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This is a reply to ‘‘Queller’s rule ok: Comment on van Veelen ‘when inclusive fitness is right and when it

can be wrong’ ’’ by James Marshall in the Journal of Theoretical Biology, in this issue.

In order to circumvent the disagreement about the Price equation and focus on the issue of the predictive

power of inclusive fitness for group selection models, I derive Queller’s and Marshall’s rule without the Price

equation. Both rules however need a translation step in order to be able to link them to the group selection

model in van Veelen (2009). Queller’s rule applies to games with 2 players and 2 strategies, and is general.

Marshall’s rule on the other hand applies only to a small subset of 3-player games. His rule is correct, but for

other, similarly small subsets we would get other rules. This implies that if we want a rule that applies to all

symmetric games with 3 players and 2 strategies, it will have to use a vector of dimension 2 that represents

population structure. More in general: for group selection models with groups of size n, a correct and general

prediction will need to use a vector of dimension n�1 that represents population structure.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There are two points on which Marshall (this issue) and I differ. The
first is that I think that however well the Price equation can serve as a
carrier of good intuition, it just fails to provide a formally sound
method for modelling as well as for statistical inference. This is
described in detail in van Veelen (2005). Marshall disagrees with that.
The second is that I claim that a prediction for a general group
selection model cannot be (1) general, (2) always correct and (3) based
on less than n�1 numbers that characterize population structure,
where n is the group size (van Veelen, 2009). Marshall also disagrees
with that. These two disagreements together constitute a bit of
Gordian knot. When Marshall claims that my Counterexample II (a 3-
player game meant to show that 1 parameter that reflects population
structure is not enough) is not a real counterexample, he uses a Price
equation approach that he borrows from Queller (1985, 1992) in order
to arrive at a rule with 1 parameter only. If one disagrees with
derivations that use the Price equation, then it is hard to be convinced
by a claim that is arrived at with exactly that method. But simply
dismissing his claim on methodological grounds I think would not do
justice to the point he raises. I will therefore focus on the second issue
and try to find a way around the point concerning the Price equation.

What is a bit unfortunate is that Marshall, in his discussion of my
counterexample, remains strictly within Queller’s framework and his
use of variables. I use variables such as fi (the frequency of groups with
i cooperators in it), p (the frequency of the gene in the overall
population) and r, while Marshall uses covariances for which it is not
clear how these should relate to my variables. At first sight they
should even make us wonder if they relate at all. Note that my model
is completely deterministic, which implies that whatever variables
we think of, all their variances and covariances are 0. Yet Marshall’s
formulas contain covariances that are certainly not all meant to be 0.
Below we will see that a link between the two can in fact be
established, but we will need to find a way to properly translate
ll rights reserved.
one into the other. In Sections 3 and 4 we will therefore start with a
very simple assumption about the dynamics (payoff monotonicity)
and show how both Queller’s and Marshall’s rule follow from this
assumption, without the use of the Price equation. Both rules now use
my variables, and the appendix shows how the rules stated in
Queller’s variables can be translated to mine and back.

Once we know how to translate results stated in terms of Queller’s
(1985, 1992) into results that are derived without reference to the
Price equation, we will find that Marshall’s claim concerning my
Counterexample II game is, with a bit of rephrasing, correct. Indeed,
for his choice of a subset of games he derives a rule that has only a
scalar in it that represents the population structure. But his conclusion
misses the point that I should have made more clearly. The point is
that the correct rule is different for different subsets of games. In other
words, if we change the payoffs of the game, then not only do we have
to change the numbers we fill in the rule (which reflect those payoffs),
but we also have to change the rule itself, if we want it to give the
correct prediction.

This disagreement is an instance of a wider debate on the value
of inclusive fitness (see for example Traulsen and Nowak, 2006;
Lehmann et al., 2007; Killingback et al., 2006; Grafen, 2007; Wild
et al., 2009; Wade et al., 2009; Nowak et al., 2010). There is not
much convergence so far, but I think that this exchange can help
improve the communication between the different sides in the
debate. Especially the translation exercise should serve as an
example that hopefully will facilitate the exchange of ideas.
2. What is population structure here, and what is inclusive
fitness?

Although there are perhaps different opinions on what the basic
idea of inclusive fitness is, I think that it is most useful to think of it
as a way to separate two things: on the one hand there is a
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population or interaction structure, and on the other hand there are
the fitness effects on self and others.

In my simple group selection model, groups are all of size n. For
simplicity we assume an infinite population, which implies that the
number of groups is also infinite. Individuals are either cooperators or
defectors,1 which implies that the type of group can uniquely be
described by the number of cooperators in it. A particular composition
of the population therefore is given by n+1 numbers f0,y, fn, which
represent the frequency of groups with 0,y,n cooperators in it. There
are of course restrictions on these numbers; they are frequencies, so
they must lie between 0 and 1 and they have to add up to 1. In
formulas: 0r fir1 for all i, and

Pn
i ¼ 0 fi ¼ 1. The gene frequency p in

the overall population is given by p¼ ð1=nÞ
Pn

i ¼ 0 if i. If indeed
0r fir1 for all i, then the restriction

Pn
i ¼ 0 fi ¼ 1 implies that knowing

only n of those n+1 numbers is enough, because the last one follows
from the restriction. In case the frequency p is also given, knowing only
n�1 of those n+1 numbers is enough for the same reason.

On the other hand we have the fitness effects, which in my paper
are reflected by game payoffs. In the paper I allow those to be
frequency dependent, but for expositional clarity it can help to
assume that they are just fixed numbers. Here I denote these numbers
withpC,i andpD,i, which are the payoffs to a cooperator and a defector,
respectively, if they find themselves in a group which has, in total, i

cooperators in it. Of course pC,0 and pD,n cannot exist—there are no
cooperators in groups with 0 cooperators and no defectors in groups
with n cooperators—sopC,i is defined for i¼1,y, n andpD,i is defined
for i¼0,y, n�1. With group size n this makes 2n numbers.

There is one simple and natural assumption that we make about
the dynamics. We assume that if cooperators on average have a
higher payoff than defectors, then their frequency increases, and if
they on average have a lower payoff than defectors, then their
frequency decreases. This assumption is known as payoff mono-
tonicity, and it is probably the most general and modest assump-
tion one can make. For instance Vega-Redondo (2003, p. 377)
writes that ‘‘payoff monotonicity is usually interpreted as reflecting
the minimal criterion of evolutionary consistency that any reason-
able model of evolution, social or otherwise, should satisfy’’. See
also Hofbauer and Sigmund (1998, Section 8.2, pp. 88–89).

In order to determine the direction of selection we therefore
only look at the average payoff to a cooperator and the average
payoff to a defector, compare them, and require that the dynamics
respect the sign of the difference. This defines payoff monotonic
dynamics and because we will use this property at a few more
instances, it is stated below in a formula.

PAYOFF MONOTONICITY:

_p40 if and only if

Pn
i ¼ 1 i � fi � pC,i

np
4
Pn�1

i ¼ 0ðn�iÞ � fi � pD,i

nð1�pÞ

This is satisfied for instance by the replicator dynamics as a special
case with n¼2 and random matching. Random matching here
means that, for a given frequency p in the overall population,
f0¼(1�p)2, f1¼2p(1�p) and f2¼p2, and a simple calculation
returns that the requirement would reduce to ‘‘ _p40 if and only
if ppC,2þð1�pÞ � pC,14ppD,1þð1�pÞpD,0’’ which is obviously
implied by the replicator dynamics.2
1 In general games with two actions it is not necessarily clear or even well

defined what the cooperative action is and what the defective action is. In the

examples here it is clear, so here I will stick to these terms, but we can read it as an

action C and an action D, where C and D are just labels of two different behaviours or

strategies.
2 Payoff monotonicity does not restrict the direction of the dynamics for p¼0

and p¼1, since the average payoff of cooperators resp. defectors cannot be

computed there. A natural extension would be to require that _p ¼ 0 for p¼0 and

p¼1.
It is however interesting to note that our requirement is more
general in two ways. It allows for groups of any size as well as for
non-random matching. Frequencies fi ¼ ð

n
iÞp

ið1�pÞn�i for n¼0,y,n
constitute an example of groups of any size with random matching.
An example of non-random matching with groups of 2 would be
f0¼(1�p), f1¼0 and f2¼p, which would represent clonal interac-
tion. For groups of any size that would generalize to f0¼(1�p),
f1,y,fn�1¼0 and fn¼p.

A final thing to note here is that if we add a constant a to all payoffs
pC,i and pD,i, then both sides in the condition for payoff monotonicity
increase by a. This implies that if _p40 for payoffs pC,i and pD,i, then
also _p40 for payoffs ~pC,i ¼ pC,iþa and ~pD,i ¼ pD,iþa. We can
therefore normalize the payoffs (for instance such that pD,0 ¼ 0 or
pD,0 ¼ 1), which leaves us with 2n�1 parameters to choose.

Even though most of us will have an intuition for what inclusive
fitness should be, it is not that easy to find, or even make a proper
definition. It is however of crucial importance to have at least a
starting definition, because if we do not delineate what is and what
is not a prediction based on inclusive fitness, then we surely cannot
answer the question whether inclusive fitness (always) gives the
correct prediction. It is therefore also of importance to think, if
inclusive fitness is to be meaningful as a term, what a prediction
would look like if it were not based on inclusive fitness.

I suggest we start by looking at Hamilton’s rule, surely an
example of a rule based on inclusive fitness. Hamilton’s rule
(altruistic behaviour is selected if rb�c40) can be seen as a
prediction based on the comparison of the inclusive fitness of
the altruistic behaviour (rb�c) and the inclusive fitness of not
behaving altruistically (r � 0�0¼ 0). There are a few perhaps all too
obvious observations I would like to make. The first is that the r only
reflects population structure, and that b and c only reflect fitness
effects. The second is that the condition could also be written as
r�c=b40 or r4c=b, which reduces the number of variables
reflecting fitness effects to 1 (only c=b). Also note that this condition
is not frequency dependent; the frequency of the gene does not
feature in the prediction (it actually did in Hamilton’s, 1964a,b first
result, that states that mean inclusive fitness is maximized in the
population, but not in his 1964b second claim, which is that
individuals maximize their inclusive fitness. See Van Veelen (2007)
for the link between the two).

Suppose the set of models we have implies that we can choose
from a set S of population structures on the one hand, and from a set
P of fitness effects on the other. If the condition is to look like
Hamilton’s rule, then the condition can be constructed in two steps;
first we make a number that reflects the population structure
(r : S-R) and then we make a number that reflects fitness effects
(d : P-R). Then we compare these two numbers in order to
determine the direction of selection.

Hamilton’s rule : The trait ðbehaviourÞ is selected if rðsÞ4dðpÞ

I would like to contrast that to what any rule would look like. In the
general form for a rule below, we have a function g : S�P-R.

Any rule : The trait ðbehaviourÞ is selected if gðs,pÞ40

Two things are important to notice here. The first is that these rules
will have to hold for any combination of a sAS and a pAP. The
second is that if S and P are both of dimension n42, then not all
conditions of the form gðs,pÞ40 can be rewritten as rðsÞ4dðpÞ. Just
to give an extremely simple example, suppose that S¼P¼R3.
Then the condition s1p1þs2p2þs3p340 cannot be rewritten in a
form where population structure and fitness effects are separated
by an inequality sign.

Now I think that any meaningful definition of inclusive fitness
would have to be a restriction on the form of the condition in this
prediction. If inclusive fitness is not a restriction, then it is



Letter to Editor / Journal of Theoretical Biology 270 (2011) 189–195 191
meaningless; it would just become a synonym for a condition, or, if
one adds the requirement that it must give the correct prediction,
for a condition that gives the correct prediction. So restrictions on
the functional form are a necessity. There are a few restrictions one
can think of. The first is that inclusive fitness must separate
population structure from fitness effects in two 1-dimensional
numbers, as Hamilton’s rule does.

Restriction 1 : The condition must be equivalent to rðsÞ4dðpÞ:

where r : S-R and d : P-R. This means that if the function g in
the condition gðs,pÞ40 looks like gðs,pÞ ¼ rðsÞ�dðpÞ, then Restric-
tion 1 is satisfied.

It is also important to note that if the correct rule cannot be
rephrased as in Restriction 1 on the whole of S�P, it could be that
there is a subset of Su�Pu� S�P for which one can rephrase the
correct rule as such. One such restriction is that the games must
satisfy generalized equal gains from switching (Theorem 1 in van
Veelen, 2009), but there is a range of possibilities, and we will see
an alternative subset of games below.

Another restriction one could think of is frequency independence.

Restriction 2 : The condition must be frequency independent

In Section 3 we will see that Queller’s rule satisfies neither of these
two restrictions.

Of course I am open to all suggestions for restrictions other than
those that could define what inclusive fitness is. But it is worth
emphasizing that only restrictions on the functional form of the
condition can give the concept of inclusive fitness meaning;
inclusive fitness can only be a meaningful concept if there could
also be rules that are not based on it.
3. Queller’s rule

We begin by comparing the payoff matrices implied by Queller
(1985, p. 366) and Counterexample I in van Veelen (2009, pp. 594–595).

Queller :

Not altruistic Altruistic

Not altruistic W0 W0þB

Altruistic W0�C W0þB�CþD

van Veelen :

D C

D P T

C S R

Because we assume the dynamics to be payoff monotonic, we can
subtract W0 from all payoff entries in Queller without conse-
quences. This implies that the matrix—with lower case letters
replacing capitals—becomes

Queller :

Not altruistic Altruistic

Not altruistic 0 b

Altruistic �c b�cþd

If we assume payoff monotonicity, which assumes that selection
favours the trait with the higher average payoff, then cooperation is
favoured if:

f2 � R � 2þ f1 � S � 1

2p
4

f1 � T � 1þ f0 � P � 2

2ð1�pÞ
ðC1Þ

This is Eq. (3) in van Veelen (2009, p. 594). We can however replace
the payoffs by their Queller counterparts, in order to arrive at

f2 � ðb�cþdÞ � 2þ f1 � �c � 1

2p
4

f1 � b � 1þ f0 � 0 � 2

2ð1�pÞ
:

Singling out the c, the b and the d, this is rewritten as

�
2f2þ f1

2p
cþ

2f2

2p
�

f1

2ð1�pÞ

� �
bþ

2f2

2p
d40:

Now we use p¼ ð2f2þ f1Þ=2, r¼ 2f2=2p�f1=2ð1�pÞ and f2=p

¼PðTjTÞ ¼ rþð1�rÞp (see van Veelen, 2009 and Appendix A) to
arrive at
QUELLER’S CONDITION

�cþrbþðrþð1�rÞpÞd40
In Appendix A we can see that this is exactly what we get if we
translate Queller’s rule, stated in terms of covariances, to the
deterministic dynamics, according to a hypothetical chance experi-
ment. It is also duly noted that with equal gains from switching
(d¼0 or R�S¼T�P) Hamilton’s rule reappears.

Now what do we learn from this derivation without the use of
the Price equation? First of all I would say that it is worth to note
that Queller’s rule follows from an assumption; if payoff mono-
tonicity is not satisfied, Queller’s rule does not follow. Or, more
precisely, in the case of a game with 2 players and 2 strategies,
payoff monotonicity—reflected by C1 for this special case—and
Queller’s rule are actually equivalent, because we could also do the
derivation in reverse.

Given that they are equivalent, I think is a matter of taste which
of the two one would like to use, where Queller’s condition perhaps
looks a bit shorter than C1. However, if we are going to increase the
size of the group, then, as Queller (1985, p. 367) recognised, the
condition will have to be extended. While the generalization of C1
still looks quite manageable (it is just payoff monotonicity;
ð1=npÞ

Pn
i ¼ 1 i � fi � pC,i4 ð1=nð1�pÞÞ

Pn�1
i ¼ 0ðn�iÞ � fi � pD,i), my expec-

tation is that without restrictions on the admissible payoffs or
possible group compositions, there is no straightforward general-
ization of Queller’s condition that looks anywhere attractive. In the
same way as d is added to replace Hamilton’s rule by the more
general Queller’s rule, we would then go on adding ever more
variables, the coefficients of which in the ever more general rule get
ever more complicated. It remains a matter of taste, but the general
version of Queller’s condition will at some point certainly not be
shorter than the general version of C1.

It is also worthwhile to focus on the degrees of freedom in the
choice of a population structure and the choice of a game, here and
further below. With parameters b, c and d, Queller has introduced
maximum generality concerning the payoffs in 2-player games
with 2 actions, if we only consider payoff monotonicity as a
property of dynamical systems. If the average payoff of the one
trait is larger than the average payoff of the other for the matrix
½ 0
�c

b
b�cþd�, then the same holds for ½ a

a�c
aþb

aþb�cþd�. So his rule
accommodates all possible payoff matrices, if we normalize the
payoffs, for instance such that the payoff in the upper left corner of
the payoff matrix is 0.

Finally it is important to realise that if we consider a given
frequency p, then there is a 1-dimensional threshold in the
population structure. For a given game (fixed b,c and d), and a
given frequency p, the condition �cþrbþðrþð1�rÞpÞd40 sepa-
rates all possible values of r in two sets: on the one hand the r’s for
which the condition holds, and for which the trait or behaviour is
selected, and on the other hand the r’s for which the condition does
not hold, and for which the trait is not selected. This is not
surprising, because with n¼2, there is only one degree of freedom
in the choice of f0,f1 and f2. After all, they must satisfy f0+ f1+ f2¼1
and f2þ

1
2 f1 ¼ p. Choosing f1 and f2 is equivalent to choosing p and r

—with r¼ 2f2=2p�f1=2ð1�pÞFso with p given, only r can be
chosen. If p is not given, then Restriction 1 cannot be satisfied,
and the threshold will have to be two dimensional.
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4. Marshall’s rule

The game for which Marshall derives his rule is reproduced
below (the assumption that b¼0 is already incorporated here). As
he notes, my Counterexample II corresponds to c¼1 and d¼2. Note
that the number of parameters for this game is 2, while it is 5 for the
general game, if we normalize the payoffs such that pD,0 ¼ 0.

Marshall :

0 other cooperators 1 other cooperators 2 other cooperators

Defect 0 0 0

Cooperate �c �c �cþd

General :

0 other cooperators 1 other cooperators 2 other cooperators

Defect pD,0 pD,1 pD,2

Cooperate pC,1 pC,2 pC,3

If we again assume payoff monotonicity, and fill in Marshall’s
payoffs, then we find that _p40 if and only if
Pn

i ¼ 1 i � fi � pC,i

np
4
Pn�1

i ¼ 0ðn�iÞ � fi � pD,i

nð1�pÞ
3

P2
i ¼ 1 i � fi � ð�cÞþ3 � f3 � ð�cþdÞ

np
403

�cnpþ3df 3

np
403

df 3

p
4

cp

p

This reduces to
MARSHALL’S CONDITION

f3

p
4

c

d

Appendix B shows how this is exactly what we get if we translate the
rule from Marshall’s comment, stated in terms of covariances, to the
deterministic dynamics, according to a hypothetical chance experi-
ment. This implies that Marshall’s rule, with an interpretation of
variance and covariance as belonging to a hypothetical chance
experiment, is indeed the appropriate rule for a subset of 3-player
games defined with the two parameters c and d. For this subset of 3-
player games, indeed the condition is based on a scalar that follows
from the population structure—fi=p. Now the question remains
whether or not this implies that my example is not an actual
counterexample. This will be discussed in the following section.
5. Claims and counterexamples

The point I tried to make in my paper is the following. Suppose
we take a fixed group size n. Then there is on the one hand a set of
population structures and on the other hand a set of games. The set
of population structures has dimension n�1 if we do, and dimen-
sion n if we do not fix frequency p. The set of games has dimension
2n�1 if we normalize. If we assume payoff monotonicity, which is
only natural and holds for instance for the replicator dynamics,
then we get a condition for selection to favour trait C over trait D

that has the following shape:

Trait C is selected if gðs,pÞ40;

where sAS is any population structure and pAP any game, and
where gðs,pÞ reflects the assumption of payoff monotonicity;

gðs,pÞ ¼
Pn

i ¼ 1 i � fi � pC,i

np
�

Pn�1
i ¼ 0ðn�iÞ � fi � pD,i

nð1�pÞ
My claim was that there is no rule that is (1) general, (2) always
correct, and (3) based on less than n�1 numbers that characterize
population structure, where n is the group size (van Veelen, 2009).
Maybe I can be more precise here. By general, I mean that the rule
applies to all population structures sAS and all games pAP, which
in this case are sets of dimensions n and 2n�1. By correct I mean
that it respects payoff monotonicity. By the third requirement I
mean that the rule uses a vector of dimension lower than n�1 to
represent population structure. This certainly implies that if n42,
this rule cannot depend on population structure through a single
number r. In other words, it is not possible that the condition is
equivalent to

Trait C is selected if rðsÞ4dðpÞ

with r : S-R and d : P-R.
If we lift any of these three requirements, then there are rules

that satisfy the other two. If we restrict the generality, and reduce
for instance the set of games, then we can arrive at rules that are
correct, and feature population structure reduced to a scalar. One
such example is my Theorem 1. This theorem restricts the set of
games to those that satisfy generalized equal gains from switching
(which economists refer to as linear public goods games). This
restriction implies that the set of games is characterized by only
two parameters (b and c) instead of 2n�1. For this subset of games,
the theorem shows the following rule to be correct for any group
size n:

Trait C is selected if r4
c�b

ðn�1Þb

Here r¼PðTjTÞ�PðTjNÞ as defined in the paper, which is indeed
a function of population structure only, because it only depends
on f0,y,fn.

Another restriction on the set of games is the one chosen by
Marshall in order to include my Counterexample II. He restricts
attention to a 2-dimensional subset of the 5-dimensional set of
games with 3 players and 2 strategies, namely the set of stag-hunt
games that is characterized by the parameters c and d. For that
subset, we have seen above that indeed the following rule is
correct:

Trait C is selected if
f3

p
4

c

d

For a given frequency, this indeed has the population structure
comprised in a scalar—f3=p. This is also a proper function with the
set of population structures as domain, because it only depends on
f0,f1,f2 and f3.

The reason why these two rules together constitute a counter-
example against the existence of a rule that is (1) general, (2) correct
and (3) uses a scalar representation of population structure is that
these two use different scalar functions. In fact, it is sufficient to
combine the set of linear public goods game with just a single game
for which the rule is different; for instance Counterexample II, which
is just one single game, would do. The essential point here is that
there are numerous subsets of games for which there is a correct rule
that has a scalar representing population structure in it. Each of those
rules must imply that the set of games is reduced to a set of
dimension 2. That can be done in different ways, each with its own
function r(s). But it is the fact that these functions r(s) are different
that implies that a general rule with the same properties is not
possible. Finding a subset of games for which the correct rule looks
like rðsÞ4dðpÞ always implies a choice of a lower dimensional subset
of the set of population structures S or—as in both examples here—of
the set of gamesP. In one subset the single parameter is rðsÞ ¼ f3=p, in
the other it is rðsÞ ¼PðTjTÞ�PðTjNÞ. It is indeed true that a correct
rule can consist of a function that compresses the population
structure in a scalar, but we would have to find the right subset of



Fig. 1. A rule or prediction is general if it allows for any combination of choices from the set S of population structures and P of games. With restrictions on the choice

of population structures or games, one can arrive at rules in which the population structure is represented by a scalar. Two examples are games with generalized

gains from switching, for which this scalar is r¼PðTjTÞ�PðTjNÞ, and Marshall’s set of stag-hunt games, for which it is f3=p, but there are many more such subsets with ever

differing ways to summarize the population structure by a scalar. There is however no general rule, as these scalar representations differ across subsets. Note that there is only

one game in the intersection of Marshall’s set of stag-hunt games and my set of games with generalized equal gains from switching; the game with

all payoffs 0, in which strategies are indistinguishable and it is impossible for selection to act.
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games that makes it correct, because how that scalar depends on the
population structure differs from set to set (see Fig. 1).

That of course does not mean that I think inclusive fitness is
useless. As a matter of fact, it could very well make sense to make
restrictions. Maybe most real life situations only come from a small
subset of population structures or a small subset of games. Maybe
not. But whether or not realism would justify restrictions, it is clear
that without them, there is no rule that satisfies payoff monotonicity,
and in which population structure is reduced to a scalar for n42.

Then there is of course the possibility to stretch the concept of
inclusive fitness, so that any condition of the form gðs,pÞ40 is
called a condition based on inclusive fitness. In the case of my group
selection model that would be overstretching though, as the
condition only entails the comparison of the average individual
fitnesses of the different types.

In his comment, Marshall points to Queller (1992), saying that
‘‘Queller has shown that inclusive fitness models and group
selection formulations both break down for the same reason when
faced with non-additive fitness effects’’. What exactly that could
mean is up for interpretation, but within the set of models of my
paper, it is clear that a group selection model can be an accurate
description of actual dynamics, while inclusive fitness can none-
theless give an inaccurate prediction. More precisely, with group
size n42, we can conclude that a rule that reduces population
structure to a scalar can only be correct for a subset of group
selection models. That implies that such a rule produces inaccurate
predictions for combinations of a population structure and a game
that find themselves outside this subset. These combinations of
population structures and games however still represent a model,
which, if it matches observed dynamics, is not broken down.
3 Procrustes, a.k.a. ‘‘the stretcher’’ is a character in Greek mythology. He

stretched people if they were to short to fit his bed, or cut off their legs if they

were to long.
6. Conclusion

There is a quote from Marshall’s comment that provides a rather
spot-on indication of what divides inclusive fitness optimists from
inclusive fitness pessimists. It follows below.

Of course, it is now generally understood that the correct
definition of relatedness is that which makes inclusive fitness
theory work.

I would first like to point out—without saying whether I think
that this claim is correct or not—that there is nothing ‘‘of course’’
about it. There is no question that relatedness matters, nor that it
should be well defined, but making inclusive fitness work by
choosing an appropriate definition of relatedness is not a priori
right or even possible. It could be the right thing to do, but it could
also be that inclusive fitness is a Procrustean bed.3 In order to
indicate the subtleties involved, I would like to point at what I think
is a particularly insightful analogy.

If the earth would be flat, then a 2-dimensional map would be a
perfectly accurate model of the world. Also, if we would want to
determine the shortest path between two places on earth, then it
would naturally be a path that matches a straight line between
them on the map.

The earth, however, is not flat, and the shortest path between
two places across the surface of the earth is not necessarily a
straight line on our standard map. If I fly from Amsterdam to
Boston, then the path that the plane takes looks like an arc on the
map. However, our standard map is not the only possible way to
project our 3-dimensional earth on a 2-dimensional map. In fact,
we can simply change the choice of the equator such that on the
resulting map, the shortest distance between two particular cities is

in fact a straight line.
If the question arises whether or not it is correct to claim that the

shortest distance between two places on earth—across the surfa-
ce—is a straight line on the map, then one possible answer is that
indeed it is, if only we choose the appropriate map. That is true. It is
also true that in order to determine what the appropriate map is, there
is no way around processing the insight that the earth really is round
and not flat. As a matter of fact, the most convenient way to create
such a map is first to find the shortest distance on the globe and then
to choose the equator such that the shortest path is part of it. It is a
rather special way of finding a problem and a matching solution, but
now the shortest path is indeed a straight line on the appropriate map.

Does this mean that 2-dimensional maps are useless for
navigation? Of course not. A map can work perfectly well if we
for instance assume that the two points, unlike Amsterdam and
Boston, are just not too far apart. In that case the path with the
shortest distance is very close to, or even indistinguishable from, a
straight line on the (standard) map.

Making inclusive fitness work by choice of the appropriate
definition of relatedness I think could be quite similar to finding the
map to go with the shortest path. In this reply I have argued
that within the simple group selection setting that I chose, there is a
set of games of dimension 2 for which inclusive fitness works. We
have also seen that there are actually many different sets of games
of dimension 2 for which we can make a correct prediction based on
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only a scalar that reflects population structure. What this scalar
should be, however, differs from one set to the other, which makes
relatedness the equivalent of the 2-dimensional map. This implies
that if we take the set of games for which normal inclusive
fitness works, and start increasing the dimension of the set of
games we allow for, we will have to stretch the concept of inclusive
fitness ever more in order to make it work. With every step towards
generality, one has to adjust the inclusive fitness formula, in
which we will need ever more numbers to represent the relevant
features of the population structure, until at the end, when we
arrive at a totally general prediction, the inclusive fitness formula is
no different from a direct comparison of average individual
fitnesses.

The point I try to make with the analogy is that even though
inclusive fitness does not provide a generally correct prediction, I
am not at all implying that I think inclusive fitness is useless. Also
here, one can make additional assumptions under which even the
simple, unadjusted inclusive fitness formula works. In the context
of my group selection models such a condition is that the game has
to satisfy generalized equal gains from switching. In other contexts
other assumptions are possible. Inclusive fitness therefore may be
quite useful, just as useful as a map is for finding the shortest path
between two places that are not too far apart. But the point I
wanted to make is that there are also situations where this is not
the case.
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Appendix A. Translation Queller–van Veelen

In this appendix, I would like to translate Eq. (3) in Queller
(1985, p. 367) to Queller’s condition, as we derived it without the
Price equation in Section 3, and which is stated in terms of my
Counterexample I (van Veelen, 2009, pp. 594–595).

One thing we should realise is that in my model everything is
deterministic, which implies that all covariances of all variables in the
model are 0. That seems to be a dead end, but we can give the
covariances in Queller an interpretation by thinking of a hypothetical
chance experiment. Given a population that is characterized by the
frequencies f0,f1 and f2 we can imagine that one individual is drawn
from the population, with all individuals having equal probability.
The variances and covariances will then concern the phenotypic
value of this randomly chosen individual and of its partner. In van
Veelen (2009) the assortment parameter, or relatedness, r is defined
with a similar reference to a hypothetical chance experiment.

In my model there is no difference between genotype and
phenotype (G¼P), which implies that also the genotype can only
take values 0 (if not altruistic) and 1 (if altruistic). This will simplify
calculations significantly. Below I will give the probabilities that
belong to different combinations of the randomly chosen indivi-
dual (P) and its partner (Pu). Here it is worthwhile to realise that the
frequency p, the assortment parameter/relatedness r, and the
different conditional probabilities are all functions of f0,f1 and f2.
They relate in the following way: frequency p is total number of
individuals with the gene divided by the total number of indivi-
duals. With a total of M groups, that would be ð2f2þ f1ÞM=2M¼ f2

þ 1
2 f1. This number is independent of M, so it is natural to also

define p¼ f2þ
1
2 f1 for infinite populations.

The variable r is defined in van Veelen (2009) as the difference
between two probabilities in a general version of the hypothetical
chance experiment described above; r¼PðTjTÞ�PðTjNÞ, where
PðTjTÞ here would translate to PðPu¼ 1jP¼ 1Þ, and PðTjNÞ to
PðPu¼ 1jP¼ 0Þ. The first one is the probability that your partner
carries the trait if you do—PðTjTÞFand here it is the number of
individuals that carry the trait and that are matched with other
carriers (both individuals in groups with 2 carriers, hence 2f2M)
divided by the total number of carriers of the trait, which is (2f2+f1) M.
This results in PðTjTÞ ¼ f2=p. A similar computation gives us
PðTjNÞ ¼ f1=2ð1�pÞ, which implies that r¼ ðf2=pÞ�f1=2ð1�pÞ. van
Veelen (2009) also shows that with this definition of r we get
PðTjTÞ ¼ rþð1�rÞp, from which more or less directly follows that
PðNjNÞ ¼ rþð1�rÞð1�pÞ, PðNjTÞ ¼ ð1�rÞð1�pÞ and PðTjNÞ ¼ ð1�rÞp

(see also Grafen, 1985). So now we can write, for this hypothetical
chance experiment:

P Pu probability of this combination

1 1 p �PðTjTÞ ¼ pðrþð1�rÞpÞ

1 0 p �PðNjTÞ ¼ pð1�rÞð1�pÞ

0 1 ð1�pÞ �PðTjNÞ ¼ ð1�pÞð1�rÞp

0 0 ð1�pÞ �PðNjNÞ ¼ ð1�pÞðrþð1�rÞð1�pÞÞ

Note that, as we would expect,Pð10Þ ¼Pð01Þ. The expectationsE½P�
and E½Pu� are also what we would expect; E½P� ¼ pPðTjTÞþ

pPðNjTÞ ¼ p and E½Pu� ¼ pPðTjTÞþð1�pÞ �PðTjNÞ ¼ p.
With these probabilities we can compute the covariances in

Queller’s (1985) rule. The first one is easy, again because P only
takes values 0 and 1, which implies that P2

¼P

CovðP,PÞ ¼ VarðPÞ ¼ E½P2��E2
½P�

¼ E½P��E2
½P� ¼ p�p2 ¼ pð1�pÞ

The second takes only a little more algebra:

CovðP,PuÞ ¼ E½PPu��E½P�E½Pu�

¼ pðrþð1�rÞpÞ�p2 ¼ rpð1�pÞ

The third is again simplified by P2
¼P:

CovðP,PPuÞ ¼ E½P2Pu��E½P�E½PPu� ¼ E½PPu��E½P�E½PPu�

¼ ð1�pÞpðrþð1�rÞpÞ

With this interpretation of the covariances, we can look at Queller’s
equation (3), page 367, and see how it would translate. If we do,
then we see that with the current interpretation of covariances as
belonging to hypothetical chance experiments, and with genotype
and phenotype always being equal, it becomes
Queller’s condition

�cþb
CovðP,PuÞ

CovðP,PÞ
þd

CovðP,PPuÞ

CovðP,PÞ
40

�cþb
rpð1�pÞ

pð1�pÞ
þd
ð1�pÞpðrþð1�rÞpÞ

pð1�pÞ
40

�cþbrþdðrþð1�rÞpÞ40
This matches the condition we derived in Section 3 without using
the Price equation, assuming payoff monotonicity.
Appendix B. Translation Marshall–van Veelen

Given a population that is characterized by frequencies f0,f1,f2

and f3 we can, again, think of a hypothetical chance experiment.
Imagine that one individual is drawn from the population, with
all individuals having equal probability. Then we look at the
phenotypic value of this individual and of its two partners. In
my model there is still no difference between genotype and
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phenotype (G¼P), which again implies that the genotype can only
take values 0 (if not altruistic) and 1 (if altruistic). For our
hypothetical chance experiment we can now write

P PuP00 probability of this combination

1 11 p �
3f3

3f3þ2f2þ1f1
¼ f3

1 10 or 01 p �
2f2

3f3þ2f2þ1f1
¼

2

3
f2

1 00 p �
f1

3f3þ2f2þ1f1
¼

1

3
f1

0 11 ð1�pÞ �
f2

3f0þ2f1þ1f2
¼

1

3
f2

0 10 or 01 ð1�pÞ �
2f1

3f0þ2f1þ1f2
¼

2

3
f2

0 00 ð1�pÞ �
3f0

3f0þ2f1þ1f2
¼ f0

Now we can compute the variance and covariance that feature in
Marshall’s equation. Again we use that P2

¼P

CovðP,PPuP00Þ ¼ E½P2PuP00��E½P�E½PPuP00� ¼ E½PPuP00��E½P�E½PPuP00�

¼ ð1�pÞE½PPuP00� ¼ ð1�pÞf3

The variance is standard:

VarðPÞ ¼ pð1�pÞ

That implies that if we reinterpret Marshall’s condition with the
hypothetical chance experiment described above, we arrive at the
same condition that is derived above:
Marshall’s condition

CovðP,PPuP00Þ

VarðPÞ
4

c

d

ð1�pÞf3

pð1�pÞ
4

c

d

f3

p
4

c

d

This matches the condition we derived in Section 4, without using
the Price equation, assuming payoff monotonicity.

It is worth noting that payoff monotonicity and Marshall’s rule
are equivalent for this game, as payoff monotonicity and Queller’s
rule were for the game from Section 3. Although payoff mono-
tonicity is a very mild assumption, it is an assumption nonetheless,
and this shows that the derivation with the Price equation obscures
the fact that there is an assumption behind the rule.
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