infections caused by v is r ¼

R t
0 bðyÞdy, then the probability

of infecting each individual is p ¼
R t

0 bðyÞ=N dy. The probability of

infecting n people is then
N

n

� �
pnð1� pÞN�n. From this we can

derive the pgf for the number of infections caused directly from v,
and then using function composition we arrive at the same
expression.
Appendix B. Notes on the numerics for the stochastic problem

We take f ðx; tÞ ¼
P

pkðtÞx
k and gðx; tjtÞ ¼

P
qkðtjtÞxk where pk

gives the probability of having k people infected at time t, while qk

gives the probability of having k descendants given that recovery
occurs at time t. If we take k derivatives of these equations, divide
by k! and evaluate at x ¼ 0, we get the probability of k infections.
The resulting system of equations is straightforward to solve
numerically. As our initial condition at t ¼ 0 we generally set all
derivatives of f to be 0 except the first derivative, which is 1,
though other options are possible.

If we make a simplifying assumption that b is constant, we can
find an expression for g which reduces the dimensionality of the
problem. We haveZ t

0
½f ðx; t � yÞ � 1�bdy ¼ b �tþ

Z t

0
f ðx; t � yÞdy

�

�

Z t

t
f ðx; t � yÞdy

�

¼ �btþ b
Z t

0
f ðx; yÞdy�

Z t�t

0
f ðx; yÞdy

� �

We define the auxiliary function zðx; sÞ ¼
R s

0 f ðx; yÞdy. Then

gðx; tjtÞ ¼ expb½zðx; tÞ � zðx; t � tÞ � t�

Our equation for f remains

f ðx; tÞ ¼ xPðtÞgðx; tjtÞ þ

Z t

0
gðx; tjtÞPrecðtÞdt
This allows us to simplify the calculations by storing z at each
value of s rather than needing to integrate f at each time step.

In practice we want to find arbitrary derivatives of f evaluated
at x ¼ 0. To find this numerically, we differentiate these equations
with respect to x to arrive at equations coupling derivatives of
f ðx; tÞ with derivatives of z at x ¼ 0. Let us assume we know zð0; sÞ

and its derivatives for s ¼ 0;dt; 2dt; . . . ; t and f ð0; tÞ and its
derivatives. To find zð0; t þ dtÞ and f ð0; t þ dtÞ, it is straightfor-
ward to use an implicit numerical method.
Appendix C. An equivalent formulation

Although Eqs. (6)–(9) are intuitively appealing because of their
similarity to the standard SIR equations, we can reduce them
to a simpler form. We first replace exðtÞ with cðtÞ. Note that
_S ¼ �bðtÞ ¼ �CcðtÞ. Further G ¼ IðtÞ=C, so from the initial condi-
tion at t ¼ 0, we can calculate C, and have no further need for g.
Thus we arrive at

_S ¼ �CcðtÞ ð19Þ

_I ¼ CcðtÞ � C

Z 1
0

cðt � tÞPrecðtÞdt ð20Þ

_R ¼ C

Z 1
0

cðt � tÞPrecðtÞdt ð21Þ

F½c; t� ¼
N

S
cðtÞ ð22Þ

If we take as the initial condition that all infections at time t ¼ 0
begin their infection period at t ¼ 0, then cðt � tÞ ¼ 0 for t4t and
we can assume that the integrals have their upper limit at t ¼ t. If
we take some other initial condition, we may have to include the
entire range of t. Although these equations are simpler to solve,
they lose some of their intuitive appeal because it is more difficult
to identify the meaning of each term.
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