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Behavior in social dilemmas is often inconsistent with the predictions of classical game theory: people

(and a wide variety of other organisms) are more cooperative than might be expected. Here we consider

behavior in one such social dilemma, the Traveler’s Dilemma, that has received considerable attention

in the economics literature but is little known among theoretical biologists. The rules of the game are as

follows. Two players each choose a value between R and M, where 0oRoM. If the players choose the

same value, both receive that amount. If the players choose different values v1 and v2, where v1ov2,

then the player choosing v1 receives v1þR and the player choosing v2 receives v1�R. While the players

would maximize their payoffs by both choosing the largest allowed value, M, the Nash equilibrium is to

choose the smallest allowed value, R. In behavioral experiments, however, people generally choose

values much larger than the minimum and the deviation from the expected equilibrium decreases with

R. In this paper, we show that the cooperative behavior observed in the Traveler’s Dilemma can be

explained in an evolutionary framework. We study stochastic evolutionary dynamics in finite

populations with varying intensity of selection and varying mutation rate. We derive analytic results

showing that strategies choosing high values can be favored when selection is weak. More generally,

selection favors strategies that choose high values if R is small (relative to M) and strategies that choose

low values if R is large. Finally, we show that a two-parameter model involving the intensity of

selection and the mutation rate can quantitatively reproduce data that from a Traveler’s Dilemma

experiment. These results demonstrate the power of evolutionary game theory for explaining human

behavior in contexts that are challenging for standard economic game theory.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The evolution of cooperation is a central topic of interest in
the biological and social sciences (Trivers, 1971; Axelrod and
Hamilton, 1981; Levin, 2000; Boyd et al., 2003; Panchanathan and
Boyd, 2004; Nowak and Sigmund, 2005; Fowler, 2005; Janssen
and Bushman, 2008; Helbing and Yu, 2009; Levin, 2009; Wang
et al., 2009; Sigmund et al., 2010). Cooperation is found at all
levels of the natural world and lies at the heart of modern human
societies. Yet cooperation is often costly, creating a social
dilemma: cooperating maximizes the group payoff, but indivi-
duals do best by being selfish. In the context of evolutionary
game theory, the Prisoner’s Dilemma (Trivers, 1971; Axelrod and
ll rights reserved.

matics, Harvard University,
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Hamilton, 1981; Milinski, 1987; Kraines and Kraines, 1989;
Fudenberg and Maskin, 1990; Nowak and Sigmund, 1992, 1993,
2005; Lotem et al., 1999; Wedekind and Milinski, 2000; Ohtsuki
and Iwasa, 2004, 2006; Brandt et al., 2005; Imhof et al., 2005,
2007; Pacheco et al., 2006; Fu et al., 2007; Worden and Levin,
2007; Helbing and Yu, 2009; Rand et al., 2009) and the public
goods game (Levin, 2000; Hauert et al., 2002; Boyd et al., 2003;
Panchanathan and Boyd, 2004; Fowler, 2005; Hauert et al., 2007;
Janssen and Bushman, 2008; Levin, 2009; Ohtsuki et al., 2009;
Wang et al., 2009; Sigmund et al., 2010; Rand and Nowak, 2011)
are the standard paradigms for exploring social dilemmas. How-
ever, other interesting social dilemmas also exist. In this paper,
we study the evolution of strategies in the Traveler’s Dilemma
(Basu, 1994), a game that has received little attention among
evolutionary theorists (an exception is Smead (2008), who that
usedevolutionary simulations to study a version of the Centipede
Game that is similar to the Traveler’s Dilemma).
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Just as the Prisoner’s Dilemma is often characterized by a
standard narrative (involving two prisoners charged with a
crime), so too is the Traveler’s Dilemma. Imagine that two
travelers have purchased identical souvenirs while visiting a
remote island. Their airline loses both souvenirs as the two travel
home, and the airline then asks each (separately and in private) to
declare the value of the souvenir to the nearest dollar. If both
travelers declare the same value, then the airline will compensate
both with that amount. But if the travelers declare different
values, the airline will pay both the smaller of the two. Further-
more, it will reward the traveler claiming the smaller value with a
bonus of R and penalize the traveler claiming the larger value the
same amount R. For instance, if one traveler claims the souvenir
was worth 50 while the other claims it was worth 80, and if R¼2,
then the first will receive 52 and the second 48.

For simplicity, we assume that R is an integer, and to make the
game a social dilemma we assume that RZ2. Furthermore, the
game is typically structured so that players’ payoffs cannot drop
below zero (the airline cannot impose fines), so the players
cannot declare values less than R. Fig. 1 shows a (partial) payoff
matrix for the game: each player’s strategy is the value he or she
claims for the item.

What should the travelers do? It might seem natural for both to
declare the maximum value M. However, this is not rational
(assuming that both players seek to maximize their monetary
payoffs). One player could switch his claim to M�1 and thereby
earn a payoff of M�1þR4M (while reducing the other player’s
payoff to M�1�R). Continuing this iterative deletion of dominated
strategies, one finds that the Nash equilibrium is to choose the
minimum value, claiming the souvenir was worth just R. As in the
Prisoner’s Dilemma, ‘‘defection’’ (declaring a low value) dominates
‘‘cooperation’’ (declaring a high value) even though the travelers
would be better off if both claimed high values. Thus, the Traveler’s
Dilemma presents a social dilemma involving coordination coupled
with the temptation to exploit the other party.

The Traveler’s Dilemma can be used to model situations not
only among humans but also among other organisms. For exam-
ple, competitive egg ejection in the Greater Ani, a communally
nesting bird species (Riehl and Jara, 2009; Riehl, 2011), can be
modeled by the Traveler’s Dilemma. In a nest with two females,
each female chooses a time to switch from ejecting eggs out of the
nest to laying eggs. If both chose an early date (i.e., a large claim),
then both successfully lay a large number of eggs and earn a large
(fitness) payoff. But if one chooses to wait, she will eject the
other’s already-laid eggs and achieve an even higher payoff while
inflicting a loss on the earlier-laying female.
Fig. 1. A partial payoff matrix for the Traveler’s Dilemma when R¼2 and the

maximum claim M¼100. Payoffs are shown for the row player (blue). When the

travelers claim the same value, they are both awarded that amount (red). But if

one traveler claims a value L and the other a value H4L, then the former receives

LþR and the latter receives L�R. For example, if the row player claims 98 and the

column player 99, the row player gets 98þR¼ 100 and the column player

98�R¼ 96. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
Human behavior is the main focus of the current paper. When
people are asked to play the Traveler’s Dilemma in the laboratory,
their behavior deviates significantly from the predictions of
classical game theory. For example, Capra et al. (1999) conducted
a repeated Traveler’s Dilemma in which the value of R varied
across treatments. Although the Nash equilibrium is to declare
the minimum value regardless of R, Capra et al. (1999) found a
significant inverse relationship between R and the average claim.
This relationship held both in early rounds before any in-game
learning occurred and in later rounds after subjects gained
experience.

Capra et al. (1999) and Goeree and Holt (1999) proposed
learning models based on the logit probabilistic decision rule to
explain the development of the inverse relationship between
R and the average claim over the course of the experimental
session. Goeree and Holt (1999) adapted this rule to model the
‘‘introspection’’ that occurs before the game begins to explain
behavior in initial rounds before in-game learning becomes a
factor. They found that if the cognitive ‘‘noise’’ (defined in a
suitably precise way) increases with each successive round of
introspection, they could reproduce (qualitatively) the inverse
relationship between R and the average claim.

In this paper, we instead propose an evolutionary model to
explain people’s behavior in the Traveler’s Dilemma. We study
stochastic population dynamics in finite populations with varying
intensity of selection and varying mutation rate (Nowak et al.,
2004). Critically—and unlike logit learning models or ‘‘introspec-
tion’’—our model does not require any notion of cognition or
rationality. We show that stochastic evolutionary models can
explain the observed behavior in early rounds, reflecting the
(genetically or culturally) evolved intuitions subjects bring with
them into the laboratory. We also derive analytic results showing
how the evolutionarily favored strategies vary as a function of R and
the maximum claim M. In our model, higher payoff strategies are
more likely to reproduce on average, but random chance also plays
an important role. Sometimes lower payoff strategies reproduce,
and sometimes higher payoff strategies die out. When the intensity
of selection is low in the context of imitation, people are uncertain
when evaluating their own payoffs and the payoffs of others.

We also consider the role of mutation: sometimes offspring do
not inherent their parent’s strategy but instead assume a random
new strategy. In the context of imitation dynamics, this means
that players sometimes get confused when trying to imitate a
higher payoff individual and adopt the wrong strategy. The higher
the mutation rate, the greater the uncertainty about the strategies
of others.

When selection is weak, the dynamics depend greatly on the
mutation rate m. In the high mutation limit, m-1, all strategies
are present at approximately equal abundances at the same
time (Antal et al., 2009; Traulsen et al., 2009). Thus, success is
determined not by one’s ability to resist invasion but rather by
one’s performance against a population uniformly distributed
over all strategies. Put another way, the optimal strategy is the
one that maximizes its expected payoff against a uniform dis-
tribution of opposing strategies.

In the low mutation limit, m-0, novel mutants will either die
out or completely take over the population before a new mutant
arises (Nowak et al., 2004; Fudenberg and Imhof, 2006; Hauert
et al., 2007, 2008). The population makes transitions between
homogeneous states in which all agents in the population play
the same strategy. Hence, although all strategies are still present
at equal frequency in the steady state distribution, at most two
strategies are present in the population at the same time. There-
fore, success in the low mutation limit is determined by one’s
ability to resist invasion by a single (randomly chosen) opponent.
It is not expected payoff against a uniform distribution of
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strategies that determines success but rather expected relative
payoff in pairwise competitions with a single random opposing
strategy (Antal et al., 2009).

We can summarize the observations above as follows. Con-
sider two strategies, one claiming a and one claiming b, boa. Call
the former strategy A and the latter strategy B. In A–A interac-
tions, A receives a payoff of a. In A–B interactions, A receives a
payoff of b�R. In B–B interactions, B receives a payoff of b. And in
A–B interactions, B receives a payoff of bþR.

In the high mutation, weak selection limit, A and B are equally
abundant in the population. A’s average payoff is thus aþb�R and
B’s average payoff is bþb�R. When R is small, aþb�R4bþbþR,
so the more ‘‘cooperative’’ strategy A is favored over the less
cooperative B. When R is large, on the other hand, the opposite is
true and B is favored over A.

In the low mutation, weak selection limit, A can be favored
over B even though B beats A in pairwise interactions
(b�RobþR) since A does better against itself than B does against
itself. When R is small, a population of A-players can be resistant
to invasion by B-players, and A can in fact have a larger basin of
attraction than B (when aþb�R4bþbþR).

In both cases, strategies that are not Nash equilibria can be
favored by selection. Because the population is far from equili-
brium, traditional game-theoretic solution concepts have little
relevance. Instead, we ask what strategy is the most common in
the stationary distribution of our stochastic model (see Section 2).
The inclusion of the learning errors represented by weakening
selection and increasing mutation are relevant and realistic:
many real-world processes are in fact far from equilibrium and
learning is rarely perfect. Importantly, our non-equilibrium cal-
culations can explain laboratory behavior that traditional equili-
brium approaches have had little success in explaining.

This paper is organized as follows. In Section 2, we introduce
the model and describe the evolutionary process we are studying.
In Sections 3–5, we derive analytic results showing how the
favored and most frequent strategies vary as R changes in the
limit of weak selection. In Section 6, we describe how earlier
results can be used to determine the optimal choice of R from the
perspective of the airline. Given that selection in the real-world
can be weak (but not necessarily in the limit of weak selection),
we examine the model via computer simulations in the case of
arbitrary selection strength and mutation rates in Section 7. In
Section 8, we find the values of the selection strength and
mutation rate that best fit the data observed by Capra et al.
(1999). In Section 9, we discuss our models in relation to other
standard ones. Finally, we conclude in Section 10.
2. Evolutionary process

We examine the Traveler’s Dilemma from the perspective of
evolutionary game theory (Maynard Smith, 1982; Hofbauer
and Sigmund, 1988, 1998; Weibull, 1997; Samuelson, 1998;
Cressman, 2003; Nowak and Sigmund, 2004; Imhof and Nowak,
2006; Gintis, 2009; Sigmund, 2010) in finite populations (Nowak
et al., 2004; Taylor et al., 2004).

Each player chooses a strategy from a discrete space consisting
of n¼M�Rþ1 strategies (the value she is declaring between R

and M). We index these strategies R, . . . ,M. The payoff matrix
A¼ ðaijÞ, Rr i,jrM, where the entry aij is the payoff of a traveler
declaring a value i when the other traveler declares a value j, is
given by

aij ¼

i if i¼ j,

iþR if io j,

j�R if i4 j:

8><
>: ð1Þ
Suppose that there are N individuals in the population and Nk of
them are playing strategy k (N¼NRþ � � � þNM). We assume that
the population is well-mixed and that players interact randomly.
Then the expected payoff (up to a constant factor) of an individual
playing strategy i is

pi ¼
XM
k ¼ R

Nkaik�aii: ð2Þ

The fitness fi of an individual with strategy i is given by
f i ¼ exp ðdpiÞ (Traulsen et al., 2008). While the payoff pi mea-
sures how well an individual is performing in the game, one’s
reproductive fitness may depend on factors other than pi. One
could be engaged in multiple distinct games, for example, with
the game in question only making a small contribution to one’s
fecundity. The parameter d, which we call the selection intensity,
determines the nature of the payoff-to-fitness mapping. In the
limit d-0, all individuals have roughly the same reproductive
success. In the limit d-1, even small payoff differences lead to
large differences in reproductive success: a small payoff advan-
tage results in a disproportionately large reproductive
advantage.

Evolution occurs via the frequency-dependent Moran process.
In each time step, an individual is chosen at random to be a
‘‘child’’ (or ‘‘learner’’). That individual copies, with probability
1�m, the strategy of a ‘‘parent’’ (or ‘‘teacher’’) chosen from the
population with probability proportional to its fitness. With
probability m, the learner adopts one of the n strategies at
random. Because mutation is possible from any one strategy to
any other strategy, the random process describing the state of the
population is ergodic. In particular, this means that it has a
unique stationary distribution.
3. Low mutation, weak selection limit

In the absence of any payoff differences (or when d¼ 0), each
of the n strategies has frequency 1=n in the stationary distribu-
tion. Thus, when payoffs are different and individuals are subject
to selection, we say that selection favors a strategy if its frequency
in the stationary distribution is 41=n. We say that selection
opposes a strategy if its frequency in the stationary distribution
is o1=n.

When selection is weak, each strategy’s frequency in the
stationary distribution is still close to 1=n—there is just a small
perturbation from the neutral value. Antal et al. (2009) showed
that when d-0 and m51=N, the perturbation for strategy k is
proportional to

Lk ¼
1

n

XM
i ¼ R

ðakkþaki�aik�aiiÞ: ð3Þ

Hence, strategy k is favored by selection when Lk40. We can
interpret this condition as follows. When akkþaki4aiiþaik, a
k-mutant in a population of i-players has a higher probability of
taking over the population than does an i-mutant in a population
of k-players. The condition (3) thus says that strategy k on average
can invade and take over uniform populations of other strategies.
Conversely, a uniform population of k-players is on average
resistant to invasion by other strategies.

Using the payoff matrix (1), we find that

Lk ¼
ðM�5Rþ1Þð2k�M�RÞ

2ðM�Rþ1Þ
: ð4Þ
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Lk is an increasing function of k when RoðMþ1Þ=5 and a
decreasing function of k when R4ðMþ1Þ=5. Thus,

Lk40()

Ro
Mþ1

5
and kA

MþR

2
,M

� �
,

R4
Mþ1

5
and kA R,

MþR

2

� �
:

8>>><
>>>:

ð5Þ

When R is large, strategies claiming larger values are favored.
When R is small, strategies claiming smaller values are favored.
When R¼ ðMþ1Þ=5, then (weak) selection has no effect and each
strategy has the same frequency 1=n.

The strategy k that maximizes Lk is the one that is most
frequent in the stationary distribution. Since Lk is either mono-
tonically increasing or decreasing, it follows that

Lk is maximized ()
Ro

Mþ1

5
and k¼M,

R4
Mþ1

5
and k¼ R:

8>><
>>:

ð6Þ

When R is large relative to the maximum claim M, there is a
strong incentive for individuals to declare low values as the
reward for declaring the lower of the two values is large. Thus,
the most successful strategy makes the minimum claim R. When
the reward is small relative to M, on the other hand, the high
payoffs obtained when both players claim large values trump the
reward to be had by declaring a low value. Thus, the most
successful strategy makes the maximum claim M.

For M¼100 and R¼2, Lk is maximized for k¼100. The strategy
making the highest possible claim is thus chosen when the
selection intensity and mutation rate are both small.
4. High mutation

In the high mutation case, mb1=N, strategy k is favored by
selection if (Antal et al., 2009)

Hk ¼
1

n2

XM
i ¼ R

XM
j ¼ R

ðakj�aijÞ40: ð7Þ

To understand this condition, first observe that when mutation
is high, all strategies are (roughly) equally abundant. Recall
that since d is small, f i ¼ expðdpÞ � 1þdp. Hence, the fitness of
strategy k is f k ¼ 1þðd=nÞ

Pn
i ¼ 1 aki. By comparing this to the

average fitness ð1=nÞ
Pn

j ¼ 1 f k, we obtain (7).
Using the payoff matrix (1), we find that

Hk ¼�
k2

2ðM�Rþ1Þ
þ

kð1þ2M�4RÞ

2ðM�Rþ1Þ
þ
�2M2

þMð4R�1ÞþRð7R�2Þ

6ðM�Rþ1Þ
:

ð8Þ

In the extreme cases when k¼R (the lowest possible valuation) or
k¼M (the highest), we have

HR ¼�
ðM�RÞð2M�8Rþ1Þ

6ðM�Rþ1Þ
ð9Þ

and

HM ¼
ðM�RÞðM�7Rþ2Þ

6ðM�Rþ1Þ
: ð10Þ

Thus, the lowest claim (the Nash equilibrium) is favored when
R4ð2Mþ1Þ=8 and the largest claim is favored when
RoðMþ2Þ=7. Note that we cannot have both HR40 and HM 40
since ð2Mþ1Þ=84 ðMþ2Þ=7 for MZ2. It follows that

Hk40

()

R4
2Mþ1

8
and kA R,

6M�12Rþ3þAM,R

6

� �
,

Mþ2

7
rRr

2Mþ1

8
and kA

6M�12Rþ3�AM,R

6
,
6M�12Rþ3þAM,R

6

� �
,

Ro
Mþ2

7
and kA

6M�12Rþ3�AM,R

6
,M

� �
,

8>>>>>>>><
>>>>>>>>:

ð11Þ

The endpoints of the second interval in (11) are precisely the
roots of the quadratic (in k) Hk.

The most frequent strategy when mutation is high is k¼

ð2M�4R�1Þ=2. This is the k that maximizes Hk. To see this directly,
we argue as follows. When selection is weak and mutation is high,
all strategies are (about) equally abundant. The average payoff of
strategy k is

pk ¼
Xk�1

j ¼ R

pkjþpkkþ
XM

j ¼ kþ1

pkj

¼
Xk�1

j ¼ R

ðj�RÞþkþ
XM

j ¼ kþ1

ðkþRÞ

¼ kþ
1

2
ðk�RÞðk�R�1ÞþðkþRÞðM�kÞ: ð12Þ

We have

dpk

dk
¼

1

2
þM�2R�k, ð13Þ

so dpk=dk¼ 0 when k¼M�2Rþ1=2. Since strategies are restricted
to lie in the interval RrkrM and R41, we find that

Hk is maximized()

Rr
2Mþ1

6
and k¼

2M�4Rþ1

2

� �
,

R4
2Mþ1

6
and k¼ R:

8>>><
>>>:

ð14Þ

In the first case, Hk increases when ko ð2M�4Rþ1Þ=2 and
decreases afterwards. In the second case, Hk is a decreasing function
of k. As in the low mutation case, the size of the reward R is the
determining factor. For M¼100 and R¼2, Hk is maximized for
k¼ 96;97 (since we require strategies to be integer-valued).
A strategy is favored by selection, Hk40, when kZ43.
5. Any mutation rate, weak selection limit

For an arbitrary mutation rate m, selection favors strategy k if
(Antal et al., 2009)

LkþNmHk40 ð15Þ

We can determine which strategy is most abundant in the
stationary distribution by using the fact that strategy k is more
abundant than strategy j if

LkþNmHk4LjþNmHj: ð16Þ

Fig. 2 shows which strategy is most abundant as R and Nm vary.
For R equal to 2, 5, or 10, Lk increases with k. When Nm is small,
Lk dominates NmHk and so k¼100 is most frequent. When
Nm is large, on the other hand, NmHk dominates Lk and so
k¼ ½ð2M�4Rþ1Þ=2� is most frequent. This means that high
mutation results in a smaller k being the most frequent strategy.
In contrast, for R equal to 25, Lk decreases with k. Thus, Lk

is maximized for k¼R whereas Hk is still maximized for
k¼ ½ð2M�4Rþ1Þ=2�. As Nm increases, the most frequent strategy
claims a larger and larger value.



Fig. 2. The most common strategy versus the mutation rate (in terms of the

expected number of mutants per generation, Nm). N is the total population size

and m is the mutation rate. The most common strategy is the one that maximizes

the quantity (16). Values must be between R and M. When R is small, ‘‘coopera-

tive’’ strategies are most common. When R is large, the opposite is true.

Fig. 3. The average strategy (a) and the most common strategy (b) in the low

mutation case as the selection strength and R vary, determined numerically

(Hauert et al., 2007) with a population size of 200. (a) When RoðMþ1Þ=5¼ 20:2,

the average strategy initially becomes more cooperative as the selection strength d
increases. As d gets larger and larger, however, the average strategy approaches

the Nash equilibrium of R. When R4ðMþ1Þ=5¼ 20:2, the average strategy

decreases monotonically with R. (b) For small values of R, the most common

strategy when selection is weak is the cooperative one of claiming the largest

possible value, here M¼100. As d increases, playing the Nash equilibrium

eventually becomes most common. For large values of R, the Nash equilibrium

is the most common strategy regardless of selection strength.
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6. Reward size and strategy selection

Now we consider the effect that R has on the average claim.
When there is no selection, each of the n¼M�Rþ1 strategies has
frequency 1=n. In the limit of weak selection, the frequency of
strategy k is 1=nþdk, where dk is a small perturbation (positive or
negative) from neutrality. Antal et al. (2009) showed that dk is
proportional to Lk in the low mutation case, Hk in the high
mutation case, and LkþNmHk generally, where N is the population
size and m the mutation rate.

When there is no selection, the average claim is
PM

k ¼ Rðk=nÞ.
We would like to know the minimum value of R such that the
average claim becomes more ‘‘cooperative’’ when passing from
the neutral case to the weak selection case. In such a situation,
selection can be said to favor higher claims as adding selection to
the neutral process increases the average offer.

For this to happen, we must have

XM
k ¼ R

k

n
þkdk

� �
�
XM
k ¼ R

k

n
40, ð17Þ

or

XM
k ¼ R

kdk40: ð18Þ

We determine when this inequality holds in the low mutation
case. Since Lk is proportional to dk, this condition can be written as

0o
XM
k ¼ R

kLk ¼
1

12
ðM�RÞðM�5Rþ1ÞðM�Rþ2Þ: ð19Þ

Since M4R, this condition is equivalent to

Ro
Mþ1

5
, ð20Þ

the same condition for Lk to be an increasing function of k. When
M¼100, ðMþ1Þ=5¼ 20:2. Thus, when M¼100 and Rr20, the
average strategy becomes more ‘‘cooperative’’ when we pass from
neutrality to weak selection. When RZ21, the average strategy
becomes less ‘‘cooperative.’’ To explore this condition, we com-
pute the steady-state distribution numerically for various inten-
sities of selection without resorting to simulations (Hauert et al.,
2007). Fig. 3(a) shows that the average strategy as R and the
selection strength vary. The population size is 200. Consistent
with the calculated threshold, the average strategy increases with
the selection strength for R¼2, 5, and 10 whereas the average
strategy decreases with selection strength for R¼25. Thus, if the
airline wants to minimize its payments, it should choose an R that
is at least 21. However, because the minimum claim increases
with R, it is in the interest of the airline to choose an R that is not
too much larger than the critical value of ðMþ1Þ=5.

Fig. 3(b) is the analogous plot for the most frequent strategy.
When d-0 and R¼ 2;5,10, k¼ 100¼M is most frequent. But as
the selection strength increases, the most common claims get
smaller and smaller, ultimately reaching the Nash equilibrium
k¼R in the limit d-1. On the other hand, when R¼25, there is a
strong-enough incentive to make low claims, so k¼R is most
frequent regardless of selection strength.

Fig. 4 shows the distribution of strategy frequencies when
R¼2 and M¼100 as the selection intensity varies. The population
size is 200. Again we exactly compute the steady-state distribu-
tion numerically without using simulations. We find that when
selection is weak, the distribution is concentrated around
k¼M¼ 100. As the selection strength increases, the distribution
moves to the left. Players are making smaller claims. Eventually,
when selection is very strong, everyone is essentially playing the
Nash equilibrium k¼ R¼ 2.

These results have interesting implications for economic
mechanism design. As we saw earlier, when selection is weak,
the average strategy varies inversely with R. The larger R is, the



Fig. 4. The strategy distributions in the low mutation case as the selection strength varies, determined numerically with a population size of 200. Here R¼2 and M¼100.

As the selection strength d increases, the distribution moves from one with the weight around the ‘‘cooperative’’ strategies to one with the weight around the ‘‘selfish’’

ones. The average strategy for each distribution is marked by a red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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smaller the typical claims. When selection is strong, on the other
hand, everyone claims R (the equilibrium strategy), so the larger R

is, the larger the typical claims. If we interpret the selection
strength as a measure of how precise people’s information is when
learning, then this shows that the choice of the airline’s mechanism
(i.e., its choice of R) for reducing the amount it pays in compensation
depends critically on assumptions about people’s level of precision.
Indeed, past experimental work on the Traveler’s Dilemma suggests
that people do not behave rationally: their claims decrease as R

increases, consistent with our theory in the weak selection case
(Capra et al., 1999).
Fig. 5. The average strategy as the selection strength and the mutation rate vary,

as determined by agent-based simulations. The population size N¼200. Results

are averaged over 20 simulation runs, each run consisting of 10 million genera-

tions (with the stationary values calculated over the last 50% of generations).
7. Any mutation rate and selection intensity

We have seen above that we can find the stationary distribu-
tion analytically when (1) selection is weak and mutation is
low, or (2) mutation is high. We can calculate the distribution
numerically in the low mutation case for arbitrary selection
intensities. But when we would like to determine the stationary
distribution for selection intensity d and mutation rate m outside
these ranges, we must resort to agent-based simulations.

We performed agent-based simulations to determine how the
average strategy varies as the mutation rate m and the selection
intensity d range over arbitrary intervals. In Fig. 5, R¼2, M¼100,
and the population size N¼200. When d is small, the average
strategy is close to ðM�RÞ=2, its neutral value. As d increases, the
average strategy increases, similar to the behavior observed in
Fig. 3. When R is small, as it is here, the average strategy becomes
more cooperative when selection is weak. Finally, as d gets large,
the average strategy declines toward the Nash equilibrium k¼2.
8. Comparison with experimental data

Fig. 6 shows the average strategy as a function of R over the
first two rounds in Capra et al. (1999)’s experiment. Players were
required to make a claim between 80 and 200 (cents) so that the
range of possible claims was the same over different treatments
(as R varied). Clearly, the average strategy decreases as R

increases. This is intuitive as there is more incentive for players
to reduce their claims (and approach the Nash equilibrium of 80)
when R is large, but it is not consistent with the predictions of
classical game theory.

To determine if an evolutionary model could produce the
observed behavior, we ran agent based simulations with a
population size of N¼200, varying mutation rates m (between



Fig. 6. Data from the first two rounds of a repeated traveler’s dilemma experiment

(Capra et al., 1999) and the model of best fit (in the least-squares sense), obtained

with agent-based simulations with a selection strength d¼ 10�4 and a mutation

rate m¼ 10�2:75.
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10�4 and 10�1), and varying intensities of selection d (between
10�5 and 10�2). For each choice of m and d, 20 simulations were
run, each simulation consisting of 10 million strategy update
rounds. The stationary distribution was computed by averaging
the frequency of each strategy over the last 5 million rounds.
Finally, we obtained average distributions by averaging over all
20 simulations. We then asked which set of parameters mini-
mized the sum of squared differences between the strategy
frequencies in the simulation average distribution and those
observed in the experimental data. We found that a selection
strength of d¼ 10�4 and a mutation rate of m¼ 10�2:75 resulted in
the best fit, parameters that are in the weak selection, low
mutation regime. Note that here we are modeling the evolved
intuitions that people bring into the lab—and that determine how
they play in early rounds—and not the in-game learning that
occurs.

The notion of the model-predicted average claim requires
some elucidation. It is not necessarily the case that the distribu-
tion of strategies in the population eventually becomes fixed. It is
possible, for example, that the population continually cycles
through various states. What we compute above, both analyti-
cally and through agent-based simulations, are the averages in
the stationary distribution, which roughly correspond to averages
both over the population and over time. In an experiment with 10
subjects, for example, the ten observed claims can be viewed as
the results of independent two-step processes: first, the choice of
a population, and second, a choice from the stationary distribu-
tion of that population. The claims obtained from these choices
are independent and identically distributed, the distribution
being the stationary one we computed both analytically and
through simulations.
9. Discussion

To illustrate the differences between our stochastic evolution-
ary model and other models, in this section we consider an
instance of the Traveler’s Dilemma with a limited strategy space:
we take R¼2 and M¼10, so there are nine possible strategies (or
valuations), k¼ 2, . . . ,10. We can summarize the conclusions of
various models as follows.

Classical Nash equilibrium: The Nash equilibrium calls for
individuals to make the smallest claim possible, k¼2.

Deterministic evolutionary dynamics: the replicator equation:
The replicator equation (Hofbauer and Sigmund, 1998) can be
used to model evolutionary dynamics in the limit of infinite
population size (and no mutation). The frequency xk of strategy k

evolves according to the differential equation

_xk ¼ xkðf k�fÞ, ð21Þ

where fk is the fitness of strategy k,

f k ¼
XM
j ¼ R

xjakj ð22Þ

(akj an entry of the payoff matrix (1)), and f is the average fitness,

f¼
XM
k ¼ R

xkf k: ð23Þ

We computed trajectories numerically for each of the nine
strategies and found that strategies other than k¼2 die out while
k¼2 eventually comes to dominate the population. This is not
surprising as the equilibrium of replicator dynamics is generally a
Nash equilibrium. Indeed, over a wide variety of choices for R and
M, it was always the case that the replicator dynamics converged
to the k¼2 corner of the ðM�RÞ-simplex.

Stochastic evolutionary dynamics: low mutation, weak selection:
We use the results of Section 3. Since

Mþ1

5
¼

11

5
42¼ R, ð24Þ

Lk is maximized when k¼10. Furthermore, the strategies favored
by selection—those with Lk40—are k¼ 7, . . . ,10. In contrast to
replicator dynamics, the most frequent strategy in this case is
k¼10—the most ‘‘cooperative’’ —not k¼2, the least ‘‘cooperative.’’

Stochastic evolutionary dynamics: high mutation: We use the
results of Section 4. Since

2Mþ1

6
¼

21

6
42¼ R, ð25Þ

Hk is maximized for

k¼
2M�4Rþ1

2

� �
¼

13

2

� �
, ð26Þ

i.e., k¼6 and k¼7 are the most abundant strategies in the
stationary distribution. This differs from both the low mutation
case and the deterministic evolutionary dynamics case.

Logit learning: Capra et al. (1999) conducted a multi-round
Traveler’s Dilemma experiment and observed that the average
claim decreased as the experiment progressed. They used a logit
learning model to explain this decrease and to justify the inverse
relationship between R and the average claim at equilibrium.

The logit learning model works as follows. At time t, player p

has a set of beliefs about the strategies of other players. These are
most easily represented as ‘‘counts’’: wpðj,tÞ represents p’s belief
about the likelihood that someone else is playing a strategy j at
time t. A uniform prior is assumed, so wpðj,0Þ ¼ a for all j and some
fixed a. If player p observes someone playing strategy k at time t,
he updates his beliefs by setting wpðk,tþ1Þ ¼wpðk,tÞþr, where
the larger r is, the more weight p places on recent observations;
wpðj,tþ1Þ ¼wpðj,tÞ for all jak.

At time t, p believes that the probability that another indivi-
dual will play strategy i is

wpði,tÞP
jwpðj,tÞ

: ð27Þ

Given this probability distribution, p can then compute the
expected payoff ppðj,tÞ for each strategy j that he might play.
The choice of which strategy to play is then made probabilisti-
cally, with the probability that p plays j given by

exp ðppðj,tÞ=mÞP
kexp ðppðk,tÞ=mÞ

: ð28Þ
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The parameter m (distinct from our mutation rate m) represents
‘‘cognitive noise.’’ The smaller it is, the more likely p is to play the
strategy with the highest expected payoff. In the limit m-1, on
the other hand, p picks a strategy to play uniformly at random. As
players ‘‘learn’’ according to this rule, an inverse relationship
between R and the average strategy develops. To see why this is
the case, note that when m40, players make errors in imple-
menting their strategies (they sometimes fail to choose the
strategy with the highest expected payoff). When R is small, the
penalty for the error is not very large, and the average claim can
creep upward. When R is large, on the other hand, errors are
penalized severely, and the average strategy remains low.

Capra et al. (1999) fit their experimental data to the logit
learning model by finding the r and m that best matched players’
behavior over time. Their goal was to explain the in-game
learning that occurs and the inverse relationship between R and
the average claim in later rounds. While the logit rule is some-
what similar to an evolutionary process (with exponential fit-
nesses), it does not explain behavior in early rounds before any
in-game learning has occurred. The stochastic evolutionary model
we present in this paper, on the other hand, is concerned with
explaining the evolved intuitions humans take with them into
the lab. Our model justifies the inverse relationship between R

and the average claim that Capra et al. (1999) observed in early
rounds (Fig. 6) without requiring the abilities of observation
(needed in the logit model as players must update their beliefs)
or reason.
10. Conclusion

The Nash equilibrium, and generalizations of it, have been the
foremost solution concepts in game theory for almost the entire
history of the field. However, deviation from equilibrium play has
been observed in countless human subjects and in a multitude of
games. In the Traveler’s Dilemma, individuals usually make large
claims and rarely play the Nash equilibrium of claiming the
smallest possible value, R, at least before any in-game learning
has occurred. This ‘‘irrational’’ behavior is observed even amongst
economists (Becker et al., 2005), the individuals one would think
are most likely to analyze the game and play the Nash equilibrium.

Here we have shown how a stochastic evolutionary model can
explain why human intuition has evolved to favor such play. There
is a population of individuals playing the game, and the evolution
of this population is described by a frequency-dependent Moran
process. When selection is weak, stochasticity results in higher
claims being favored by selection. These results demonstrate the
power of stochastic evolutionary game theory for explaining
cooperative behavior in contexts outside of the Prisoner’s Dilemma
(see also Rand and Nowak, 2012). In a world in which both genetic
inheritance and social learning are imperfect, then, ‘‘irrational’’
play can be evolutionarily advantageous, explaining the ‘‘anom-
alous behavior’’ so often observed by humans playing the Traveler’s
Dilemma.
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