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Highlights

• Proposed a parasitism-mutualism-predation model with stage-structure and maturation time delays.

• Studied the existence of the positive equilibrium of three subsystems.

• Established the criteria for the global stability of the trivial equilibrium.

• Obtained the threshold dynamics for the coexistence and weak persistence.

• Studied the effect of maturation time delays on dynamics of crows and cuckoos.
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A parasitism-mutualism-predation model consisting of

crows, cuckoos and cats with stage-structure and

maturation delays on crows and cuckoos
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Abstract: In this paper, a parasitism-mutualism-predation model is proposed to

investigate the dynamics of multi-interactions among cuckoos, crows and cats with

stage-structure and maturation time delays on cuckoos and crows. The crows per-

mit the cuckoos to parasitize their nestlings (eggs) on the crow chicks (eggs). In

return, the cuckoo nestlings produce a malodorous cloacal secretion to protect the

crow chicks from predation by the cats, which is apparently beneficial to both the

crow and cuckoo population. The multi-interactions, i.e., parasitism and mutual-

ism between the cuckoos (nestlings) and crows (chicks), predation between the cats

and crow chicks are modeled both by Holling-type II and Beddington-DeAngelis-type

functional responses. The existence of positive equilibria of three subsystems of the

model are discussed. The criteria for the global stability of the trivial equilibrium are

established by the Krein-Rutman Theorem and other analysis methods. Moreover,

the threshold dynamics for the coexistence and weak persistence of the model are ob-

tained, and we show, both analytically and numerically, that the stabilities of the inte-

rior equilibria may change with the increasing maturation time delays. We find there

exists an evident difference in the dynamical properties of the parasitism-mutualism-

predation model based on whether or not we consider the effects of stage-structure

and maturation time delays on cuckoos and crows. Inclusion of stage structure results

in many varied dynamical complexities which are difficult to encompass without this

inclusion.

Keywords: Stage-structure; Global stability; Threshold dynamics; Coexistence;

Weak persistence.

1 Introduction

In real ecosystems, there are many kinds of interactions between organisms, e.g., predation, compe-

tition, cooperation, mutualism, commensalism, parasitism and so on. Study of the dynamics of various

relations among species is one of the major fields of theoretical ecology as well as of applied mathematics,

∗Corresponding author. E-mail address:longzhang xj@sohu.com
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including development of mathematical models to better understand these various interactional dynamics

(e.g. Canestarim et al., 2008; Lima, 1998; Holt, 1977; Johnson et al., 1997; Rosenzweig and Macarthur,

1963; Schoener, 1983; Yoshida et al., 2003). Lotka (1925) and Volterra (1926) first proposed the predator-

prey model to study the interactions between species, which is the well-known Lotka-Volterra model as

most useful tool to describe and research interactions between species in ecosystems (e.g. Lima, 1998;

Rosenzweig and Macarthur, 1963; Ruan and Xiao, 2001; Yoshida et al., 2003). Subsequently, versions of

Lotka-Volterra models have been applied to competition (e.g. Cruz et al., 2016; Freedman and Waltman,

1985; Hardin, 1960; Holt, 1977; Liz and Ruizherrera, 2016; Schoener, 1983), cooperation (Luo and Zhang,

2017), mutualism and parasitism models (e.g. Gillespie and Adler, 2013; Wang and DeAngelis, 2016).

However, in general, these different interactions of species mentioned above have been discussed sepa-

rately. But we know that interactions can switch between one type, such as mutualism, and another, such

as parasitism, depending on the abiotic or biotic context ( Hoeksema and Bruna, 2015; Davies and Quinn,

2000; Thompson, 2005; Thompson and Cunninghan, 2002). The associations of nesting birds with other

species contain a spectrum of interactions (Haemig 2001). Some interactions may be commensal, such

as when birds choose to nest in the vicinity of predators such as raptors (Myers, 1935) or social insects

(Quinn and Ueta, 2008), which may provide protection from other predators and competitors without

much risk to themselves. Other relations between species are considered purely antagonistic, such as those

involving avian brood parasites and their hosts, in which hosts are forced to rear completely unrelated

chicks at the cost of losing their own offspring (Davies and Quinn, 2000; Soler, 2014).

But avian interspecific brood parasitism can sometimes be more complex than simply and antagonistic

relationship, and so it provides an ideal platform to study co-evolution (e.g. Feeney et al., 2014; Kilner and

Langmore, 2011; Rothstein, 1990; Roldán and Soler, 2011; Soler et al., 2000; Soler, 2014; Spottiswoode et

al., 2012). An example is that of the great spotted cuckoo (Clamator glandarius), which is a non-evictor

brood parasite that lays its eggs in the nests of magpies (Pica pica) and carrion crows (Corvus corone)

(Soler, 2014). A study of more than 16 years performed by Bolopo et al. (2015) and Canestrari et

al. (2014) in an area of North Spain showed that the great spotted cuckoos benefit their carrion crow

hosts in contexts of high predation risks. Cuckoo nestlings produce a malodorous cloacal secretion when

they are grabbed, which apparently deters predators from parasitized host nests. Thus, the outcome of

host-parasite relations in the great spotted cuckoo-carrion crow system would fluctuate yearly between

parasitism and mutualism depending on the intensity of predation pressure (Soler et al., 2017).

Based on the study data (Bolopo et al., 2015; Canestrari et al., 2014) and the relations among crows,

cuckoos and the predators of crow nests, Wang (2016) studied the following crow-cuckoo-cat system to

characterize the relations among them:





dx

dt
= r1x(1− d1x− β1y −

β2z

c1 + x+ c2y
),

dy

dt
= r2y(−1 + α1x− d2y),

dz

dt
= r3z(−1 +− α2x

c1 + x+ c2y
).

(1)
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where x, y and z represent the population density of crows, cuckoos and cats, respectively; r1 represents

the intrinsic growth rate of species x; ri(i = 2, 3) is the death rates of species y and z; di(i = 1, 2) de-

notes the density-dependent mortality rates of species x and y; c1 represents the half-saturation density

of predation; c2 is the time lost by predators due to deterrence of cuckoos; and αi(i = 1, 2) represents

the population growth rates species y, z, which, in part, incorporates how fast individuals mature and

reproduce. Furthermore, in the system (1), the cuckoos depend upon the crows for survival, and the cats

(i.e., free-ranging cats that hunt year-round but could be attracted with food) represent the predators of

the crow chicks (Nogales et al., 2004) for convenience. In this model the functional response between the

crows and cuckoos is assumed to be linear, and the crow-cat relation has a Holling type II functional re-

sponse modified by adding a term proportional to the cuckoo population in the denominator, representing

the time lost to the cats because of the cuckoo’s deterrence. The authors hypothesized that the relations

between the crows and cuckoos would fluctuate between parasitism and mutualism with the intensity of

predation pressure from the cats. These fluctuations could also occur when the strength of deterrence

varies.

Equations (1) omit an important aspect of all complex organisms, that they have life cycles in which

they go different stages based on age. The activities and interactions of such organisms change according

to stage of their life cycles. Inclusion of this structure is often essential, as a “population responds to

environmental changes with time lags that reflect individual development” (Caswell et al., 1997). However,

for the above model (1), the authors did not consider the stage structure of cuckoos and crows densities,

which is critically important to their interactions. What’s more, in model (1), the authors assumed that

the growth rate of cuckoo chicks just relies on the crow chicks and has nothing to do with the adult

cuckoos. And the authors also assumed that the growth rate of crow chicks is a positive constant and

does not vary with the number of crow adults. At the same time, in Arias-de-Reyna (1998) and Soler

et al. (2001), the authors pointed out that age difference between great spotted cuckoo and crows is an

important predictor of cuckoo edging success. Canestrari et al. (2014) pointed out that, although crow

nestlings are not evicted by cuckoo nestlings, the cuckoo adults will evict the crow chicks from the nest.

Also, Canestrari et al. (2014) stated that the interaction of parasitism between the crows and cuckoos

occurs only for the crow chicks and cuckoo nestlings; meanwhile, the predation relation between the crows

and cats occurs only for the crow chicks and cat adults. Therefore, it is necessary to take the age-structure

into consideration to study its effect on the dynamics of cuckoos, crows and cats. A population model

including a stage-structure and size-structure is therefore one of the classical ways to study life histories

(Aiello and Freedman, 1990).

From reviewing the research on population dynamics with stage-structure, we noted several studies

on the dynamics of predators and their functional responses. Gourley and Kuang (2004) formulated a

predator-prey model with the assumption that stage-structured consumer species growth is the result

of a combination of birth and death process, both of which are closely related to the dynamical supply

of resources. They determined the effect of a constant maturation time delay in a stage-structured

predator-prey model in which the discrete time delay is able to produce sustainable oscillatory dynamics.

Enlightened by the modeling methods in Gourley and Kuang (2004), Liu et al. (2006) studied the
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following stage-structured predator-prey model with a Beddington-DeAngelis functional response type





dx

dt
= rx(t)(1− x(t)

K
)− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

dy

dt
=

nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

dyj
dt

=
nbx(t)y(t)

1 + k1x(t) + k2y(t)
− nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− djyj(t),

(2)

in which x and y represent the population density of prey and mature predator, respectively, and yj(t)

denotes the immature or juvenile predator population densities. They assume that the juveniles suffer a

mortality rate of dj and take τ units of time to mature; thus, e−djτ is the survival rate of each immature

predator reaching maturity. The criteria for the existence of a positive equilibrium, the necessary and

sufficient conditions for the predator extinction and permanence of the system (2) were obtained. They

also showed that the stability of the interior equilibrium may switch when the maturation time delay

increases.

A large body of work has been done by numerous researchers on the population relations incorporating

stage-structure (e.g. Aiello et al., 1992; Aiello and Freedman, 1990; Costa et al., 2016; Chen et al., 2017;

Jones et al., 2017; Rothstein 1990; Wang et al., 2016; Zhang and Zhao, 2017 ). However, in most of these

works, the scholars supposed that the birth rate from adult to juvenile stage is a constant. Obviously, this

is not reasonable because the birth rate changes with the population of adults and other natural factors.

Given this, Lou et al. (2017) proposed an stage-structured model for tick population subject to seasonal

effects by extending the well-known McKendrick-von Foester equation:





∂

∂t
ρ(t, a) +

∂

∂a
ρ(t, a) = −µ

(
t, a,

∫ ∞

0
q(t, s)ρ(t, s)ds

)
ρ(t, a),

ρ(0, a) = φ(a), a ≥ 0,

ρ(t, 0) = b
(
t,

∫ ∞

0
q(t, s)ρ(t, s)ds

)
, t ≥ 0,

(3)

where ρ(t, a) is the population density with respect to the age a at time t; b
(
t,
∫∞
0 q(t, s)ρ(t, s)ds

)
denotes

the egg fecundity rate, which is dependent on time t, and the population density with a weight function

p(t, a); and the per-capita mortality rate µ
(
t, a,

∫∞
0 q(t, s)ρ(t, s)ds

)
varies with time t, age a and the

population density with another weight function q(t, a). The criteria for the existence and uniqueness of

solution and global stability of the positive periodic solution were obtained for above system (3).

Motivated by the above considerations and works of Canestrari et al. (2014), Wang (2016) and Lou

et al. (2017), on the one hand, we specify the birth rates of crow chicks as a function of crow adults and

calculate the birth rates of the cuckoo nestlings using the theory of the conversion of biomass. On the

other hand, we introduce the maturation time on cuckoos and crows to better understand the interactions

among cuckoos, crows and cats. The maturation time proposed in this paper is neither the time of chick

development in the nest nor time to sexual maturation. It is the time taken from eggs to when they

have the ability to seek food and protect themselves away from their nests. This is closely related to
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time to fledging. The reason to define the maturation time in this way mainly as follows: First, the crow

chicks once they have the ability to protect themselves, they will be out of the cuckoo nestlings parasitic

protection. It fits our model and it also shows that the crow chicks reach the crow adults stage. Second,

there are several similar definitions, such as Liu and Beretta, 2006 and Gourley and Liu, 2014. Based on

the above considerations, a parasitism-mutualism-predation model was formulated to study the impacts

of the maturation time delays on the multi-interactional dynamics among cuckoos, crows and cats.

The outline of the work is as follows. Section 2 shows the derivation of the model consisting of

crow chicks and adults, cuckoo nestlings and adults, and cat adults. The positivity and boundedness

of solutions, existences of the equilibria of three subsystems as well as the whole system are analysed in

Section 3. In Section 4, we give sufficient conditions to ensure the global stability of the trivial equilibrium

(cuckoo-cat free) and weak persistence of the whole system. Numerical simulations are presented in

Section 5 to corroborate our analytical results. Finally, a discussion is provided in Section 6.

2 Model derivation

Throughout this paper, the subscripts x, y and z stand for crows, cuckoos and cats, respectively.

The superscripts l and a of µ, i.e., µl and µa indicate the average death rates of chicks and adults,

respectively. Let lx(t, a) represent the population density of crow chicks at time t of age a. These crow

chicks are parasitised by the cuckoo nestlings and preyed upon by the cat adults. According to the

standard von Foerster age-structured modeling approach (Keyfite et al., 1997), we use

∂lx(t, a)

∂t
+
∂lx(t, a)

∂a
= −ulxlx(t, a)− e1σ1lx(t, a)Ly(t)

1 + h1e1σ1Lx(t)
− e2σ2lx(t, a)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
(4)

to show the density loss of crow chicks, either by natural deaths with an average mortality rate ulx or

by being parasitised by the cuckoo nestlings and preyed upon by the cat adults, which are described by

the second and third terms in (4), respectively. Lx(t), Ly(t) and Ax(t) represent the (total) population of

crow chicks, cuckoo nestlings and cat adults at time t, respectively. We use the Holling type II functional

response
e1σ1lx(t,a)Ly(t)
1+h1e1σ1Lx(t)

to characterize the parasitism between the crow chicks and cuckoos nestlings, at

the same time, we use the Beddington-DeAngelis type functional response e2σ2lx(t,a)Az(t)
1+h2e2σ2Lx(t)+k2Ly(t)

to show

both the mutualism between the crow chicks and cuckoo nestlings, and the predation between the crow

chicks and cat adults as well. The parameter hi(i = 1, 2) represents the handling (digestion) time per

unit biomass consumed, and ei(i = 1, 2) represents the crow chicks biomass encounter rate with cuckoos

and crows. The parameter σi(i = 1, 2) is the fraction of the consumed crow chick biomass.

The total population of the crow chicks at time t is

Lx(t) =

∫ τx

0
lx(t, a)da, (5)

where τx is the maturation time delay of crow chicks. In fact, the maturation time taken depends on

many external natural factors (such as temperature, the height of nests). In view of the difficulties in

modeling this dependence, we let τx as a known constant here. Differentiating (5) with respect to t on
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both sides, and using (4), we obtain

dLx(t)

dt
= lx(t, 0)− lx(t, tx)− ulxLx(t)− e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
. (6)

Now, lx(t, 0) is the hatching rate of the crows; this is taken to be a function B(·) of the total number Ax(t)

of crow adults and it is usually a reasonable assumption to model populations from biological significance.

Thus,

lx(t, 0) = B(Ax(t)). (7)

To get the specific expression of (6), we need to calculate lx(t, τx). Let

lωx (a) = lx(a+ ω, a). (8)

Differentiating (8) with respect to a on both sides, and by (4), we obtain

dlωx (a)

da
= −ulxlωx (a)− e1σ1l

ω
x (a)Ly(a+ ω)

1 + h1e1σ1Lx(a+ ω)
− e2σ2l

ω
x (a)Az(a+ ω)

1 + h2e2σ2Lx(a+ ω) + k2Ly(a+ ω)
,

so that

lωx (a) =lωx (0) exp

{
−
∫ a

0

[
ulx +

e1σ1Ly(θ + ω)

1 + h1e1σ1Lx(θ + ω)

+
e2σ2Az(θ + ω)

1 + h2e2σ2Lx(θ + ω) + k2Ly(θ + ω)

]
dθ

}
.

Let a = τx, ω = t− τx, and by (7), we obtain

lx(t, τx) =B(Ax(t− τx)) exp

{
−
∫ τx

0

[
ulx +

e1σ1Ly(θ + ω)

1 + h1e1σ1Lx(θ + ω)

+
e2σ2Az(θ + ω)

1 + h2e2σ2Lx(θ + ω) + k2Ly(θ + ω)

]
dθ

}
.

(9)

Then, the crow chicks’ specific final equation was obtained by taking (7) and (9) into (6)

dLx(t)

dt
= −ulxLx(t)− e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)

+B(Ax(t))−B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
,

(10)

which can also be written in the integral equation form

Lx(t) =

∫ t

t−τx
B(Ax(ξ)) exp

{
−
∫ t

ξ

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
dξ.

(11)
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The last term in (10) is the rate at which the crow chicks mature into crow adults. In (10), the Holling

type II functional response
e1σ1Lx(t)Ly(t)
1+h1e1σ1Lx(t)

has the term Lx(t) in both its numerator and denominator so

as to therefore level off at large values of Lx(t). This yields the important fact that each parasitised

cuckoo nestling can consume only a limited quantity of the crow chick biomass per unit time. This rather

important observation means that a single crow chick offers a large amount of food for a single cuckoo

nestling. Moreover, adding a term proportional to Ly(t) to the denominator of the Beddington-DeAngelis

type functional response represents the time lost to the cats. By (10) and (11), we may obtain an equation

for the population Ax(t) of crow adults from the biological fact:

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
,

(12)

where uax is the the average death rate for crow adults, and other parameters have the same meaning as

above.

Next, we need to derive the equations for the cuckoo nestlings and cuckoo adults. The second term

in the right-hand side of (10) describes the parasitism of cuckoo nestlings and denotes the quantity of

resources consumed by cuckoo nestlings. The consumed crow chicks biomass is converted into cuckoo

nestlings biomass, as with any parasitism interaction, but in this case the process needs some time i.e.,

it is obviously not instantaneous. We compute this conversion by considering the cuckoo nestlings that

mature at time t, and they mate and lay eggs soon after maturation; i.e., this is assumed to occur with

only negligible delay. Suppose τy is the maturation time for the cuckoo nestlings. Those cuckoo nestlings

that mature at time t, between time ξ and ξ + dξ with ξ ∈ (t− τy, t) consumed a quantity

exp[−uly(t− ξ)]
e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ

of crow chicks biomass. The exponential term exp[−uly(t− ξ)] denotes survival probability of the cuckoo

nestlings over the time interval [ξ, t]. Ignoring it will lead to computing all crow chick biomass being

consumed over the time interval [ξ, ξ + dξ], including consumption by those cuckoo nestlings that have

died since. The total number of the crow chicks biomass consumed by those survived cuckoo nestlings

and are ready to mature at time t is

∫ t

t−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ.

At time t or soon after, this crow chick biomass is converted into new cuckoo nestlings biomass in the

form of a plenty of cuckoo eggs. If the above quantity is multiplied by a parameter C1, which measures

the efficiency of this conversion, we obtain a number of eggs laid by those cuckoos that have just matured

at time t. This number has to be converted into the breeding rate. The eggs might be laid over a very

transient time interval after maturation in practice, or maybe even all at once, so we regard these cuckoo

eggs as a flock of cuckoo nestlings that have taken a time τy to mature. Therefore, we divide it by τy and
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get the hatching rate ly(t, 0) of the cuckoos

ly(t, 0) =
C1

τy

∫ t

t−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ, (13)

where ly(t, a) is the age density function for the cuckoos. Since τy is the maturation time for the cuckoo

nestlings, according to the standard von Foerster age-structured modeling approach as the same above,

we have
∂ly(t, a)

∂t
+
∂ly(t, a)

∂a
= −ulyly(t, a), 0 < a < τy. (14)

Next, we calculate ly(t, τx) to obtain the equation for cuckoo nestlings. Define

lξy(a) = ly(a+ ξ, a). (15)

Differentiating (15) with respect to a on both sides, and by (14), we get

dlξy(a)

da
= −ulylξy(a)

so that

lξy(a) = lξy(0) exp

[
−
∫ a

0
ulydθ

]
.

Setting a = τy and ξ = t− τy, we obtain

ly(t, τy) =
exp(−ulyτy)C1

τy

∫ t−τy

t−2τy
exp[−uly(t− τy − ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ (16)

for t > 2ty. Equation (16) implies that the rate of cuckoos’ maturation at time t is the cuckoo nestlings

survival probability exp(−ulyτy) multiplied by the natality ly(t− τ, 0) at the earlier time t− τy. The latter

relies on the quantity of crow chicks biomass consumed by the previous generation over the earlier time

interval [t− 2τy, t− τy]. Having noted this explanation of (16), we combine and simplify the exponentials

therein. Now

Ly(t) =

∫ τy

0
ly(t, a)da. (17)

Then, by differentiating (17) with t on both sides, and by using (13) and (16) we have

dLy(t)

dt
= −ulyLy(t) +

C1

τy

∫ t

t−τ
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ

− C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ.

(18)

The following integral equation is an alternative to (18):

Ly(t) =
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξdη. (19)
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From the third term of (18), for the number Ay(t) of cuckoo adults at time t, we have the following

equation:
dAy(t)

dt
= −uayAy(t) +

C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ. (20)

Finally, we need the equations for cat adults. From the third term of the equation (10), we obtain

dAz(t)

dt
= −uaz(t)Az(t) +

C2e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
. (21)

Based on the above derivation, our complete system is as follows:





dLx(t)

dt
= −ulxLx(t)− e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)

+B(Ax(t))−B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
.

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
,

dLy(t)

dt
= −ulyLy(t) +

C1

τy

∫ t

t−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ

− C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ,

dAy(t)

dt
= −uayAy(t) +

C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ,

dAz(t)

dt
= −uaz(t)Az(t) +

C2e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
.

(22)
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At the same time, we get the alternative to (22) for convenience





Lx(t) =

∫ t

t−τx
B(Ax(ξ)) exp

{
−
∫ t

ξ

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
dξ,

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

+
e2σ2Az(θ)

1 + h2e2σ2Lx(θ) + k2Ly(θ)

]
dθ

}
,

Ly(t) =
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξdη,

dAy(t)

dt
= −uayAy(t) +

C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ,

dAz(t)

dt
= −uaz(t)Az(t) +

C2e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
.

(23)

The two systems are equivalent for the restricted class of initial data such that (11) and (19) hold at time

t = 0, which is also ecologically realistic.

3 Model analysis

Throughout the model analysis, we make the following assumptions on the birth rate B(·) of crows

from the biologically acceptable points:

(a) B(0) = 0, B(A) is increasing and Ḃ(A) is decreasing for A > 0;

(b) There exists A??x > 0 such that exp(−ulxτx)B(A) > uaxA when 0 < A < A??x ;

(c) exp(−ulxτx)B(A) < uaxA when A > A??x .

(24)

Note that (24) implies

Ḃ(0) exp(−ulxτx) > uax. (25)

Remark 3.1. From a biological point of view, the assumptions of (24) show that the birth function

B(·) of crow chicks is density-dependent on the crow adults. Generally, the number of newly matured

crow adults exp(−ulxτx)B(Ax(t)) is greater than the removed uaxAx when Ax is small (Ax < A??x ), and it is

opposite when Ax is large (Ax > A??x ). Moreover, the inequality (25) is strict because Ḃ(A) is decreasing.

3.1 Positivity and boundedness.

We first prove the positivity and boundedness of solutions for the system (22) or (23).

Theorem 3.1. Assume that assumption (24) holds, that all five variables are nonnegative and contin-

uous on their respective initial intervals, and that (11) and (19) hold at t = 0. Then all components of

the solution of system (22), or of the variant system (23) are nonnegative and bounded for all t ≥ 0.
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Proof. By the system (12), we have

Ax(t) = Ax(0) exp(−uaxt) +

∫ t

0
B(Ax(s− τx))K̂ exp[uax(s− t)]ds, (26)

where

K̂ = exp

[
−
∫ s

s−τx
(ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)
+

e2σ2Az(θ)

1 + h2e2Lx(θ) + k2Ly(θ)
)dθ

]
.

Then we have Ax(t) > 0 holding for all t ≥ 0 ; otherwise, there must exist t0 > 0 such that Ax(t0) = 0.

Let t1 = inf{t0 > 0 : Ax(t0) = 0}; thus we have Ax(t1) = 0 and Ax(t) > 0 for all t ∈ [0, t1). From (26),

we get

Ax(t1) = Ax(0) exp(−uaxt1) +

∫ t1

0
B(Ax(s− τx)K̂ exp[uax(s− t1)]ds > 0,

which leads to a contradiction to Ax(t1) = 0. This proves the positivity of Ax(t) for all t ≥ 0.

Next, we prove that Lx(t) > 0 for all t ≥ 0. By the positivity of Ax(t) and the assumption (24), we

can get B(Ax(ξ)) > 0. Then from (11), we can prove Lx(t) > 0 for all t ≥ 0 by using similar arguments

above.

In order to prove the positivity of Ly(t), Ay(t) and Az(t), we get the integral form of the equation

(18), (20) and (21), respectively;

Ly(t) =
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξdθ,

Ay(t) = exp(−uayt)
[
Ay(0) +

∫ t

0

C1

τy

∫ s−θy

s−2τy
exp[−uly(s− ξ)

− uays]
e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ) + k2Ly(ξ)
dξ

]
ds,

Az(t) = Az(0) exp

[∫ t

0
(−uaz +

C2e2σ2Lx(s)

1 + h2e2σ2Lx(s) + k2Ly(s)
)ds

]
.

(27)

Similar to the above proof, we can prove that Ly(t) > 0, Ay(t) > 0 and Az(t) > 0 for all t ≥ 0, respectively.

Then we prove the boundedness of the solutions the system (22) or (23). To verify that Ax(t) is

bounded, let r be an arbitrary positive constant. Then, on the interval [−τx, r], Ax(t) assumes its

maximum at some value tm. If tm ∈ [−τx, 0], then Ax(t) ≤ maxθ∈[−τx,0]Ax(θ) for all t ∈ [−τx, r]. Suppose

that τm ∈ (0, r]; then Ȧx(τm) ≥ 0 and Ax(tm) ≥ Ax(tm − τx). Therefore, from (12), we obtain

0 ≤ −uaxAx(tm) + exp(−ulxτx)B(Ax(tm − τx))

≤ −uaxAx(tm) + exp(−ulxτx)B(Ax(tm)),

since B(·) is increasing. It follows from (24) that Ax(tm) ≤ A??x and therefore Ax(t) ≤ A??x for all

t ∈ [−τx, r]. Since r is an arbitrary positive constant, it follows that

Ax(t) ≤ max{ max
θ∈[−τx,0]

Ax(θ), A??x }, for all t ≥ −τx,

12
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which demonstrates the boundedness of Ax(t). We now show that A??x is the asymptotic bound. By the

fluctuation method (Spottiswoode et al., 2012), there is a sequence of times tn such that tn →∞, Ax(tn)→
Āx = lim supt→∞Ax(t), and Ȧx(tn)→ 0 as n→∞. From (12), it follows that

Ȧx(tn) ≤ −uaxAx(tn) + exp(−ulxτx)B(Ax(tn − τx)).

Letting n → ∞, applying standard property of the lim sup, and the assumption that B(·) is increasing,

we obtain

0 ≤ −uaxĀx + exp(−ulxτx)B(Āx).

According to assumption (24), lim supt→∞Ax(t) = Āx ≤ A??x . Next, from (11) we can show that

lim sup
t→∞

Lx(t) ≤ B(Āx)[1− exp(−ulxτx)]

ulx
≤ B(A??x )[1− exp(−ulxτx)]

ulx
= L??x .

Finally, we show that Ly(t) and Ay(t) are bounded. From (10),

e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
= B(Ax(t))− dLx(t)

dt
− ulxLx(t)− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)

−B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)
− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)

]
dθ

}

≤ B(Ax(t))− dLx(t)

dt
.

Therefore, for any t ≥ θ, we have

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ ≤

∫ θ

θ−τy
B(Ax(ξ))dξ − [Lx(θ)− Lx(θ − τy)]

≤ τy sup
θ−τy≤ξ≤θ

{B(Ax(ξ))}+ Lx(θ − τy).

Using the integral equation (19) for Ly(t), it follows that

Ly(t) ≤
C1

τy

∫ t

t−τy
[τy sup

θ−τy≤ξ≤θ
B(Ax(ξ)) + Lx(θ − τy)]dθ.

Since Ax(t) and Lx(t) are bounded, Ly(t) is also bounded. From the boundedness of Ly(t) and the

equation (27), it is easy to prove that Ay(t) is bounded by using a comparison argument. By the way, it

is also easy to prove that Az(t) is bounded with the boundedness of Lx(t), Ly(t) by using a comparison

argument.

3.2 Existence of equilibria. Biological insights can be gained from a study of the equilibria of the

model. In this section, we establish the existence of equilibria of the three subsystems and the whole

system.

3.2.1 Cat-Cuckoo-free equilibrium. Supposing that (24) holds, we consider the following subsys-
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tem with cat-cuckoo free





dLx(t)

dt
= −ulxLx(t) +B(Ax(t))−B(Ax(t− τx)) exp[−

∫ t

t−τx
ulxdθ],

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp[−

∫ t

t−τx
ulxdθ].

(28)

There is an equilibrium (L??x , A
??
x ) for system (28)(system (22) with Ly = Ay = Az = 0), which we refer

to as the Cat-Cuckoo-free equilibrium, where A??x > 0 from (24), and L??x , A??x satisfy

exp(−ulxτx)B(A??x ) = uaxA
??
x , L??x =

B
(
A??x (1− exp(−ulxτx))

)

ulx
. (29)

3.2.2 Cat-free equilibrium. Since the cuckoo is seen as a control agent for the crow. we are

particularly interested in the possible existence of an equilibrium in which all four components are positive

but the crow chicks and adults are present only in smaller numbers. So we consider the following crow-

cuckoo subsystem





dLx(t)

dt
= −ulxLx(t)− e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
+B(Ax(t))

−B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

]
dθ

}
,

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e1σ1Ly(θ)

1 + h1e1σ1Lx(θ)

]
dθ

}
,

dLy(t)

dt
= −ulyLy(t) +

C1

τy

∫ t

t−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ

− C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ,

dAy(t)

dt
= −uayAy(t) +

C1

τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ.

(30)

Equation (18) shows that, in such an equilibrium (L?x, A
?
x, L

?
y, A

?
y, 0) with L?y > 0, we can have

L?x =
τy(u

l
y)

2

C1e1σ1[1− exp(−ulyτy)]2 − h1e1σ1τy(uly)2
. (31)

From (31), we can obtain

C1[1− exp(−ulyτy)]2 > h1τy(u
l
y)

2. (32)

Remark 3.2. In fact, expression (32) is never singular, because, as we shall show, a stronger condition

on C1 is necessary for the existence of an equilibrium that is cat free. This is the condition (36), which

also characterized later as one of the conditions for the persistence of the cuckoos. With L?x given by (31),
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the L?y and A?x components of the equilibrium with the cats free are found by simultaneously solving

L?x =
B(A?x)

ulx +
e1σ1L?

y

1+h1e1σ1L?
x

{
1− exp[−τx(ulx +

e1σ1L
?
y

1 + h1e1σ1L?x
)]
}

(33)

and

uaxA
?
x = B(A?x) exp[−τx(ulx +

e1σ1L
?
y

1 + h1e1σ1L?x
)]. (34)

The following result deals with the existence of L?y > 0 and A?x > 0 satisfying (33) and (34). Later, we

obtain more explicit expressions for the equilibrium components in the case when C1 is very large.

Theorem 3.2. If assumption (24) holds, and

C1e1σ1L
??
x

τy(1 + h1e1σ1L??x )
[1− exp(−ulyτy)]2 > (uly)

2, (35)

then system (30) has an equilibrium in which the crows and cuckoos coexist.

Proof. Each of (33) and (34) defines a curve in the (L?y, A
?
x) plane

(
recall that L?x is fixed and given

by (31)
)
. We rewrite (33) in the form A?x = ϕ1(L

?
y), where

ϕ1(b) = B−1
(

L?x
τxk
(
τx(ulx + e1σ1b

1+h1e1σ1L?
x
)
)
)

with k(b) = [(1 − exp(−b))]/b. Now, when x > 0, k(b) is decreasing in b and B−1(·) is increasing, since

B(·) is. Thus, ϕ1(b) is increasing.

Then consider the curve defined by (34). For a particular L?y, let the function ϕ2(L
?
y) be defined as the

solution A?x of (34) so that (34) is rewritten as A?x = ϕ2(L
?
y). Using (24) it is not difficult to see that the

function ϕ2(b) is decreasing, because, if we increase the value of L?y, we decrease the coefficient value of the

functionB(·) in (34). The valueA?x at which the curvesA→ uaxA andA→ B(A) exp[−τx(ulx+
e1σ1L?

y

1+h1e1σ1L?
x
)]

intersect must therefore decrease as we increase L?y. Moreover, this value must reach zero at a finite value

of L?y.

According to these facts about the curves A?x = ϕ1(L
?
y) and A?x = ϕ2(L

?
y) in the (L?y, A

?
x) plane, it

follows immediately that if ϕ1(0) < ϕ2(0), then there exists L?y > 0 and A?x > 0 satisfying (33) and (34).

Now

ϕ1(0) = B−1
(

L?x
τxk(τxulx)

)
= B−1

(
ulxL

?
x

1− exp(−ulxτx)

)
,

while ϕ2(0) = A?x. Thus, the condition ϕ1(0) < ϕ2(0) becomes

B(A??x ) >
ulxL

?
x

1− exp(−ulxτx)
.

This can be shown to be equivalent to (35), using (31) and the expression for L??x in (29).

Remark 3.3. The proof of Theorem 3.2 also implies that the coexistence equilibrium (L?x, A
?
x, L

?
y, L

?
y)

is unique. Moreover, L?x < L??x and A?x < A??x if the coexistence equilibrium exists.
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If the assumptions of Theorem 3.2 hold, further useful insights can be obtained by supposing that the

parameter values are such that the equilibrium L?x is low, i.e., expression (31) is low. For example, we

might assume that the conversion efficiency C1 is large. Then we also expect the equilibrium A?x to be on

the low side so that B(A?x) ≈ Ḃ(0)A?x. From (34), we then obtain an explicit expression for L?y:

L?y =
1 + h1e1σ1L

?
x

e1σ1

[
1

τx
ln(

Ḃ(0)

uax
)− ulx

]
(36)

with L?x given by (31). Then, from (33),

A?x =
L?x ln(Ḃ(0)/uax)

Ḃ(0)τx(1− uax/Ḃ(0))
. (37)

Expression (37) is automatically positive, while (36) is positive because of (25).

From (20), A?y is given in terms of other equilibrium components by

A?y =
C1e1σ1 exp(−ulyτy)[1− exp(−ulyτy)]L?xL?y

ulyu
a
yτy(1 + h1e1σ1L?x)

(38)

without further parameter restrictions. We conclude that, if the numbers of crow chicks and adults are

small (for example, if C1 is very large), then the equilibrium which is free of cats is given approximately

by (31), (36), (37) and (38).

3.2.3 Cuckoo-free equilibrium. Since the cat is seen as a predator for the crow chicks, we are

particularly interested in the possible existence of an equilibrium (L???x , A???x , A???z ). Then we consider

the following crow-cat subsystem





dLx(t)

dt
= −ulxLx(t)− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t)
+B(Ax(t))

−B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e2σ2Az(θ)

1 + h2e2σ2Lx(θ)

]
dθ

}
,

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp

{
−
∫ t

t−τx

[
ulx +

e2σ2Az(θ)

1 + h2e2σ2Lx(θ)

]
dθ

}
,

dAz(t)

dt
= −uaz(t)Az(t) +

C2e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t)
.

(39)

From (21), we obtain

L???x =
uaz(1 + h2e2σ2)

C2e2σ2
. (40)

Obviously, (40) is positive because all parameters are positive constants. With L???x given by (40), the

A???x and A???z components of an equilibrium with the cat present are found by simultaneously solving

L???x = B(A???x )
1

ulx + e2σ2A???
z

1+h2e2σ2A???
z

{1− exp[−τx(ulx +
e2σ2A

???
z

1 + h2e2σ2L???x

)]} (41)
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and

uaxA
???
x = B(A???x ) exp[−τx(ulx +

e2σ2A
???
z

1 + h2e2σ2L???x

)]. (42)

Later, we obtain a more explicit expression for the equilibrium components in the case when C2 is very

large.

Theorem 3.3. If assumption (24) holds, and

C2e2σ2L
??
x [1− exp(−ulxτx)] > uaz(1 + h2e2σ2), (43)

then system (39) has an equilibrium in which the crow and cat coexist.

Proof. Each of (41) and (42) defines a curve in the (A???Z , A???x ) plane
(
recall that L???x is fixed and

given by (40)
)
. We can write (41) in the form A???x = ϕ3(A

???
z ), where

ϕ3(b) = B−1
(

L???x

τxk
(
τx(ulx + e2σ2b

1+h2e2σ2L???
x

)
)
)

with k(b) = [(1 − exp(−b))]/b. Now, when x > 0, k(b) is decreasing in b and B−1(·) is increasing, since

B(·) is. Thus, ϕ3(b) is increasing.

Now consider the curve defined by (42). For a particular A???z , let the function ϕ4(A
???
z ) be defined

as the solution A???x of (42) so that (42) is rewritten as A???x = ϕ4(A
???
z ). It is easy to see, using (24),

that the function ϕ4(b) is thus defined is decreasing, because, if we increase the value of A???z , the

coefficient value of the function B(·) in (42) decreases. The value A???x at which the curves A→ uaxA and

A → B(A) exp[−τx(ulx + e2σ2A???
z

1+h2e2σ2L???
x

)] intersect must therefore decrease as we increase A???z . Moreover,

this value must reach zero at a finite value of A???z .

In view of these facts about the curves A???x = ϕ3(A
???
z ) and A???x = ϕ4(A

???
z ) in the (A???x , A???z )

plane, it follows immediately that, there exists A???x > 0 and A???z > 0 satisfying (41) and (42) when

ϕ3(0) < ϕ4(0). Now

ϕ3(0) = B−1
(

L???x

τxk(τxulx)

)
= B−1

(
ulxL

???
x

1− exp(−ulxτx)

)
,

while ϕ4(0) = A??x . Thus, the condition ϕ3(0) < ϕ4(0) becomes

B(A??x ) >
ulxL

???
x

1− exp(−ulxτx)
.

Then taking (40) into the above expression, we can obtain

C2e2σ2L
??
x [1− exp(−ulxτx)] > uaz(1 + h2e2σ2).

This can be shown to be equivalent to (43).

Remark 3.4. The proof of Theorem 3.3 also implies that the coexistence equilibrium (L???x , A???x , A???z )

is unique. Moreover, L???x < L??x and A???x < A??x if the coexistence equilibrium exists.

If the assumptions of Theorem 3.3 hold, further useful insights can be gained by supposing the
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parameter values are such that the equilibrium L???x is low, i.e., expression (40) is low. For example,

we might assume that the conversion efficiency C2 is large. Then, we also expect the equilibrium A???x to

be on the low side such that B(A???x ) ≈ Ḃ(0)A???x . From (42), we then obtain an explicit expression for

A???z :

A???z =
1 + h2e2σ2L

???
x

e2σ2

[
1

τx
ln(

Ḃ(0)

uax
)− ulx

]
(44)

with L???x given by (40). Then, from (41),

A???x =
L???x ln(Ḃ(0)/uax)

Ḃ(0)τx(1− uax/Ḃ(0))
. (45)

Expression (45) is surely positive, while (44) is positive because of (25).

We conclude that if the populations of crows chicks and adults are small (for example, if C2 is very

large), then the equilibrium in which the cats are free is given approximately by (40), (44) and (45).

3.2.4 Crow-Cuckoo-Cat coexistence equilibrium. The study of the whole system is very sig-

nificant in this paper. So it is important to consider the existence of the Crow-Cuckoo-Cat coexistence

equilibrium (L̃x, Ãx, L̃y, Ãy, Ãz). From the equation (18), we can get

L̃x =
τy(u

l
y)

2

C1e1σ1[1− exp(−ulyτy)]2 − h1e1σ1τy(uly)2
. (46)

Observe that, necessarily,

C1e1σ1[1− exp(−ulyτy)]2 > h1e1σ1τy(u
l
y)

2. (47)

Expression (46) is never singular in practice, because a stronger condition C1 is in fact necessary for the

existence of an equilibrium with the cuckoo present. Then with the L̃x given by (46), from (21), we can

get that

L̃y =
C2e2σ2L̃x − uazh2e2σ2L̃x − uaz

uazk2
. (48)

Observe that, necessarily,

C2e2σ2L̃x − uazh2e2σ2L̃x − uaz > 0. (49)

Taking (46) into (49) and combining (47), we finally get

(C2e2σ2 − uazh2e2)τy(uly)2 − uazC1e1σ1[1− exp(−ulyτy)]2 + uazh1e1σ1τy(u
l
y)

2 > 0.

With the L̃x, L̃y given by (46) and (49), the Ãx and Ãz components of an equilibrium are found by

simultaneously solving

L̃x = B(Ãx)
1

ulx +
e1σ1L̃y

1+h1e1σ1L̃x
+ e2σ2Ãz

1+h2e2σ2L̃x+k2L̃y{
1− exp

[
−
(
ulx +

e1σ1L̃y

1 + h1e1σ1L̃x
+

e2σ2Ãz

1 + h2e2σ2L̃x + k2L̃y

)
τx

]} (50)
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and

uaxÃx = B(Ãx) exp

[
−
(
ulx +

e1σ1L̃y

1 + h1e1σ1L̃x
+

e2σ2Ãz

1 + h2e2σ2L̃x + k2L̃y

)
τx

]
. (51)

The following results deal with the existence of Ãz > 0 and Ãx > 0 satisfying (50) and (51).

Theorem 3.4. If assumption (24) holds, and

B

(B(Ãx) exp[−(ulx +
e1σ1L̃y

1+h1e1σ1L̃x
)τx]

uax

)
>

L̃x(uly +
e1σ1L̃y

1+h1e1σ1L̃x
)

1− exp[−(ulx +
e1σ1L̃y

1+h1e1σ1L̃x
)τx]

, (52)

then system (22) or (23) has an equilibrium in which the crows, cuckoos and cats coexist.

Proof. Each of (50) and (51) defines a curve in the (Ãz, Ãx) plane (recall that L̃x and L̃y is fixed

and given by (46) and (48). We rewrite (50) in the form Ãx = ϕ5(Ãz), where

ϕ5(b) = B−1


 L̃x

τxk
(
τx(ulx +

e1σ1L̃y

1+h1e1σ1L̃x
+ e2σ2b

1+h2e2σ2L̃x+k2L̃y
)
)




with k(b) = [(1 − exp(−b))]/b. Now, when x > 0, then k(b) is decreasing in b and B−1(·) is increasing,

since B(·) is. Thus, ϕ5(b) is increasing.

Now consider the curve defined by (51). For a particular Ãz, let the function ϕ6(Ãz) be defined as

the solution Ãx of (51) so that (51) is rewritten as Ãx = ϕ6(Ãz). It is easy to see, using (24), that the

function ϕ6(b) thus defined is decreasing, because the coefficient of the function B(·) in (51) decrease as

the value of Ãz increases. The value Ãx at which the curves A → uaxA and A → B(A) exp[−τx(ulx +
e1σ1L̃y

1+h1e1σ1L̃x
+ e2σ2Ãz

1+h2e2σ2L̃x+k2L̃y
)] intersect must therefore decrease as we increase Ãz. Moreover, this value

must reach zero at a finite value of Ãz.

In view of these facts about the curves Ãx = ϕ5(Ãz) and Ãx = ϕ6(Ãz) in the (Ãx, Ãz) plane, it follows

immediately that, if ϕ5(0) < ϕ6(0), then there exist Ãx > 0 and Ãz > 0 satisfying (50) and (51). Now

ϕ5(0) = B−1


 L̃x(ulx +

e1σ1L̃y

1+h1e1σ1L̃x
)

1− exp[−(ulx +
e1+σ1L̃y

1+h1e−1σ1L̃x
)τx]


 ,

while

ϕ6(0) =
B(Ãx) exp[−ulx +

e1σ1L̃y

1+h1e1σ1L̃x
τx]

uaz
.

Thus, the condition ϕ5(0) < ϕ6(0) becomes the condition (52).

4 Main results

4.1 Global stability of the Cuckoo-Cat-free equilibrium

The following theorem shows that if the biomass conversion efficiencies C1, C2 are low enough or
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the cats and the cuckoo nestlings take much time to digest their food (h1, h2 are very large), then the

cuckoo-cat pair will be driven to extinction.

Theorem 4.1. Suppose that

C1e1σ1
τy(1 + h1e1σ1L??x )

[1− exp(−ulyτy)]2 < (uly)
2 (53)

and
C2e2σ2L

??
x

1 + h2e2σ2L??x
< uaz , (54)

then the Cuckoo-Cat-free equilibrium (L??x , A
??
x , 0, 0, 0) of system (28) is globally asymptotically stable

for all nonnegative solutions with Ax(θ) 6= 0 on [−τx, 0].

Proof. We use the variant of the model that involves the integral equations (11) and (19). From (12)

and the positivity of solutions, we have

dAx(t)

dt
≤ −uaxAx(t) +B(Ax(t− τx)) exp(−ulxτx). (55)

Since B(·) is increasing, we may use a comparison argument (for example see Smith, 1995) to conclude

that Ax(t) is bounded by the solution of the corresponding differential equation obtained from (55) by

changing. Since B(·) is increasing, positive solution of that differential equation approaches A??x (see

Kuang, 1993). Therefore,

lim sup
t→∞

Ax(t) ≤ A??x ,

and from (29) we have

lim sup
t→∞

Lx(t) ≤ B(A??x )[1− exp(−ulxτx)]

ulx
= L??x .

Since (53) holds, there exists a small enough positive constant ε such that

(uly)
2 >

C1e1σ1(L
??
x + ε)

τy(1 + h1e1σ1(L??x + ε))
[1− exp(−ulyτy)]2. (56)

With this ε, Lx ≤ L??x + ε for t sufficiently large. From (19) and for t sufficiently large, we obtain

Ly(t) ≤
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1(L
??
x + ε)Ly(ξ)

1 + h1e1σ1(L??x + ε)
dξdθ, (57)

because the integrand of (18) increases with respect to Lx(ξ). Any solution of inequality (57) is bounded

above by the solution Ľy(t) of the corresponding integral equation

Ľy(t) ≤
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1(L
??
x + ε)Ľy(ξ)

1 + h1e1σ1(L??x + ε)
dξdθ, (58)

such that Ľy(θ) ≥ Ly(θ) for all θ ∈ [−2τy, 0]. Indeed, it is straightforward to show, since (58) is linear and

has a positive kernel, that the variable Ľy(θ0) − Ly(t) can never become negative. Actually, (57) holds
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only for t sufficiently large, but the comparison argument still holds for a suitable solution Ľy(t) of (58).

In fact, the solution map of (58) is strongly positive: if Ly(θ) ≥ 0 for all θ ∈ [−2τ, 0] and Ľy(θ0) > 0

for some θ0 ∈ [−2τy, 0], then Ľy(t) > 0 for all t > 2τy. Moreover, since (58) has a positive kernel, by

the Krein-Rutman theorem it suffices to consider only the real roots of the characteristic equation that

results from a search for solutions of the form Ľy(t) = exp(λt). Inserting it into (18), we can get

(λ+ uly)
2 =

C1e1σ1(L
??
x + ε)

τy(1 + h1e1σ1(L??x + ε))
[1− exp(−ulyτy)]2. (59)

In view of all these facts, to show that Ľy(t) → 0 (and hence Ly(t) → 0) as t → ∞, it suffices to prove

that all the real roots of (59) are negative. Note that, since (56) holds, the left-hand side of (59) exceeds

its right-hand side when λ = 0. To simplify the notation, we denote

M =
C1e1σ1(L

??
x + ε)

τy[1 + h1e1σ1(L??x + ε)]
.

Then we have M [1 − exp(−ulyτy)]2 ≤ (uly)
2. The real roots of (59) must satisfy one of the following

equations:

m(λ) :=
√
M{1− exp[−(λ+ uly)τy]}+ (λ+ uly) = 0,

n(λ) :=
√
M{1− exp[−(λ+ uly)τy]} − (λ+ uly) = 0.

The function y = m(λ) satisfies limλ→−∞m(λ) = −∞, limλ→+∞m(λ) = +∞, and ṁ(λ) > 0. Moreover,

m(0) =
√
M [1− exp(−ulyτy)] + uly ≥ 0. Therefore, the equation m(λ) = 0 has just one real root and it is

negative.

The function y = n(λ) satisfies limλ→−∞ n(λ) = −∞, limλ→+∞ n(λ) = −∞. Moreover, ṅ(λ) =√
Mτy exp[−(λ+uly)τy]−1. If we let ṅ(λ0) = 0, then

√
Mτy exp[−(λ+uly)τy] = 1 and λ0 =

ln(τy
√
M)

τy
−uly.

It is easy to see that ṅ(λ) > 0 if λ < λ0 and ṅ(λ) < 0 if λ > λ0. Since n(0) =
√
M [1−exp(−ulyτy)]−uly ≤ 0,

to show that the equation n(λ) = 0 has no positive real roots, it suffices to prove that ṅ(0) ≤ 0. In fact,

since M [1− exp(−ulyτy)]2 < (uly)
2, we have

√
M <

uly
1− exp(−ulyτy)

.

Therefore,

ṅ(0) =
√
Mτy exp(−ulyτy)− 1

<
uly

1− exp(−ulyτy)
τy exp(−ulyτy)− 1

=
1

1− exp(−ulyτy)
{ulyτy exp(−ulyτy)− [1− exp(−ulyτy)]}.

Define H(u) := u exp(−u) − 1 + exp(−u). It is easy to show that H(u) < 0 for u > 0, and therefore

ṅ(0) < 0. Hence, the equation n(λ) = 0 has no real positive roots. Therefore, all real roots of (59) are

negative, and hence Ly(t) → 0 as t → ∞. From (20), it follows that Ay(t) → 0. Finally, from (21), we
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obtain that

Az(t) = Az(0) exp

[∫ t

0
(−uaz +

C2e2σ2Lx(s)

1 + h2e2σ2Lx(s) + k2Ly(s)
)

]
ds.

Hence, Az(t) → 0 as t → ∞ because of the condition (54). At the same time, the equation (12) can be

considered as an asymptotically autonomous equation, with the following equation:

dAx(t)

dt
= −uaxAx(t) +B(Ax(t− τx)) exp(−ulxτx),

the solution Ax(t)of which tend to A??x , as noted earlier in this proof, since Ax(θ) 6= 0 on [−τx, 0]. This

argument can be justified using established theories on asymptotically autonomous systems(e.g. Thieme,

1992; Mischainkow et al., 1995). Finally, the limit of the integral equation (11) when t→∞, shows that

Lx(t)→ L??x .

This completes the proof of Theorem 4.1.

4.2 The mutualism of the Crows and Cuckoos with the Cats free

In this subsection, we show that under condition (60), the cuckoo population uniformly and strongly

persists. Uniform strong persistence of the cuckoos implies that the cuckoos do not go extinct and also

that, except for initial transients, its population will always be above some minimum threshold that does

not depend on the initial values. Moreover, the cuckoos and crows will be in a mutualistic state free of

cats.

Theorem 4.2. Suppose that (24) holds and that

C1e1σ1
τy(1 + h1e1σ1L??x )

[1− exp(−ulyτy)]2 > (uly)
2 (60)

with L??x given in (26). Then the cuckoos and crows uniformly persist in the sense that there exists a

small enough η > 0 such that

lim inf
t→∞

xi(t) > η, i = 1, 2, 3, 4,

for all solutions x(t) = (Lx, Ax, Ly, Ay) of the system (30) with Ax(θ) 6= 0, θ ∈ [−τx, 0].

Proof. Denote

τ = max{τx, 2τy}, M := C([−τ, 0], R4
+),

χ(θ) =
(
Lx(θ), Ax(θ), Ly(θ), Ay(θ)

)
, θ ∈ [−τ, 0], (61)

M0 := {χ ∈M : χi(0) > 0, i = 1, 2, 3, 4} and ∂M0 := M \M0.

Clearly, M0 is an open set relative to M . Define the solution semiflow ψ(t) by

ψ(t)χ(θ) =
(
Lx(t+ θ), Ax(t+ θ), Ly(t+ θ), Ay(t+ θ)

)
= ψ(t+ θ),

where (Lx(t), Ax(t), Ly(t), Ay(t)) is the solution of the system (30) with initial value (61). It then follows

from Theorem 3.1 that ψ(t) is point dissipative and χ(t)M0 ∈ M0. Let ω(χ) be the ω−limit set of the
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orbit

γ+(χ) := {ψ(t)χ : for all t ≥ 0},

and define

M∂ := {χ ∈ ∂M0 : ψ(t)χ ∈ ∂M0, t ≥ 0}.

In view of the proof of Theorem 3.1, we have

ω(χ) = {(0, 0, 0, 0), (L??x , A
??
x , 0, 0)} for all χ ∈M∂ .

Now, we prove the claim : there exists ε > 0 such that for all solution (Lx, Ax, Ly, Ay) with Ax(θ) 6= 0

on [−τx, 0], we have

lim sup
t→∞

Ly(t) ≥ ε.

Suppose the claim is not true, then for any ε > 0 there exists a solution Ly(t) with

L̄y < ε, (62)

where the L̄y = lim supt→∞ Ly(t). Later, we shall choose an ε that produces a contradiction. Because the

inequality (62) holds, Ly < ε for all t sufficiently large. Because the integrand of the integral term in (20)

increases with Lx(ξ), from that equation we obtain

dAy(t)

dt
≤ −uayAy(t) +

C1ε

h1τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]dξ

≤ −uayAy(t) +
C1ε

h1

and therefore

L̄y ≤
C1ε

h1uay
.

Also for t sufficiently large, by Ly(t) < ε and the (12) , we get

dAx(t)

dt
≥ −uaxAx(t) + exp[−(ulx + e1σ1ε)τx]B(Ax(t− τx)).

By assumption (24), if ε is sufficiently small, then there exists A??x (ε) > 0 such that

exp[−(ulx + e1σ1ε)τx]B(A) > uaxA when 0 < A < A??x (ε),

exp[−(ulx + e1σ1ε)τx]B(A) < uaxA when A > A??x (ε).

Moreover, A??x (ε) → A??x when ε → 0. Since B(·) is increasing, we may apply a comparison argument

similar to that described in the proof of Theorem 4.1 to conclude that

Ax := lim inf
t→∞

Ax(t) ≥ A??x (ε). (63)
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For t sufficiently large, we have Ly(t) < ε. By (63) and the monotonicity of function B(·), taking the

limit inferior as t→∞ in the (11), we obtain

Lx ≥
B(A??x (ε))

ulx + e1σ1ε
exp[−(ulx + e1σ1ε)τx] := L??x (ε). (64)

where Lx = lim inft→∞ Lx(t). Note that L??x (ε) → L??x as ε → 0. From (64), Lx(t) ≥ L??x (ε) − ε for t

sufficiently large. Because the integrand of (19) increases with Lx(ξ), we obtain from that inequality

Ly(t) ≥
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1(L
??
x (ε)− ε)Ly(ξ)

1 + h1e1σ1(L??x (ε)− ε)dξdη. (65)

We now use another comparison argument to show that Ly(t) grows exponentially with t, which con-

tradicts with (62). We achieve this by a study of the characteristic equation of the integral equation

(65)(changing ≥ to =). That characteristic equation becomes

(uly + λ)2 =
C1e1σ1(L

??
x (ε)− ε)

τy(1 + h1e1σ1(L??x (ε)− ε){1− exp[−(λ+ uly)τy]}2. (66)

Then we choose a small enough positive constant ε such that

(uly)
2 <

C1e1σ1(L
??
x (ε)− ε)

τy(1 + h1e1σ1(L??x (ε)− ε) [1− exp(−ulyτy)]2, (67)

which is possible because of the condition (60). Therefore, the left-hand side of (66) is less than the right-

hand side when λ = 0. Since the left-hand side grows without bound with λ while the right-hand side

tends to a constant, it follows that (66) has a positive real root. Therefore, Ly(t) grows exponentially,

which leads to a contradiction with (62).

The above claim shows that both M1(0, 0, 0, 0) and M2(L
??
x , A

??
y , 0, 0) are uniform weak repellers for

M0 in the sense that

lim sup
t→∞

‖ψ(t)χ−Mi‖ ≥ ε for all χ ∈M0, i = 1, 2,

with the maximum norm ‖ · ‖. Define a continuous function G : M → R+ by

G(χ) = min
(
χ1(0), χ2(0), χ3(0), χ4(0)

)
for all χ = (χ1, χ2, χ3, χ4) ∈M.

Thus, G is a generalized distance function for the semiflow ψ(t) (Definition 1.3.1 of Zhao, 2003). It then

follows from the Theorem 1.3.2 of Zhao (2003) that there exists a constant η > 0 such that min{G(%) :

% ∈ ω(χ)} > η for any χ(θ) 6= 0 on [−τx, 0]. Hence,

lim inf
t→∞

Lx(t) ≥ η, lim inf
t→∞

Ax(t) ≥ η, lim inf
t→∞

Ly(t) ≥ η, lim inf
t→∞

Ay(t) ≥ η

uniformly for all solutions with Ax(θ) 6= 0 on [−τx, 0]. This completes the proof of Theorem 4.2.

4.3 The persistence of the Cat-Crow with the Cuckoos free

In this subsection, we show under condition (68) that the crows and cats are uniformly and strongly
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persistent.

Theorem 4.3. Suppose that (24) holds and

C2e2σ2L
??
x

1 + h2e2σ2L??x
> uaz (68)

with L??x given in (26). Then the crows and cats are uniformly persistent in the sense that there exists a

constant α > 0 such that

lim inf
t→∞

xi(t) > α, i = 1, 2, 3,

for all solutions x(t) = (Lx, Ax, Az) of the (39) with Ax(θ) 6= 0, θ ∈ [−τx, 0].

Proof. Denote

F := C([−τ1, 0], R3
+),

ϕ(θ) =
(
Lx(θ), Ax(θ), Az(θ)

)
, θ ∈ [−τ1, 0], (69)

F0 := {ϕ ∈M : ϕi(0) > 0, i = 1, 2, 3, 4} and ∂F0 := F \ F0.

Clearly, F0 ia an open set relative to F . Define the solution semiflow ψ(t) by

ψ(t)ϕ(θ) =
(
Lx(t+ θ), Ax(t+ θ), Az(t+ θ)

)
= ψ(t+ θ),

where (Lx(t), Ax(t), Az(t)) is the solution of the system (39) with initial value (69). It then follows from

the Theorem 3.1 that ψ(t) is point dissipative and χ(t)F0 ∈ F0. Let ω(χ) be the ω−limit set of the orbit

γ+(ψ) := {ψ(t)ϕ : for all t ≥ 0}

and define

F∂ := {ϕ ∈ ∂F0 : ψ(t)ϕ ∈ ∂F0, t ≥ 0}.

In view of the proof of the Theorem 3.1, we have

ω(ϕ) = {(0, 0, 0, 0), (L??x , A
??
x , 0)} for all ϕ ∈ F∂ .

Now, we prove the claim : there exists a constant δ > 0 such that for all solution (Lx, Ax, Az) with

Ax(θ) 6= 0 on [−τx, 0], we have

lim sup
t→∞

Az(t) ≥ δ.

Suppose the claim is not true, then for any δ > 0 there exists a solution Az(t) with

Āz < δ (70)

where the Āz = lim supt→∞Az(t). Because the inequality (70) holds, Az(t) < δ for all t sufficiently large.
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From that equation (39) we obtain

dAz(t)

dt
≤ −uazAz(t) +

C2δ

h2

and therefore

Āz ≤
C2δ

h2uaz
.

Also for t large enough, by Az(t) < δ and (39) we find that

dAx(t)

dt
≥ −uaxAx(t) + exp[−(ulx + e2σ2δ)τx]B(Ax(t− τx)).

By assumption (24), if δ is small enough, then there exists A??x (δ) > 0 such that

exp[−(ulx + e2σ2δ)τx]B(A) > uaxA when 0 < A < A??x (δ);

exp[−(ulx + e1σ1δ)τx]B(A) < uaxA when A > A??x (δ).

Moreover, A??x (δ) → A??x when δ → 0. Since B(·) is increasing, we may apply a comparison argument

similar to that described in the proof of Theorem 4.1 to conclude that

Ax := lim inf
t→∞

Ax(t) ≥ A??x (δ). (71)

For t large enough, we have Az(t) < δ. By (71) and the monotonicity of function B(·), taking the

limit inferior as t→∞ in system(39), we obtain

Lx ≥
B(A??x (δ))

ulx + e2σ2δ
exp[1− (ulx + e2σ2δ)τx] := L??x (δ). (72)

where Lx = lim inft→∞ Lx(t). Note that L??x (δ)→ L??x as δ → 0. From (72), Lx(t) ≥ L??x (δ)− δ for t large

enough. By (21), we obtain the following inequality

Ly(t) ≥ Az(0) exp

[∫ t

0

(
− uaz +

C2e2σ2(L
??
x (δ)− δ)

1 + h2e2σ2(L??x (δ)− δ)

)
ds

]
. (73)

For δ involved above, then inequality

C2e2σ2(L
??
x (δ)− δ)

1 + h2e2σ2(L??x (δ)− δ) > uaz

holds for the condition (68). Therefore, Az(t) grows exponentially, which leads to a contradiction with

(70).

The above claim shows that both F1(0, 0, 0) and F2(L
??
x , A

??
y , 0) are uniform weak repellers for F0 in

the sense that

lim sup
t→∞

‖ψ(t)ϕ− Fi‖ ≥ δ for all ϕ ∈ F0, i = 1, 2,
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with the maximum norm ‖ · ‖. Define a continuous function r : F → R+ by

r(ϕ) = min
(
ϕ1(0), ϕ2(0), ϕ3(0)

)
for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ F.

Thus, r is a generalized distance function for the semiflow ψ(t) (see Definition 1.3.1 of Zhao, 2003). It

then follows from Theorem 1.3.2 of Zhao (2003) that there exists a constant ξ > 0 such that min{r(β) :

β ∈ ω(ϕ)} > ξ for any ϕ(θ) 6= 0 on [−τx, 0]. Hence,

lim inf
t→∞

Lx(t) ≥ ξ, lim inf
t→∞

Ax(t) ≥ ξ, lim inf
t→∞

Az(t) ≥ ξ

uniformly for all solutions of the system (39) with Ax(θ) 6= 0 on [−τx, 0]. This completes the proof of

Theorem 4.3.

4.4 The persistence of the whole system

In the following, we show that the system (22) is permanent. Because of the mechanism that the

parasitism between crow chicks and cuckoo nestlings can benefit crows chicks by deterring the visitation

of the predator cats to the nests of the crows.

First, by the Theorem 3.1, we know that the solution of system (22) or (23) is upper bounded in the

sense that there exists a constant ζ > 0 such that

lim sup
t→∞

xi(t) < ζ, i = 1, 2, 3, 4, 5

for all solutions x(t) = (Lx, Ax, Ly, Ay, Az) of system (22) or (23) and with Ax(θ) 6= 0, θ ∈ [−τx, 0]. Then,

we will verify that under conditions (74) and (75) the system(22) is uniformly and weakly persistent.

Theorem 4.4. Suppose that (24), (74) and (75) hold, then the system (22) or (23) is uniformly and

weakly persistent for all nonnegative solutions with Ax(θ) 6= 0 on [−τx, 0] .

Where
C1e1σ1L

??
x

τy(1 + h1e1σ1L??x )
[1− exp(−ulyτy)]2 > (uly)

2 (74)

and
C2e2σ2L

??
x

1 + h2e2σ2L??x
> uaz . (75)

Proof. First of all, we prove that there exists a constant ε1 > 0 such that for all solutions (Lx, Ax,

Ly, Ay, Az) of the system (22) with Ax(θ) 6= 0 on [−τx, 0], we have

lim sup
t→∞

Ly(t) ≥ ε1, lim sup
t→∞

Az(t) ≥ ε1.

Suppose the claim is not true, then for any ε1 > 0 there exists solution Ly(t), Ay(t) with

L̄y < ε1, Āz < ε1 (76)

where L̄y = lim supt→∞ Ly(t), Āz = lim supt→∞Az(t). Because the inequality (73) holds, Ly < ε1 and

Az < ε1 for all t sufficiently large. Since the integrand of the integral term in (20) increases with Lx(ξ),
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we obtain
dAy(t)

dt
≤ −uayAy(t) +

C1ε1
h1τy

∫ t−τy

t−2τy
exp[−uly(t− ξ)]dξ

≤ −uayAy(t) +
C1ε1
h1

and therefore

L̄y ≤
C1ε1
h1uay

.

Also for t sufficiently large, by Ly(t) < ε1, Az(t) < ε1 and (12), we obtain

dAx(t)

dt
≥ −uaxAx(t) + exp[−(ulx + e1σ1ε1 + e2σ2ε1)τx]B(Ax(t− τx)).

By assumption (24), if ε1 is sufficiently small, then there exists A??x (ε1) > 0 such that

exp[−(ulx + e1σ1ε1 + e2σ2ε1)τx]B(A) > uaxA when 0 < A < A??x (ε1);

exp[−(ulx + e1σ1ε1 + e2σ2ε1)τx]B(A) < uaxA when A > A??x (ε1).

Moreover, A??x (ε1)→ A??x when ε1 → 0. Since B(·) is increasing, applying a comparison argument similar

to that described in the proof of Theorem 4.1 leads us to conclude that

Ax := lim inf
t→∞

Ax(t) ≥ A??x (ε1). (77)

For t large enough, we have Ly(t) < ε1 and Az(t) < ε1. By (77) and the monotonicity of the function

B(·), taking the limit inferior as t→∞ in the (11), we obtain

Lx ≥
B(A??x (ε1))

ulx + e1σ1ε+ e2σ2ε1
exp[−(ulx + e1σ1ε+ e2σ2ε1)τx] := L??x (ε1). (78)

where Lx = lim inft→∞ Lx(t). Note that L??x (ε1) → L??x as ε1 → 0. From (78), Lx(t) ≥ L??x (ε1) − ε1 for t

sufficiently large. Since the integrand in the (19) increases with Lx(ξ), we obtain

Ly(t) ≥
C1

τy

∫ t

t−τy

∫ θ

θ−τy
exp[−uly(t− ξ)]

e1σ1(L
??
x (ε1)− ε1)Ly(ξ)

1 + h1e1σ1(L??x (ε1)− ε1)
dξdη. (79)

We now show that Ly(t) grows exponentially with t, which contradicts with (76). From the characteristic

equation of the integral equation (79) (changing ≥ to=)

(uly + λ)2 =
C1e1σ1(L

??
x (ε1)− ε1)

τy(1 + h1e1σ1(L??x (ε1)− ε1)
{1− exp[−(λ+ uly)τy]}2, (80)

we can choose a constant ε1 small enough such that

(uly)
2 <

C1e1σ1(L
??
x (ε1)− ε1)

τy(1 + h1e1σ1(L??x (ε1)− ε1)
[1− exp(−ulyτy)]2, (81)
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which is possible because of the condition (74). By (81) , the left-hand side of (80) is less than the

right-hand side when λ = 0. Since the left-hand side grows without bound with λ while the right-hand

side tends to a constant, it follows that (80) has a positive real root. Therefore, Ly(t) grows exponentially,

which leads to a contradiction with (76).

At the same time, from equation (21), we obtain

dAz(t)

dt
≤ −uazAz(t) +

C2e2σ2(L
??
x (ε1)− ε1)Az(t)

1 + h2e2σ2(L??x (ε1)− ε1) + k2ε1

and therefore

Az(t) ≥ Az(0) exp

[∫ t

0

(
− uaz +

C2e2σ2(L
??
x (ε1)− ε1)

1 + h2e2σ2(L??x (ε1)− ε1) + k2ε1

)
ds

]
.

For ε1 involved above, we have that

C2e2σ2(L
??
x (ε1)− ε1)

1 + h2e2σ2(L??x (ε1)− ε1)
> uaz

holds for the condition (75). Therefore, Az(t) grows exponentially, which contradicts with (76). This

completes the proof of Theorem 4.4.

5 Numerical simulation

In this section, numerical simulations are conducted to demonstrate our analytical results. Suppose

the hatching rate for crows is chosen as B(Ax) = bAx
1+cAx

, where the parameter c depends on the nest

type. Female crows mate and lay eggs throughout their lives. Individual females appear to be capable

of laying between 65 and 91 eggs in one year ( Canestrari et al., 2014). Moreover, given the assumption

that 50% of crow adults are females, we chose to use a monthly fecundity rate of b=6. Other parameter

values are taken from Table 1 and additional values are listed in the caption of each figure. In all the

simulations, we consider the time in months.

Table 1: Values of the parameters
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Figure 1: (a): The time series of the solution of system (28), here the initial values: Lx(0) = 5, Ax(0) = 5, c = 4. Other
parameters are obtained from Table 1. (b): The time series of the solution that is cat free, here the initial values are:
Lx(0) = 5, Ax(0) = 5, Ly(0) = 8, Ay(0) = 8, c = 4. Other parameters are obtained from Table 1

Symbol value Reference

ulx 0.6 Bolopo et al. (2015)

uax 0.02 Bolopo et al. (2015)

uly 0.34 Canestrari et al. (2014)

uay 0.01 Bolopo et al. (2015)

uaz 0.04 Bolopo et al. (2015)

e1 0.43 Canestrari et al. (2014)

e2 0.04 Canestrari et al. (2014)

σ1 1 Canestrari et al. (2014)

σ2 0.4 Canestrari et al. (2014)

h1 0.28 months Bolopo et al. (2015)

h2 0.18 months Bolopo et al. (2015)

k2 0.5 Wang (2016)

τx 2 months Bolopo et al. (2015)

τy 2.5 months Canestrari et al. (2014)

b 6 Canestrari et al. (2014)

c - -

C1 0.60 -

C2 0.32 -

For the numerical simulations in Fig.1 (a), we choose parameter values satisfying Theorem 4.1. Both

Fig.1 (a) and Theorem 4.1 show that a cuckoo-cat free equilibrium is globally asymptotically stable

when D0 < 1 and D1 < 1, where D0 =
(C1e1σ1)(1−exp{−ulyτy})2
τy(1+h1e1σ1L??

x )(uly)
2 and D1 = C2e2σ2L??

x
(1+h2e2σ2L??

x )uaz
. Moreover, the

coexistence of crows and cuckoos is illustrated in Fig.1 (b) when we choose parameter values satisfying

Theorem 4.2 with D0 > 1.

Furthermore, we choose parameter values from Table 1 satisfying Theorem 4.3, and additional values
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Figure 2: (a): The time series of the solution of system (30), here the initial values: Lx(0) = 5, Ax(0) = 5, Az(0) = 8, c =
4, τx = 2. Other parameters are obtained from Table 1. (b): The time series of the solution with the whole system, here
the initial values: Lx(0) = 5, Ax(0) = 5, Ly(0) = 8, Ay(0) = 8, Az(0) = 7, c = 4, τy = 2.5, k2 = 0.5. Other parameters are
obtained from Table 1.

are listed in the caption of the figure. From the numerical simulations in Fig.2 (a), we can easily see that

both Fig.2 (a) and Theorem 4.3 show that the cuckoo-free equilibrium is globally asymptotically stable

when D1 > 1. Similarly, we choose parameter values satisfying Theorem 4.4 with D0 > 1 and D1 > 1.

Then, from Fig.2 (b), we can see the coexistence of crows, cuckoos and cats.

To study the influence of the maturation time delay τx on the dynamics among cuckoos, crows and

cats, we get Fig.3. From Fig.3, we can see that if τx ∈ (1.5, 3.5), approximately, the vertical amplitudes

of Lx(t), Az(t) and Ly(t) are as small as a point, suggesting that they are asymptotically stable; if τx

increases by an interval (3.5,4], approximately, the vertical amplitudes of Lx(t), Ly(t), and Az(t) will

become increasing larger, showing that they become more and more unstable. As we know that τx

represents the maturation time of the crow chicks, the change of the τx will change the dynamics among

cuckoos, crows and cats. Similarly, the impact of the maturation time delay τy on the dynamics among

cuckoos, crows, and cats is studied by numerical simulations in Fig.4. As shown in Fig.4, an increase of τy

from 1.5 to 4 has similar ”destabilizing” effects on the dynamics of the system to those of τx: when τx = 2.5,

for τy ≤ 3, approximately, the vertical amplitudes of Lx(t) and Ly(t) are as small as a point, suggesting

that they are asymptotically stable; when τy ≥ 3 approximately, the vertical amplitudes of Lx(t) and

Ly(t) will be larger, showing that they become increasing unstable. Moreover, the vertical amplitudes of

Ay(t) are as small as a point with τy ∈ [1.5, 4], and when τy = 2.5, approximately, the vertical amplitudes

of Ay(t) reaches its the greatest value and then decreases with τy ∈ [2.5, 4], approximately. As we know

that τx represents the maturation time of the crow chicks, the change of the τx will change the dynamics

among cuckoos, crows and cats. Biologically, this means that a shorter immature to maturation period

is helpful for the adults.

Lastly, Fig.5 shows the stability change of the crow chicks and the cuckoo nestlings as τx and τy

simultaneously increase from 0 to 12 (Here, 12 represents 120 days, i.e., 4 months). It seems clear that

crow chicks are stable as (τx, τy) ∈ (0, 9)× (0, 12] approximately. For (τx, τy) ∈ (9, 12]× (0, 12] is unstable.
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Figure 3: The ultimate oscillation interval of the solution to the system (22), when τx increases from 1.5 to 4, here τy = 2.5
(month), t ∈ [0, 800], c = 4, other parameters are obtained from Table 1. These figures show that the influence of the
maturation time delay τx on the dynamics among cuckoos, crows and cats.
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Figure 4: The ultimate oscillation interval of the solution to the system (22), when τy increases from 1.5 to 4, here τx = 2
(month), t ∈ [0, 800], c = 4, other parameters are obtained from Table 1. These figures show that the influence of the
maturation time delay τy on the dynamics of cuckoos and crows.

For the cuckoo nestlings, vertical amplitudes of the cuckoo nestlings smaller as τx decreases from 9 to

0, suggesting that when τx is small, the cuckoo nestlings are stable. These results is consistent with the

results of Figure 3 and Figure 4.

Figure 5: The ultimate oscillation interval of the solution to the system (22) according to increase of τx,τy, here t ∈ [0, 800], c =
4, other parameters are obtained from Table 1. These figures show that the influence of the maturation time delay τx and
τy on the dynamics among cuckoos, crows and cats.

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a b

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time(months)

N
um

be
r o

f c
ro

w
/c

uc
ko

o/
ca

t

 

 
crow juvenile
cuckoo juvenile
cat adult

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time(months)

N
um

be
r o

f c
ro

w
/c

uc
ko

o/
ca

t

 

 
crow juvenile
cuckoo juvenile
cat adult

Figure 6: (a): The time series of the solution of system (82), here the initial values: Lx(0) = 2.9988, Ly(0) = 1.6352, Az(0) =
18.6139, τy = 0. Other parameters are obtained from Table 2. (b): The time series of the solution of system (82), here the
initial values: Lx(0) = 2.9988, Ly(0) = 1.6352, Az(0) = 18.6139, τy = 2.5. Other parameters are obtained from Table 2.

6 Summary and discussion

In this paper, motivated by the works Canestrari et al.(2014), Wang (2016) and Lou et al. (2017), we

take stage structure into account and propose a stage-structured mutualism-parasitism-predation model

to investigate the impacts of maturation time delays on the dynamics among cuckoos, crows and cats.

Firstly, we obtain the conditions to guarantee the existence of equilibrium for the individual subsystems.

Then, the conditions to guarantee the globally asymptotical stabilities of the cuckoo-cat-free equilibrium

and the uniform persistence of the whole system are obtained. More specifically, we show that the cuckoo-

cat-free equilibrium (i.e., only crows) is globally asymptotically stable if D0 < 1, D1 < 1 (Theorem 4.1

and Fig.1 (a)), and the whole system uniformly persist if D0 > 1, D1 > 1(Theorem 4.4 and Fig. 2 (b)).

In order to compare this with system (1) in Wang (2016) and study the effect of the maturation time

delays on the dynamics among crow chicks, cuckoo nestlings and cat adults, we rewrite our model such

that it is free of adult crows and cuckoos:





dLx(t)

dt
= −ulxLx(t)− e1σ1Lx(t)Ly(t)

1 + h1e1σ1Lx(t)
− e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)

dLy(t)

dt
= −ulyLy(t) +

C1

τy

∫ t

t−τy
exp[−uly(t− ξ)]

e1σ1Lx(ξ)Ly(ξ)

1 + h1e1σ1Lx(ξ)
dξ

dAz(t)

dt
= −uaz(t)Az(t) +

C2e2σ2Lx(t)Az(t)

1 + h2e2σ2Lx(t) + k2Ly(t)
.

(82)

In (82), we find the intrinsic growth rate of Lx(t) is zero in the absence of crow adults. But in order to

compare this system (1), we take some parameters as in Table 2 and keep the same biological meaning

of parameters as in (1) in Wang (2016).

Table 2: Values of the parameters
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Parameters Value Reference Parameters Value Reference

ulx 0.6 Wang (2016) uax 0.02 Wang (2016)

uly 0.34 Wang (2016) uay 0.01 Wang (2016)

uaz 0.04 Wang (2016) e1 0.43 Wang (2016)

e2 0.04 Wang (2016) σ1 1 Wang (2016)

σ2 0.4 Wang (2016) h1 0.28 months Wang (2016)

h2 0.18 months Wang (2016) k2 0.5 Wang (2016)

τx 2 months Wang (2016) τy 2.5 months Wang (2016)

c - - b 6 Wang (2016)

C1 0.60 -

Based on the above consideration, we get Fig.6(a) with τy = 0 and take the same parameters values as in

(1). By contrasting Fig.6(a) with Fig.6 in Wang (2016), we find the population numbers are almost the

same. Then we take τy = 2.5 with the other parameters value unchanged, and we get Fig.6(b). We find

the number of the cuckoo nestlings increase as the maturation time delay increases, and the number of

cat adults decreases due to the deterrence by cuckoo nestlings. The number of crow chicks decreases as

the number of cuckoo nestlings increases.

Theorem 4.4 indicates that when an appropriate control agent is helpful to making the net reproduction

number of predators D0 and D1 larger than 1, the whole system will uniformly persist. Possible control

agents include the high conversion efficiencies C1 and C2 (but are not limited to those), a low handling

time h1 and h2 (but are not limited) and a moderate maturation time τy. Note that D0 > 1 is not satisfied

if τy is large or τy is small since the left-hand side of D0 > 1 is O(τy) as τy → 0. Thus, the cuckoos can

survive only if their nestling development time is neither too long nor too short. If the development time

is too long, not enough cuckoos will mature. If it is too short, the ecological interpretation indicates that

not enough cuckoo nestlings will exist to protect the crow chicks and the nestlings fail to consume enough

crow biomass.

The main purpose of this paper is to find the impacts of the maturation time delays τx and τy on

the dynamics among crows, cuckoos and cats. It is shown that the maturation period of the immature

crows τx and immature cuckoos τy largely determine the stabilities of the crow chicks and cuckoo nestlings

(Fig.4, Fig.5). Moreover, as shown in Fig.4, as τx increases from 3 to 4, the crow chick and cuckoo nestling

populations may lose their stabilities and become increasingly unstable due to the enlarged amplitudes

of the oscillation intervals. Biologically, this means that a shorter maturation period of crow chicks is

helpful to stabilizing the system. Of course, this results that the maturation time and age-structure may

change the stability of the system is not only the first time to be obtained. There are many works about

stage-structure systems have shown that the maturation time may change the stability of the system. For

example, in Hastings, 1984 a discrete predator-prey model in which the predator consumes only juvenile

prey was developed. It was shown that an age-dependent predation can have a stabilizing effect and

that the behavior of the model depends critically on the duration of maturation period of the prey, in
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particular, a very small number of elderly prey represent a powerful stabilizing factor. Additionally, May,

(1974) and Smith, (1974) developed models for the predator-prey interactions with discrete age structure

of prey, which lead to changes in stability. Therefore, the introducing of the maturation can indeed

improve our understanding of the system.

In a word, a parasitism-mutualism-predation model with stage structure is more complicated than

systems with no stage structure. The former includes various properties and phenomena that can hardly

be embodied by the latter but are very consistent with real ecosystems, which helps us interpret the

diversity and many phenomena of ecosystems.

Acknowledgment

This work was supported by The National Natural Science Foundation of P.R. China (11361059,

11771373, 11702237), The Key Project of Laboratory of Xinjiang Province of China (2016D03022), The

Doctoral Scientific Research Foundation of Xinjiang University (No. BS160204), The Doctoral innovation

project of Xinjiang University (XJUBSCX-2017005).

References

[1] Aiello, W.G., Freedman, H.I., 1990. A time delay model of single-specis growth with stage structure.

Math. Biol. 101 (2), 139-153.

[2] Aiello, W.G., Freedman, H.I., Wu, J., 1992. Analysis of a model representing stage-structured pop-

ulation growth with state-dependent time delay. SIAM. J. Appl. Math. 52 (3), 855-869.

[3] Arias-de-Reyna, L., 1998. Coevolution of the great spotted cuckoo and its hosts. Oxford Ornithology

Series. 9 : 129-142.

[4] A. Hastings, 1984. Age-dependent predation is not a simple process. II. Wolves, ungulates, and a

discrete time model for predation on juveniles with a stabilizing tail. Theor. Popul. Biol. (26) 271-282.

[5] Bolopo, D., Canestrari, D., Roldán, M., Baglione, V., Soler, M., 2015. High begging intensity of great

spotted cuckoo nestlings favours large-size crow nest mates. Behav. Ecol. Socio. Biol. 69, 873-882.

[6] Chen, B., Chen, J., 2017. Complex dynamic behaviors of a discrete predator-prey model with stage

structure and harvesting. Int. J. Biomath. 10, 17500013.

[7] Cruz, R.D.L., Guerrero, P., Spill, F., Alarcón, T., 2016. Stochastic multi-scale models of competition

within heterogeneous cellular populations: simulation methods and mean-field analysis. J. Theor.

Bio. 407, 161-183.

[8] Canestarim, D., Marcos, J.M., Baglione, V., 2008. Reproductive success increases with group size in

cooperative carrion crows, Corvus corone corone. Anim. Behav. 75 (2) , 403-416.

[9] Canestrari, D., Bolopo, D., Turlings, T.C., Röder, G., Marcos, J.M., 2014. From parasitism to
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