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a b s t r a c t 

Being confounding factors, directional trends are likely to make two quantitative traits appear as spuri- 

ously correlated. By determining the probability distributions of independent contrasts when traits evolve 

following Brownian motions with linear trends, we show that the standard independent contrasts can not 

be used to test for correlation in this situation. We propose a multiple regression approach which corrects 

the bias caused by directional evolution. 

We show that our approach is equivalent to performing a Phylogenetic Generalized Least Squares 

(PGLS) analysis with tip times as covariables by providing a new and more general proof of the equiva- 

lence between PGLS and independent contrasts methods. 

Our approach is assessed and compared with three previous correlation tests on data simulated in 

various situations and overall outperforms all the other methods. The approach is next illustrated on a 

real dataset to test for correlation between hominin cranial capacity and body mass. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Testing for correlation between two traits is a natural question

hich has been widely studied, notably in a comparative biology

ontext ( Groussin and Gouy, 2011; Marchini et al., 2014; Grabowski

t al., 2015; Will et al., 2017; Zhao et al., 2017 ). Correlation tests

ay concern any kind of traits: phenotypic, genetic or other. For

nstance, Seligmann (2018, 2019) observed a correlation between

he syntheny level of poxviruses with amoeban mitogenome and

heir genome size. Assessing the correlation between two traits

easured on several species cannot be performed by directly com-

uting the Pearson correlation coefficient on the traits values since

hese values are not independent but related through the evolu-

ionary relationships of the species involved ( Diaz-Uriarte and Gar-

and, 1996 ). This point raises questions about how to interpret a

orrelation between two traits in a phylogenetic context. Actually,

ince all the observed taxa are assumed to have evolved from a

ingle ancestral taxa, stating that two traits shared by the taxa

re correlated can have only one significance, which is that the

espective evolutions of these traits are correlated one with the

ther ( Harvey and Pagel, 1991 ). Assumptions about traits evolution

re thus essential in order to disentangle the dependency struc-

ure of their extant values, and eventually to be able to study their

orrelation by correcting biases due to their evolutionary relation-
∗ Corresponding author. 
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hips ( Martins and Garland, 1991; Garland and Adolph, 1994; Diaz-

riarte and Garland, 1996; Martins, 1996; Oakley and Cunningham,

0 0 0 ). 

A widely used approach for testing correlation between traits

n a phylogenetic tree is the independent contrasts method of

elsenstein (1985) which extracts independent quantities from the

ip values of the traits in order to estimate their correlation. The

ationale behind this approach is that if two traits follow two cor-

elated Brownian motions then their matched independent con-

rasts are realizations of independent and identically distributed

airs of Gaussian random variables correlated with the same cor-

elation as the Brownian motions. Therefore, testing for correlation

hrough independent contrasts is perfectly founded if one assumes

hat the two traits to compare follow Brownian motions along

he phylogenetic tree, thus a neutral evolution for both of them

 Felsenstein, 1988 ). A strongly related method, called Phylogenetic

eneralized Least Squares (PGLS, Grafen, 1989 ) addresses the same

uestion in an equivalent way. We extend and give formal proofs

f results about the equivalence between independent contrasts

nd PGLS methods for regression analysis stated in Garland and

ves (20 0 0) , Rohlf (20 01) , and Blomberg et al. (2012) . 

Both independent contrasts and PGLS approaches make the

trong assumption that evolution of the considered traits is neutral.

here are many situations where this assumption is not granted,

or instance when evolution is driven by ecological pressures.

rnold and Moncrieff (1994) showed that several lizard species

eveloped the same discrete traits in approximately the same or-

er when adapting to a same environmental condition. In the

https://doi.org/10.1016/j.jtbi.2019.08.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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same way, quantitative traits may evolves toward optima or fol-

lowing a general trend. This type of non-neutral evolution, referred

to as adaptative and directional evolution, cannot be modeled by

using standard Brownian processes. Adaptation, i.e., evolution to-

ward optima, is generally modeled with Ornstein-Uhlenbeck pro-

cesses or more complex models ( Cressler et al., 2015 ). For instance,

Hansen et al. (2008) consider traits evolving according Ornstein-

Uhlenbeck processes with optima which themselves evolve follow-

ing a Brownian process. Directional evolution is generally modeled

with arithmetic Brownian motions, i.e., Brownian process with lin-

ear trends. Note that after a change in the optimum during the

adaptation process, traits under selection may look under direc-

tional evolution until getting close to their new optima. In this

work, we focus on the directional evolution case. More precisely,

we address the question of how to detect correlation between

two traits when at least one of them is under directional evo-

lution. Among the numerous examples of evolutionary tenden-

cies in the evolution of phenotypic or genetic traits, Cope’s rule,

which predicts that the body size of species tends to increase

over evolutionary time, has gained considerable empirical support

( Kingsolver and Pfennig, 2004; Van Valkenburgh et al., 2004; Hone

and Benton, 2005; Hone et al., 2005; Hunt and Roy, 2006; Bokma

et al., 2016 ). Beside the Cope’s rule, there are strong evidence

that traits of some clades have evolved following trends at cer-

tain periods. For instance, there are evidence of increase in the

Mysticetes body size ( Slater et al., 2010 ) and in the microsatellite

size in Maize ( Vigouroux et al., 2003 ). Last, insular dwarfism and

gigantism phenomena provide numerous examples of directional

evolution ( Lomolino, 2005 ). We emphasize that an evolutionary

tendency in increasing or decreasing the body size of species im-

plies that most of their morphological measures follow the same

trend, and would be systematically tested as significantly corre-

lated ( Yule, 1926; Entorf, 1997; Deng, 2015 ). 

In order to study the correlation between traits under direc-

tional evolution, we first determine the probability distribution

of the independent contrasts of a trait which evolves following

a Brownian motion with a linear trend. The form of these distri-

butions shows that testing for correlation between two traits un-

der directional evolution through independent contrasts makes no

sense. We propose an alternative approach based on a multiple re-

gression which includes time as explanatory variable in order to

correct the bias due to a linear trend. We show that our approach

is equivalent to performing a PGLS analysis by adding the tip times

as covariable in the regression. 

A previous approach to correct the trend effect on the inde-

pendent contrasts and to test for correlation between traits un-

der directional evolution was proposed in Elliott ’s (2015) . Its gen-

eral idea is to “center” the independent contrasts with regard to

the trend (this method is detailed below). A thorough study of

the Elliott (2015) approach shows that it does not satisfy the re-

gression assumptions. Note that if the phylogenetic tree supporting

the evolution of the traits is ultrametric, our new method and that

of Elliott (2015) are both equivalent to the independent contrasts

method. 

We simulated evolution of correlated and uncorrelated quanti-

tative traits with and without trend on hominin phylogenetic tree

in order to assess and to compare our new correlation test and

three previous ones, namely the standard correlation test on the

tips values of the traits, the correlation between independent con-

trasts of Felsenstein (1985) and that between the directional con-

trasts proposed by Elliott (2015) . Simulation results shows that the

new test is the most accurate as soon as one of the traits is under

directional evolution. Despite its statistical flaws, the approach sug-

gested by Elliott (2015) performs almost as well as our approach. 

Last, the approach was applied on a real dataset in order to

test for correlation between the logarithms of hominin body mass
nd cranial capacity, among which the logarithm of cranial capac-

ty shows a significant positive trend. Our test concluded to a sig-

ificant correlation between the logarithms of these two traits. 

R-scripts implementing the correlation tests and the simula-

ions performed for this work are available at https://github.com/

illes-didier/Correlation . 

The rest of the paper is organized as follows. The independent

ontrasts and their distributions when traits follow Brownian mo-

ions with linear trends are presented in Section 2 . Section 3 re-

alls three previous correlation tests on phylogenetic data and in-

roduces a new one based on a multiple regression between inde-

endent contrasts which includes time as explanatory variable. The

our correlation tests are assessed and compared on simulated data

n Section 4 . Last, our test is applied to check correlation between

ominin cranial capacity and body mass in Section 5 . 

. Independent contrasts 

.1. Phylogenetic trees - Notations 

In all what follows, we assume that the evolutionary history

f the species is known and given as a rooted binary phyloge-

etic tree T with branch lengths. Our typical tree T contains

 n + 1 nodes among which n are internal nodes. According to the

elsenstein ’s (1985) convention, the nodes are indexed in the fol-

owing way: 

• index 0 for the root, 
• indices 1 to n − 1 for the other internal nodes, 
• indices n to 2 n for the tips. 

For all nodes k , we put 

• r(k ) and � (k ) for the two direct descendants of k , if k is an

internal node, 
• a ( k ) for the direct ancestor of k , if k is not the root, 
• v k for the length of the branch ending at k , 
• t k for the (absolute) time of k , which is the sum of the branch

lengths of the path relying the root to k (both included), and 

• z k for the value of the trait at node k , which is defined only if

k is a tip. 

.2. Felsenstein’s (1973) algorithm 

Independent contrast were introduced in Felsenstein (1973) in

rder to compute the probability of the tip values of a quantitative

rait evolving on a phylogenetic tree under the assumption that

his trait follows a Brownian motion. This method extracts a se-

ies of realizations of independent Gaussian variables from the tip

alues by iteratively considering differences between terminal sis-

er taxa and by replacing them with a single terminal taxa, while

odifying the length of the branch that it ends and associating it

ith an artificial trait value computed from those of the two ter-

inal sister taxa. Namely, the method recursively computes a new

ranch length v k and an “artificial” trait value z k for all nodes k of

 in the following way. 

efinition 1 ( Felsenstein, 1973 ) . Let T be a phylogeny and

(z k ) n ≤k ≤2 n be the values of a quantitative trait only known at the

ips of T . Under the notations of Section 2.1 and for all nodes k of

 , the quantities v k , z k are recursively defined as 

 k = 

{ 

v k if k is a tip, 

v k + 

v r(k ) v � (k ) 

v r(k ) + v � (k ) 

otherwise, and 

 k = 

{ 

z k if k is a tip, 
v � (k ) z r(k ) + v r(k ) z � (k ) 

v r(k ) + v � (k ) 

otherwise. 

https://github.com/gilles-didier/Correlation
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For all internal nodes k of T , the (standardized) independent

ontrast u k is then defined as 

 k = 

z r(k ) − z � (k ) √ 

v r(k ) + v � (k ) 

. 

Contrasts can be computed thanks to the pic function in the

pe R-package ( Paradis et al., 2004 ). 

.3. Independent contrasts as random variables 

By construction, under an evolutionary model for quantita-

ive traits, the tips values (z k ) n ≤k ≤2 n are realizations of random

ariables Z n , . . . , Z 2n . In this context, the artificial trait values

( z k ) 0 ≤k ≤2 n computed during the independent contrasts procedure

re also realizations of random variables which can be expressed

rom Z n , . . . , Z 2n and so are the independent contrasts. 

efinition 2. Let ( Z k ) n ≤k ≤2 n be the random variables associated to

he tip values of a trait. For all nodes k of T , the random variable

 k is defined as 

 k = 

⎧ ⎨ ⎩ 

Z k if k is a tip, 

v � (k ) Z r(k ) + v r(k ) Z � (k ) 

v r(k ) + v � (k ) 

otherwise. 

nd for all internal nodes k of T , the random variable U k is defined

s 

 k = 

Z r(k ) − Z � (k ) √ 

v r(k ) + v � (k ) 

. 

In plain English, for all nodes k , the random variable Z k corre-

ponds to the value associated to k by the computation presented

n Definition 1 . In the same way, for all internal nodes k , the con-

rast u k is a realization of the random variable U k . 

As evolutionary models of traits, we shall consider below either

he Brownian Motion (BM) model or the Brownian Motion with

inear trend, also known as the Arithmetic Brownian Motion (ABM)

odel. Namely, the ABM model with parameters ( x 0 , μ, σ 2 ), i.e.,

nitial value x 0 , trend μ and variance σ 2 , is the process ( X t ) t > 0 
efined as 

 X t = μd t + σd W t and X 0 = x 0 , 

here ( W t ) t > 0 is the Wiener process ( Grimmett and Stirza-

er, 2001 ). For all times t and s , the increments X t+ s − X t are in-

ependent Gaussian random variables with law N 

(
μs, σ 2 s 

)
. 

Since a BM model is nothing but an ABM model with trend pa-

ameter μ = 0 , we shall write results and properties in the ABM

ase only. Basically, any property or result granted for ABM also

olds for BM. 

The ABM process with parameters ( x 0 , μ, σ 2 ) running on the

hylogenetic tree T starts at the root of T with the value x 0 , then

volves independently on each branch of T by splitting at each

nternal node into two independent and identical processes both

tarting from the value of the process at this node and eventually

nds at the tips of T . It allows to model traits under directional

volution, e.g., following the Cope’s rule ( Kingsolver and Pfennig,

004; Van Valkenburgh et al., 2004; Hone and Benton, 2005 ). 

heorem 3. Let ( Z k ) n ≤ k ≤ 2 n be the random variables associated to

he tip values of a trait following the ABM model with parameters

 x 0 , μ, σ 2 ) on T . For all nodes k of T , the random variable Z k can

e written as 

 k = x 0 + μ(t k + γk ) + σ
(
W t k + Ψk ( W ) 

)
, 
here 

k = 

{ 

0 if k is a tip, 
v � (k ) (γr(k ) + v r(k ) ) + v r(k ) (γ� (k ) + v � (k ) ) 

v r(k ) + v � (k ) 

otherwise, and 

nd Ψk ( W ) is a linear combination of increments of the form W t i 
−

 t a (i ) 
, recursively defined as 

k ( W ) = 

⎧ ⎨ ⎩ 

0 if k is a tip

v 
� (k ) 

(
W t r(k ) 

−W t k 
+ Ψr(k ) ( W ) 

)
+ v r(k ) 

(
W t 

� (k ) 
−W t k 

+ Ψ
� (k ) ( W ) 

)
v r(k ) + v � (k ) 

otherwise. 

or all internal nodes k of T , the random variable U k can be written

s 

 k = μh k + 

σ√ 

v r(k ) + v � (k ) 

Φk ( W ) , (1) 

here 

 k = 

{ 

0 if k is a tip, 
v r(k ) + γr(k ) − v � (k ) − γ� (k ) √ 

v r(k ) + v � (k ) 

otherwise, and 

(2) 

k ( W ) = ( W t r(k ) 
− W t k ) + Ψr(k ) ( W ) − ( W t � (k ) 

− W t k ) − Ψ� (k ) ( W ) . 

Random variables Ψk ( W ) and Φk ( W ) have Gaussian distributions 

 

(
0 , 

v r(k ) v � (k ) 

v r(k ) + v � (k ) 

)
and N 

(
0 , v r(k ) + v � (k ) 

)
respectively. 

roof. Appendix A . �

orollary 4. Under the ABM model with parameters ( x 0 , μ, σ 2 ), for

ll internal nodes k of T , the independent contrast random variables

 k are independent from one another and Gaussian distributed with 

 k ∼ N 

(
μh k , σ

2 
)
. 

roof. The proof of the independence of the independent contrasts

nder the ABM model follows the same arguments as the proof of

he same property in the BM case provided in Felsenstein (1973) .

he form of the distribution of the independent contrasts is a di-

ect consequence of Theorem 3 . �

roposition 5. Let T be an ultrametric tree and T be the length of

he path from the root to the tips. For all nodes k of T , we have that

k = T − t k and h k = 0 . 

roof. Appendix B . �

.4. Correlation and independent contrasts 

Independent contrasts are mainly used in order to test for cor-

elation between two quantitative traits known only at the tips of

 phylogenetic tree ( Felsenstein, 1985 ). The rationale behind this

pproach is that if two quantitative traits follow two correlated

rownian motions then their standardized independent contrasts

re realizations of independent and identically distributed pairs of

aussian random variables with the same correlation as the corre-

ated Brownian motions. The transpose of a matrix or a vector D is

oted D 

′ . 

efinition 6. Let ( X A t ) t≥0 and ( X B t ) t≥0 two ABM models with pa-

ameters (x A 0 , μA , σ
2 
A 
) and (x B 0 , μB , σ

2 
B ) respectively and let ( W 

A 
t ) t≥0 

nd ( W 

B 
t ) t≥0 be two Wiener processes such that 

 

A 
t = x A 0 + μA t + σA W 

A 
t and X 

B 
t = x B 0 + μB t + σB W 

B 
t . 

The processes ( X A t ) t≥0 and ( X B t ) t≥0 are correlated with correla-

ion coefficient ρ if for all t ≥ 0, the random vector ( W 

A 
t , W 

B 
t ) 

′ has

ovariance matrix t � where 

= 

(
1 ρ
ρ 1 

)
. 
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Any pair of Wiener processes ( W 

A 
t , W 

B 
t ) t≥0 with correlation ma-

trix � can be obtained from two independent Wiener processes

( ̃  W 

A 
t ) t≥0 and ( ̃  W 

B 
t ) t≥0 by applying the Cholesky decomposition on

their covariance matrix � ( Gupta, 2013 ). Namely, by decomposing

� as � = L L ′ where 

L = 

(
1 0 

ρ
√ 

1 − ρ2 

)
, 

the random vector ( W 

A 
t , W 

B 
t ) 

′ = L ( ̃  W 

A 
t , ̃

 W 

B 
t ) 

′ has covariance matrix

�. 

In sum, two ABM processes ( X A t ) t≥0 and ( X B t ) t≥0 with param-

eters (x A 0 , μA , σA ) and (x B 0 , μB , σB ) are correlated with correlation

coefficient ρ if and only if they can be written as 

X 

A 
t = x A 0 + μA t + σA ̃

 W 

A 
t and 

X 

B 
t = x B 0 + μB t + σB (ρ ˜ W 

A 
t + 

√ 

1 − ρ2 ̃  W 

B 
t ) , 

where ( ̃  W 

A 
t ) t≥0 and ( ̃  W 

B 
t ) t≥0 are two independent Wiener pro-

cesses. 

Theorem 7. Let ( X A t ) t≥0 and ( X B t ) t≥0 be two ABM processes running

on T with parameters (x A 
0 
, μA , σ

2 
A 
) and (x B 

0 
, μB , σ

2 
B 
) respectively and

( Z A 
k 
) n ≤k ≤2 n and ( Z B 

k 
) n ≤k ≤2 n be the random variables associated to the

values of these processes at the tips of T . The processes ( X A t ) t≥0 and

( X B t ) t≥0 are correlated with correlation coefficient ρ if and only if for

all internal nodes k of T , the independent contrast random variables

 

A 
k 

and U 

B 
k 

computed from ( Z A 
k 
) n ≤k ≤2 n and ( Z B 

k 
) n ≤k ≤2 n are correlated

with correlation coefficient ρ . 

Proof. Let us assume that the ABM processes ( X A t ) t≥0 and ( X B t ) t≥0 

of parameters (x A 
0 
, μA , σ

2 
A 
) and (x B 

0 
, μB , σ

2 
B 
) respectively are cor-

related with correlation coefficient ρ . It is equivalent to say that

there exist two independent Wiener processes ( ̃  W 

A 
t ) and ( ̃  W 

B 
t )

such that 

X 

A 
t = x A 0 + μA t + σA ̃

 W 

A 
t and 

X 

B 
t = x B 0 + μB t + σB (ρ ˜ W 

A 
t + 

√ 

1 − ρ2 ̃  W 

B 
t ) . 

By applying Eq. (1) of Theorem 3 to X A t and X B t , we then have

that for all internal nodes k , the independent contrast random vari-

ables U 

A 
k 

and U 

B 
k 

can be written as 

 

A 
k = μA h k + 

σA √ 

v r(k ) + v � (k ) 

Φk ( ̃  W 

A ) and (3)

 

B 
k = μB h k + 

σB ρ√ 

v r(k ) + v � (k ) 

Φk ( ̃  W 

A ) + 

σB 

√ 

1 − ρ2 √ 

v r(k ) + v � (k ) 

Φk ( ̃  W 

B ) . (4)

Since Theorem 3 ensures that Var 
(
Φk ( ̃

 W 

A ) 
)

= v r(k ) + v � (k ) , it

follows that 

Cov 
(
U 

A 
k , U 

B 
k 

)
= 

σA σB ρ

v r(k ) + v � (k ) 

× Var 
(
Φk ( ̃  W 

A ) 
)

= σA σB ρ, 

thus Cor 
(
U 

A 
k 
, U 

B 
k 

)
= ρ for all internal nodes k of T , which ends the

proof. �

3. Correlation tests 

In practical situations, evaluating or testing for correlation be-

tween two random variables is performed by considering a series

of a certain number n of independent realizations of this pair of

random variables. Let us remark that sampling independently n

times a pair of random variables is equivalent to draw a joint sam-

ple of n independent and identically distributed pairs of random

variables with the same correlation between the random variables

of all the pairs. Standard regression analysis can thus be applied in

this last case. 
We emphasize the fact that performing a correlation test on a

oint sample of n pairs of random variables which are not identi-

ally distributed makes absolutely no sense, even if each pair has

he same correlation. Moreover, if we do not have independence

etween the pairs of random variables, then assumptions required

y correlation tests are violated. 

Linear regression is a usual tool for studying the association be-

ween two variables. Statistic analysis of regression requires addi-

ional assumptions, which are referred to as the key assumptions in

ox (2015) , namely the constancy of the error variance, the Gaus-

ianity of the errors, their null mean, and their independence. In

he multiple linear regression, testing for correlation between the

esponse variable and one of the regressors is performed by test-

ng the nullity of the corresponding regression coefficient. Under

he key assumptions, this test of nullity is based on the fact that,

y assuming that the coefficient is null, the ratio of the ordinary

east squares estimate of this coefficient to its standard deviation

ollows a Student distribution with a number of degrees of free-

om equal to the difference between the number of samples and

he number of regressors (including the intercept if there is one,

ox, 2015 ). In the case of the simple linear regression with inter-

ept, testing the nullity of the regression coefficient corresponding

o the slope is equivalent to performing a Pearson’s correlation test

etween the response and the explanatory variables ( Kendall and

tuart, 1961 , p985). 

Let A and B be two traits, z A = (z A 
k 
) n ≤k ≤2 n and z B = (z B 

k 
) n ≤k ≤2 n

e their tip-value vectors (of dimension n + 1 ) and u A = (u A 
k 
) 0 ≤k<n 

nd u B = (u B 
k 
) 0 ≤k<n be the corresponding independent contrast

ectors (of dimension n ) and 1 be for the vector with all entries

qual to 1 (its dimension depending on the context). Below, we

hall present several ways of testing for correlation between A and

 . 

.1. Standard regression (SR) 

The most basic way to test for correlation between two traits

 and B is to consider the standard Pearson’s correlation test ob-

ained from the linear equation: 

 B = a SR 1 + b SR z A + ε SR , (5)

hich will be referred to as the SR method. In the SR method, the

earson’s correlation test between traits A and B amounts to test-

ng for the nullity of the coefficient b SR . 

Let 

̂ a SR ̂ b SR 

]
= 

([
1 

′ 
z ′ A 

][
1 z A 

])−1 [
1 

′ 
z ′ A 

]
z B , 

e the vector of ordinary least square estimates of the coefficients

 SR and b SR . The variance estimate of b SR is ̂ σ 2 
SR (z ′ 

A 
z A ) 

−1 where 

̂ 

2 
SR = 

(z B −̂ a SR 1 −̂ b SR z A ) 
′ (z B −̂ a SR 1 −̂ b SR z A ) 

n − 1 

s the residual variance estimate. Under the key assumptions of

he regression model, testing the nullity of the coefficient b SR is

erformed thanks to the fact that if b SR = 0 then the ratio of the

oefficient estimate ̂ b SR to its standard error 
√ ̂ σ 2 

SR 
(z ′ 

A 
z A ) −1 fol-

ows a Student distribution with n − 1 degrees of freedom. Un-

ortunately the key assumptions of the regression model are not

ranted here since entries of the error vector ε SR are not sampled

rom independent and identically distributed random variables be-

ause of the evolutionary relationships between the species in-

olved ( Harvey and Pagel, 1991 ). Though one expects correlation

ests with the SR method to be inaccurate in a phylogenetic con-

ext (except if T is a star tree), the SR method is included in the

tudy in order to be used as a basis of comparison. 
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.2. Independent contrasts (IC) 

The usual way to cope with the evolutionary dependency be-

ween the tip values of the traits is to consider their independent

ontrasts ( Felsenstein, 1985 ), referred to as the IC method below,

hich is based on the regression through origin between the inde-

endent contrasts according to the equation: 

 B = b IC u A + ε IC . (6)

he IC method is widely used and has been assessed in several

orks ( Grafen, 1989; Martins and Garland, 1991; Pagel, 1993; Gar-

and and Adolph, 1994; Martins, 1996; Diaz-Uriarte and Garland,

996 ). In the IC approach, testing correlation between traits A and

 amounts to testing for the nullity of the coefficient b IC in the

egression through the origin. The ordinary least square estimate
 

 IC = (u 

′ 
A 

u A ) 
−1 u 

′ 
A 

u A of b IC has variance ̂ σ 2 
IC 

(u 

′ 
A 

u A ) 
−1 where 

̂ 

2 
IC = 

(u B −̂ b SR u A ) 
′ (u B −̂ b SR u A ) 

n − 1 

. 

nder the key assumptions of the regression analysis, if b IC = 0

hen the ratio of ̂ b IC to its standard deviation follows a Student

istribution with n − 1 degrees of freedom. 

Testing for the nullity of b IC by using this property is theoret-

cally founded if one assumes that both traits A and B evolve fol-

owing a BM model since Corollary 4 and Theorem 7 ensures that

heir respective independent contrasts are realizations of indepen-

ent and identically distributed centered Gaussian random vari-

bles (U 

A 
k 
) 0 ≤k<n and (U 

B 
k 
) 0 ≤k<n with the same correlation as the

wo traits. Putting ρ , σ 2 
A 

and σ 2 
B 

for this correlation and the vari-

nces of (U 

A 
k 
) 0 ≤k<n and (U 

B 
k 
) 0 ≤k<n , respectively, and considering a

holesky decomposition of their covariance matrix, we get that the

andom contrasts U 

B 
k 

can be written as 

 

B 
k = 

σB ρ

σA 

U 

A 
k + σB 

√ 

1 − ρ2 E k , 

here the terms (E k ) 0 ≤k<n are independent centered standard

aussian variables. This shows that the key assumptions of the

egression analysis are well granted. The correlation between the

ndependent contrast random variables (U 

A 
k 
) 0 ≤k<n and (U 

B 
k 
) 0 ≤k<n ,

hus between the traits A and B , can be assessed by regres-

ion through origin between the contrast series (u A 
k 
) 0 ≤k<n and

(u B 
k 
) 0 ≤k<n . 

In the case where at least one of the two traits to compare fol-

ows an ABM model with a non-zero trend, Theorem 7 still en-

ures that their respective independent contrasts are correlated

ith the same correlation as the traits. Unfortunately, since from

orollary 4 their independent contrasts are no longer identically

istributed but depend on k (we have U 

A 
k 

∼ N 

(
μA h k , σ

2 
A 

)
and U 

B 
k 

∼
 

(
μB h k , σ

2 
B 

)
with h k � = 0 in the general case), it makes no sense

o test for their correlation through a joint sample. 

Fig. 1 illustrates how directional trends may make independent

ontrasts computed from two uncorrelated traits look strongly cor-

elated. This was expected since spurious correlations due to a

ommon dependency on a third factor is a classical phenomenon

 Yule, 1926; Entorf, 1997; Deng, 2015 ). 

.3. Directional contrasts (DC) 

A first approach to correct the independent contrasts when

t least one of the two traits to compare evolves with a linear

rend was proposed in Elliott (2015) . The general idea of Elliott ’s

2015) approach is to center the independent contrasts in order to 

ake them identically distributed. To this end, Elliott (2015) de-

ned the β-directional contrasts d k ( β). The formal definition of the

-directional contrasts is recalled in Appendix D in which we show

hat, for all internal nodes k , the β-directional contrasts d ( β) of
k 
lliott (2015) are equal to the β-centered contrasts c k ( β) defined

s: 

 k (β) = u k − βh k , 

hich have a direct interpretation with regards to the formalism

f Section 2 . 

Let us first remark that under an ABM model with trend μ,

heorem 3 ensures that the μ-centered/ μ-directional contrasts are

ell independent and identically distributed thus could be used in

orrelation tests. Unfortunately, obtaining these corrected contrasts

equires to have the trend parameter μ. More exactly, for testing

orrelation between two traits A and B , their respective trends μA 

nd μB have to be known, but they are a priori unknown in prac-

ical situations. Elliott (2015) proposed to use instead their esti-

ates ̂ μA and 

̂ μB ( Eq. (C.2) ) and to consider the correlation be-

ween the (estimated) directional contrasts d A 
k 
( ̂  μA ) and d A 

k 
( ̂  μB ) ,

here d A 
k 
( ̂  μA ) = u A 

k 
− ̂ μA h k and d A 

k 
( ̂  μB ) = u B 

k 
− ̂ μB h k for all internal

odes k of T . 
Regression between estimated directional contrasts will be re-

erred to as the DC method. Namely, by putting d A and d B for the

ectors of directional contrasts (d A 
k 
( ̂  μA )) 0 ≤k<n and (d A 

k 
( ̂  μB )) 0 ≤k<n ,

t is based on the following linear equation: 

 B = a DC 1 + b DC d A + ε DC . (7)

et 

̂ a DC ̂ b DC 

]
= 

([
1 

′ 
d 

′ 
A 

][
1 d A 

])−1 [
1 

′ 
d 

′ 
A 

]
d B , 

e the vector of ordinary least square estimates of the coefficients

 DC and b DC and 

̂ 

2 
DC = 

(d B −̂ a DC 1 −̂ b DC d A ) 
′ (d B −̂ a DC 1 −̂ b DC d A ) 

n − 2 

, 

e the residual variance (vectors d A and d B have dimension n ).

esting for correlation between traits A and B amounts to testing

or the nullity of the parameter b DC , which, under the key assump-

ions of the regression model, is performed thanks to the fact that,

y assuming that b DC = 0 , the ratio of the coefficient estimate ̂  b DC 

o its standard error 
√ ̂ σ 2 

DC 
(d 

′ 
A 

d A ) −1 follows a Student distribution

ith n − 2 degrees of freedom. 

Unfortunately, since the trends ̂ μA and 

̂ μB are estimated from

ndependent contrasts, the estimated directional contrasts are nei-

her independent, nor identically distributed under ABM models

 Appendix D ). Applying standard correlation tests on estimated di-

ectional contrasts is not founded from a statistical point view. 

.4. Multiple regression (MR) 

If traits A and B follows two ABM models (x A 0 , μA , σ
2 
A 
) and

(x B 
0 
, μB , σ

2 
B 
) then, for all internal nodes k of T , both independent

ontrast random variables U 

A 
k 

and U 

B 
k 

depend on the same explana-

ory variable h k ( Eq. (1) ). As shown in Fig. 1 , this dependence on a

ommon factor is likely to cause a systematic correlation between

he random variables U 

A 
k 

and U 

B 
k 

. Neutralizing this spurious corre-

ation requires to include the common explanatory variable h k in

he regression ( Yule, 1926; Deng, 2015 ). By combining Eqs. (3) and

4) , we get that 

 

B 
k = 

σB ρ

σA 

U 

A 
k + 

(
μB − σB ρ

σA 

μA 

)
h k + 

σB 

√ 

1 − ρ2 √ 

v r(k ) + v � (k ) 

Φk ( ̃  W 

B ) . 

his suggests to consider the multiple regression through origin

etween contrasts by including h k as co-variable, i.e., to consider

he equation: 

 B = b MR u A + c MR h + ε MR , (8)
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Fig. 1. Independent contrasts of two traits A and B simulated on the tree of Fig. 2 under two uncorrelated ABM models with trends μA = 0 . 5 and μB = 0 . 2 respectively. 
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which will be referred to as the MR method. The multi-

ple regression procedure is statistically sound here since the

entries of the error vector are sampled from random vari-

ables 

(
σB 

√ 

1 −ρ2 √ 

v r(k ) + v � (k ) 
Φk ( ̃

 W 

B ) 
)

0 ≤k<n 

which are independent and Gaus-

sian distributed with mean zero and constant variance σ 2 
B 
(1 − ρ2 )

under the current assumptions. The vector of ordinary least square

estimates of b MR and c MR is [̂
 b MR ̂ c MR 

]
= 

([
u 

′ 
A 

h 

′ 

][
u A h 

])−1 [
u 

′ 
A 

h 

′ 

]
u B , 

and the variance of the estimator of b MR is 
√ ̂ σ 2 

MR 
(u 

′ 
A 

u A ) −1 where 

̂ σ 2 
MR = 

(u B −̂ b MR u A −̂ c MR h ) ′ (u B −̂ b MR u A −̂ c MR h ) 

n − 2 

. 

Eqs. (3) and (4) show that if traits A and B follows two ABM mod-

els (x A 
0 
, μA , σ

2 
A 
) and (x B 

0 
, μB , σ

2 
B 
) with correlation ρ , the random

contrasts U 

B 
k 

can be written as 

 

B 
k = 

σB ρ

σA 

U 

A 
k + 

(
μB − σB ρ

σA 

μA 

)
h k + 

σB 

√ 

1 − ρ2 √ 

v r(k ) + v � (k ) 

Φk ( ̃  W 

B ) , 

where the random error variables 

(
σB 

√ 

1 −ρ2 √ 

v r(k ) + v � (k ) 
Φk ( ̃

 W 

B ) 
)

0 ≤k<n 

are

independent and Gaussian distributed with mean zero and con-

stant variance σ 2 
B 
(1 − ρ2 ) . The key assumptions of the regression

analysis are thus granted if traits A and B follow two ABM models.

Testing for correlation between traits A and B can be performed by

testing for the nullity of coefficient b MR thanks to the fact that if

b MR = 0 then the ratio of the coefficient estimate ̂  b MR to its stan-

dard deviation follows a Student distribution with n − 2 degrees of

freedom. 

It is worth pointing out that the MR test does not require to

estimate neither trend μA nor trend μB . 

3.5. Relation with PGLS method 

PGLS method was introduced in Grafen (1989) and further stud-

ied in Martins and Garland (1991) , Pagel (1997) , and Martins and

Hansen (1997) . It is a generalized least squares method specifically

designed to take into account the phylogenetic dependency of the

regression errors. This dependency relies on evolutionary assump-

tions. In particular under the BM model, the dependency struc-

ture is exactly the same as for the IC method which is based on
he same model. Namely, the covariance matrix of the tip random

ariables of T has the form σ 2 � where σ 2 is the variance of the

rownian model and � is the matrix indexed on the tips of T such

hat for all pairs of tips ( i , j ), the entry ( i , j ) is the total time be-

ween the root of T and the most recent common ancestor of i and

 . The PGLS approach is based on the following linear equation 

 B = a PGLS 1 + b PGLS z A + ε PGLS , 

hich looks the same as that of the SR method but the error vec-

or ε PGLS is now assumed to be sampled from a centered Gaus-

ian vector with covariance matrix proportional to �. The vector

f general least square estimates of the coefficients a PGLS and b PGLS 

s 

̂ a PGLS ̂ b PGLS 

]
= 

([
1 

′ 
z ′ A 

]
�−1 

[
1 z A 

])−1 [
1 

′ 
z ′ A 

]
�−1 z B , 

nd the residual variance estimate is 

̂ 

2 
PGLS = 

(z B −̂ a PGLS 1 −̂ b PGLS z A ) 
′ �−1 (z B −̂ a PGLS 1 −̂ b PGLS z A ) 

n − 1 

. 

nder the PGLS assumptions, testing the nullity of the coefficient

 PGLS is performed thanks to the fact that, by assuming that b PGLS =
 , the ratio of the coefficient estimate ̂  b PGLS to its standard error

ollows a Student distribution with n − 1 degrees of freedom. 

The strong relation between PGLS and IC approaches

s well known ( Garland and Ives, 20 0 0; Rohlf, 20 01 ).

lomberg et al. (2012) provided a formal proof that, in the

imple regression case, least square estimates of the regression

oefficient of the explanatory variable is exactly the same with

he IC as with the PGLS methods, namely that ̂ b PGLS = ̂

 b IC . In

ppendix E , we prove the same result in the multiple regression

ase and show that the variance of the least square estimates

f the coefficients are also the same with the IC and the PGLS

ethods. 

heorem 8. Let z 0 , z 1 , ... z p be the tip value vectors of traits or co-

ariables (e.g., tip times, environmental variables...) and u 0 , u 1 , ... u p 

e the corresponding independent contrast vectors, ̂ βIC be the vector

f the ordinary least square coefficient estimates from the linear equa-

ion though origin 

 0 = 

[
u 1 . . . u p 

]
βIC + ε IC , 
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nd let ̂ βPGLS be the vector of the generalized least square coefficient

stimates from the linear equation with intercept 

 0 = 

[
1 z 1 . . . z p 

][αPGLS 

βPGLS 

]
+ ε PGLS , 

here the error vector ε PGLS is assumed to be a realization of a cen-

ered Gaussian vector with covariance matrix proportional to � (the

ovariance matrix associated to the tree T ). The vectors ̂  βIC and ̂  βPGLS 

s well as covariance matrices of the corresponding least squares es-

imators are equal. Moreover, the degrees of freedom involved in the

ullity tests of their coefficients are both equal to n − p with the two

pproaches. 

roof. Appendix E . �

Theorem 8 directly implies that testing for correlation between

wo traits with IC and PGLS is completely equivalent, even by con-

idering others traits or covariables. 

In order to show the relation between the MR and the PGLS

pproaches, let us add the tip times as an explanatory covariable

n the PGLS regression, i.e., let us consider the linear equation 

 B = a PGLSt 1 + b PGLSt z A + c PGLSt t + ε PGLSt , (9)

here t = (t k ) n ≤k ≤2 n is the tip time vector. The vector of general

east square estimates of the coefficients a PGLSt , b PGLSt and c PGLSt is 

 ̂ a PGLSt ̂ b PGLSt ̂ c PGLSt 

] 

= 

( [ 

1 

′ 
z ′ A 
t ′ 

] 

�−1 
[
1 z A t 

]) −1 [ 

1 

′ 
z ′ A 
t ′ 

] 

�−1 z B . 

esting for the nullity of b PGLSt is performed by considering the ra-

io of ̂ b PGLSt to its standard deviation in the Student distribution

ith n − 2 degrees of freedom. 

We prove in Appendix E that the variables (h k ) 0 ≤k<n are the in-

ependent contrasts of the tip times. Theorem 8 then implies that

oth the least square estimates of the regression coefficient asso-

iated to trait A and their variances are exactly the same with the

R method and with the PGLSt method. 

In short, the IC and PGLS (resp. the MR and PGLSt) methods

re interchangeable to test for correlation between two continuous

raits under neutral or directional evolution. 

An important point is that computations of the PGLS method

equire to inverse the covariance matrix accounting for the phy-

ogenetic dependencies, which has cubic time complexity with re-

pect to the size of the tree, whereas the IC and MR methods takes

dvantage of the tree structure of the phylogenetic dependencies

n order to perform the same computations in linear time. 

.6. Ultrametric trees 

Proposition 5 states that if T is ultrametric then h k = 0 for all

nternal nodes k of T . This implies that Eqs. (6) and (8) turn out

o be exactly the same in this case. In other words, on an ultra-

etric phylogenetic tree, the IC and MR methods are totally equiv-

lent to test for correlation. Moreover, since in an ultrametric tree,

he maximum likelihood estimator of the trend returns always 0

again because h k = 0 for all internal nodes k of T , cf Eq. (C.2) ),

q. (7) is the same as Eqs. (6) and (8) . In sum, the IC, DC and MR

ethods are equivalent on ultrametric trees. Using the IC method

s statistically founded here since independent contrasts satisfy the

equirements of correlations tests in the ultrametric case. 

Note that non-ultrametric phylogenetic trees arise in several

ituations. In particular, phylogenetic trees containing fossil taxa

with or without extant taxa) are not ultrametric (e.g., Laurin,

004; Heim et al., 2015 ). The ultrametric character relies on the

volutionary model used to infer the trees. For instance, the spe-

iational model which somehow assumes a same unitary branch
ength all along the tree generally provides non-ultrametric trees

 Knouft and Page, 2003; Moen, 2006; Laurin et al., 2012 ). Mea-

uring branch lengths in terms of genetic changes ( Moen, 2006 )

r scaling branch lengths by their own evolution rates in hetero-

eneous models ( Baker et al., 2015; 2016 ) instead of considering

heir geological ages also lead to non-ultrametric trees even if all

he taxa are extant. 

. Simulation study 

In this section, we shall assess and compare the four correlation

ests presented in Section 3 : 

1. SR: standard regression of tips values ( Eq. (5) ), 

2. IC: regression through origin of independent contrasts ( Eq. (6) ),

3. DC: regression of directional contrasts ( Eq. (7) ), 

4. MR: multiple regression through origin of independent con-

trasts with h k as co-variable ( Eq. (8) ). 

.1. Simulation and evaluation protocol 

We simulated the evolution of two quantitative traits A and B

nder various conditions, i.e., under BM and ABM models with sev-

ral sets of parameters and several levels of correlation between A

nd B . The simulated evolution runs on the hominin phylogenetic

ree displayed in Fig. 2 ( Dembo et al., 2015 ). 

Although the ABM model has three parameters ( x 0 , μ, σ 2 ), we

nly vary the trend parameter μ in the simulations. The param-

ter x 0 just translates the whole evolution process, which has no

ffect on the correlation of a trait with another. Multiplying both

he trend and the standard deviation of an ABM model with a con-

tant just results in multiplying the values of the ABM process with

ame constant (i.e., what actually matters is the ratio of the trend

o the standard deviation). 

The four correlation tests were next assessed in terms of type

 error, i.e., with regard to their ability to not falsely reject the

ull hypothesis, the null hypothesis being that the traits are un-

orrelated, in the case where the traits to compare are actually

ncorrelated. We also displays ROC plots of the tests for summa-

izing their ability to distinguish between correlated and uncorre-

ated traits ( Zhou et al., 2011 ). Plots of type I error were obtained

y simulating uncorrelated traits and by plotting the proportion of

imulations for which the null hypothesis was rejected versus the

evel of risk (each test associates to a simulation, a level of risk be-

ween 0 and 1, accounting for the chance that this simulation sat-

sfies the null hypothesis). ROC curves were obtained by simulating

oth negative (i.e., uncorrelated) population and positive (i.e., cor-

elated) population and by plotting for all levels of risk the propor-

ion of true negatives versus the proportion of false positives de-

ected by each test. We simulated 50 0 0 0 evolutions of correlated

nd uncorrelated pairs of traits for each plot. 

.2. Correlation tests between two traits under neutral evolution 

We first simulated two traits evolving under neutral evolution

i.e., under the BM model) with correlation levels 0 and 0.5 (results

btained with correlation 0.7 are provided in the supplementary

nformation). 

Fig. 3 -Left displays the proportion of type I error at all level

f rejection α obtained from 50 0 0 0 simulations of two uncorre-

ated traits under the BM model with variance 0.09. We do observe

hat both the IC and the MR methods are perfect in the sense that

hey both rejected the null hypothesis at the exact level α required

both plots of IC and MR completely overlap with the diagonal in

ig. 3 -Left). The DC method is close to perfect but tends to reject

he null hypothesis a little bit more than it should do. Last, as ex-

ected, the worst performance comes from the SR method. 
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Fig. 2. Hominin phylogeny ( Dembo et al., 2015 ). 
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Fig. 3. Left: Rates of false rejection of the null hypothesis at level α vs α when both traits A and B follow the BM model with variance 0.09. Right: ROC plots of the correlation 

tests obtained from two simulated traits under the BM model with variance 0.09. Negative population is simulated with uncorrelated traits and positive population with 

traits correlated with correlation 0.5. 
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The p -values obtained from testing for the simulations are ex-

pected to be uniformly distributed with support [0,1]. We used

Kolmogorov-Smirnov (K-S) test in order to check this point. We ob-

served that p -values obtained when testing for the correlation of

independent traits follow an uniform distribution both for the IC

method (Kolmogorov-Smirnov test, p -value = 0.537) and for the MR

method (K-S test, p -value = 0.832). This is the case neither for the

DC nor for the SR methods (K-S test, p -values smaller than 10 −8 ).

In sum, under the BM model, only the IC and the MR methods

have the behavior expected from a statistical test. 

The ROC plots of the tests with a positive population simulated

under the same BM model, but with a correlation 0.5 between

the traits, are displayed Fig. 3 -Right. It shows that under the BM
odel, the most accurate test is IC but MR and DC tests have close

erformances. As expected the less accurate test is SR. 

.3. Correlation tests between a trait under neutral evolution and a 

rait under directional evolution 

We consider here the mixed situation where one of the traits

ollows a neutral evolution, here simulated under the BM model

ith variance 0.09 and the other one follows a directional evo-

ution, here simulated under the ABM model with trend 0.5 and

ariance 0.09. 

Fig. 4 -Left shows that the behavior of the type I error with

egard to the level of rejection α is essentially the same as in
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Fig. 4. Left: Rates of false rejection of the null hypothesis at level α vs α when trait A follows the BM model with variance 0.09 and trait B follows the ABM model with 

trend 0.5 and variance 0.09. Right: ROC plots of the correlation tests obtained from two simulated traits under a BM model and an ABM model with trend 0.5 respectively, 

both with variance 0.09. Negative population is simulated with uncorrelated traits and positive population with traits correlated with correlation 0.5. 
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respectively. Right: ROC plots of the correlation tests obtained from two simulated traits under ABM models with trend 0.5 and 1 respectively, both with variance 0.09. 

Negative population is simulated with uncorrelated traits and positive population with traits correlated with correlation 0.5. 
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he case of two traits under neutral evolution for all the meth-

ds. Moreover, p -values obtained here still follow an uniform dis-

ribution with support [0,1] both for the IC method (K-S test, p -

alue = 0.345) and for the MR method (K-S test, p -value = 0.586).

his is the case neither for the DC nor for the SR methods (K-S

est, p -values smaller than 10 −8 ). 

The ROC plots displayed in Fig. 4 -Right shows that perfor-

ances of the IC and the SR tests are significantly lower than that

f the MR and DC tests. The MR method is slightly more accurate

han the DC test. 

.4. Correlation tests between two traits under directional evolution 

In the case where the two traits are under directional evolution

here trait A has trend 0.5, and trait B has trend 1 both with vari-

nce 0.09), the rate of type I error of both the SR and the IC meth-
ds becomes maximal ( Fig. 5 -Left). In plain English, the SR and

he IC method systematically reject the hypothesis that the traits

re uncorrelated, even when they are uncorrelated. This behavior

learly prevents us to use the IC and the SR methods to detect cor-

elation between traits under directional evolution. Still with re-

ard to type I errors, performances of the MR and DC methods are

ssentially the same as in the case of neutral evolution or in the

mixed” case. The MR method looks perfect and the DC method

till tends to reject the null hypothesis a little bit more than it

hould do. Taking a closer look on the p -values of the tests, we

bserve that those of the IC method no longer follow an uniform

istribution (K-S test, p -value below 10 −9 ) and so do those of the

R and DC methods. Only the MR method has the expected behav-

or of a test in this situation (K-S test, p -value = 0.935). 

Fig. 5 -Right displays the ROC plots of the SR, IC, DC and MR

ests. The performance of the IC test is not better than a random
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Table 1 

Cranial capacity and body mass of species of the phylogenetic tree 

of Fig. 2 . 

Species Cranial capacity ( cm 

3 ) Body mass ( g ) 

Ar. ramidus 300.0 38067 

Au. afarensis 436.4 38680 

Au. africanus 457.1 31260 

Au. anamensis – 46300 

Au. garhi 450.0 –

Au. sediba 420.0 26485 

G. gorilla 520.2 120500 

H. antecessor 1218.3 –

H. erectus 982.9 58274 

H. ergaster 840.0 58164 

H. floresiensis 417.0 27500 

H. habilis 580.3 35782 

H. heidelbergensis 1214.5 80440 

H. neanderthalensis 1470.2 79573 

H. rudolfensis 752.0 45597 

H. sapiens 1391.8 64224 

K. platyops 425.0 –

P. aethiopicus 418.2 37666 

P. boisei 509.2 45971 

P. robustus 527.5 36124 

P. troglodytes 387.7 53011 

S. tchadensis 365.0 –
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guess and that of the SR test is almost as bad. The accuracy of the

MR and DC tests is essentially the same as in the preceding case. 

4.5. Discussion 

As expected, the less accurate test is SR in all the situations.

Overall, we observe that despite the flaws in its statistical proper-

ties, the DC method performs generally well with regards to the

two criteria considered, whatever the trends of the traits. How-

ever, the DC method is always outperformed by the MR method.

The “historical” IC method is outperformed by both the MR and

the DC methods as soon as one of the traits is under directional

evolution. It has the best performance from the ROC criteria only

when the two traits evolve under the BM model, which is not very

surprising since it corresponds exactly to the assumptions of this

method, but the accuracy of the MR and DC methods is very close.

The additional figures obtained from a greater variety of param-

eters and provided in the Supplementary Information lead to the

same observations. 

The simulations suggest to first test for the presence of a non-

zero trend on each trait to compare, for instance by using the

method of Appendix C , then to use the MR method if at least one

of the traits shows a significant trend, and to use the standard IC

method only if the two traits are under neutral evolution. 

5. Correlation between hominin cranial capacity and body 

mass 

5.1. Data 

Evolution of hominin cranial capacity and body mass was stud-

ied in numerous works ( Kappelman, 1996; Henneberg, 1998; Wood

and Collard, 1999; Leonard et al., 2003; Falk et al., 2005; We-

ber et al., 2005; Martin et al., 2006; Young, 2006; Snodgrass

et al., 2009; Montgomery et al., 2010; Potts, 2011; Shultz et al.,

2012; Schoenemann, 2013; Hofman, 2014; Grabowski et al., 2015;

Grabowski, 2016; Argue et al., 2017; Will et al., 2017; Du et al.,

2018 ). 

Our study is based on the hominin phylogenetic tree summa-

rizing the best trees obtained in the dated Bayesian analysis of

Dembo et al. (2015 , Fig. 1), which is displayed in Fig. 2 . We com-

bined data from several articles in order to get the body mass

and the cranial capacity of as many species as possible, namely

from Kappelman (1996 , Table 1), Wood and Collard (1999 , Ta-

ble 3), Leonard et al. (2003 , Table 3), Young (2006 , Table 1),

Schoenemann (2013 , Tables 8.1 and 8.2), Grabowski et al. (2015 ,

Table 4), Will et al. (2017 , Table 4) and Du et al. (2018 , Elec. Supp.).

We excluded data associated to ambiguously identified species and

to juvenile specimens. We finally averaged all the collected cra-

nial capacities and body masses by species in order to obtain the

data displayed in Table 1 . We excluded H. floresiensis for calibrating

our models, because being an outlier ( Weber et al., 2005; Martin

et al., 2006; Falk et al., 2007; Argue et al., 2017 ), this species over-

influenced the results. Each time that a data required in an analysis

was missing, we did not consider the corresponding species in this

analysis. In particular, the correlation study pertains only to species

for which both cranial capacity and body mass are known. 

We considered the logarithms of cranial capac-

ity and body mass data such as in Kappelman (1996) ,

Henneberg (1998) , Leonard et al. (2003) , Snodgrass et al. (2009) ,

Navarrete et al. (2011) , and Du et al. (2018) . Taking the logarithm

of quantitative trait values is quite usual since it accounts for

the fact that for instance, an increase of 100 g does not have the

same significance for an organism of 1 kg as for a organism of

100 kg. From a statistical point of view, log-transformation is a

particular case of Box-Cox transformations which tend to stabilize
he variance. It is also sometimes used to approach Gaussian

ehavior required by Brownian evolution models ( Legendre and

esdevises, 2009 ). 

We applied diagnostic tests on residuals after log-

ransformation in order to check for least squares regression

alidity conditions. Namely, we use Durbin-Watson’s test to detect

utocorrelation at lag 1 ( Durbin and Watson, 1950; 1951; 1971 );

arrison-McCabe’s test to detect heteroscedasticity ( Harrison and

cCabe, 1979 ) and Jarque-Bera’s test to confirm normality

 Jarque and Bera, 1987 ). 

.2. Evolutionary trends of hominin cranial capacity and body mass 

Several works agree with the fact that hominin brain size in-

reased through evolution ( Henneberg, 1998; Montgomery et al.,

010; Navarrete et al., 2011; Potts, 2011; Shultz et al., 2012;

ofman, 2014 ). Henneberg (1998) found a significant correla-

ion between the log-transformed cranial capacity and the fos-

il age through a direct “non-phylogenetic” regression approach.

pplying the same approach on our dataset, we also detected

 positive evolutionary trend ( p -value = 0.003), but least squares

egression conditions are violated (Harrison-McCabe’s test, p -

alue = 0.001), certainly because of the phylogenetic relationships

etween tips values. Conversely, the hominin cranial capacities

ulfill the conditions of the phylogenetic trend detection test

resented introduced in Appendix C (Durbin-Watson’s test, p -

alue = 0.422; Harrison-McCabe’s test, p -value = 0.604; Jarque-Bera’s

est, p -value = 0.646). The test of Appendix C concludes to a posi-

ive trend ( p -value = 0.012) which amounts to multiplying the cra-

ial capacity by 1.2 per Ma. 

Several studies conclude that the body mass data increased dur-

ng evolution by using non phylogenetic approaches, i.e., with-

ut taking into account the evolutionary relationships between

he species ( Henneberg, 1998; Will et al., 2017 ). Considering a di-

ect “non phylogenetic” regression of the logarithm of the body

ass of our dataset led to detect a positive evolutionary trend ( p -

alue = 0.002), whereas, by taking into account the evolutionary re-

ationships between species, the detection test of Appendix C did

ot conclude to a significant trend on the logarithm of ho-

inin body mass ( p -value = 0.072). Both the non phylogenetic re-

ression and our detection test satisfy the regression assump-

ions (Durbin-Watson’s test, p -value = 0.243 and p -value = 0.227;
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arrison-McCabe’s test, p -value = 0.0 6 6 and p -value = 0.796; Jarque-

era’s test, p -value = 0.953 and p -value = 0.865 respectively). 

Our results are consistent with those of Montgomery et al.

2010) , who also found a positive trend in cranial capacity and

o significative trend in the body size evolution of hominids. Fi-

ally, testing for correlation between the logarithms of hominin

ranial capacity and body mass falls in a situation close to that

f Section 4.3 , in which we compared a trait simulated un-

er neutral evolution with a trait simulated under directional

volution. 

.3. Correlation between hominin cranial capacity and body mass 

We applied the MR method in order to test for correlation be-

ween the logarithms of the hominin body mass and cranial ca-

acity. These data fulfill the requirements of our correlation test

Durbin-Watson’s test, p -value = 0.819; Harrison-McCabe’s test, p -

alue = 0.690; Jarque-Bera’s test, p -value = 0.461). Durbin-Watson’s

nd Harrison-McCabe’s tests require to order the residuals with re-

pect to the explanatory variable, which is straightforward for sin-

le regressions, but not for multiple regressions. Following Fan and

uang (2001) , we ordered the residuals with respect to most in-

ormative linear combination of the explanatory variables obtained

rom principal component analysis. 

It is thus allowed to apply the MR test, which concluded that

he logarithms of hominin cranial capacity and body size are sig-

ificantly correlated ( p -value = 0.027). In plain English, even by tak-

ng into account possible evolutionary trends, the logarithms of

hese two traits do not change independently. This result is con-

istent with Grabowski (2016) , who showed that the evolution of

ominin body size and that of the cranial capacity are related. 

ppendix A. Distribution of independent contrasts – Proof of 

heorem 3 

Let us first prove by induction that for all nodes k of T , we

ave that 

 k = x 0 + μ(t k + γk ) + σ
(
W t k 

+ Ψk ( W ) 
)

with 

k = 

{ 

0 if k is a tip, 
v � (k ) (γr(k ) + v r(k ) ) + v r(k ) (γ� (k ) + v � (k ) ) 

v r(k ) + v � (k ) 

otherwise, and 

k ( W ) = 

⎧ ⎨ ⎩ 

0 if k is a tip

v 
� (k ) 

(
W t r(k ) 

−W t k 
+ Ψr(k ) ( W ) 

)
+ v r(k ) 

(
W t 

� (k ) 
−W t k 

+ Ψ
� (k ) ( W ) 

)
v r(k ) + v � (k ) 

otherwise. 

In the base case, i.e., when k is a tip, the property is granted

ince from Definition 2 , we have that 

 k = Z k 

= x 0 + μt k + σW t k 

= x 0 + μ(t k + γk ) + σ
(
W t k + Ψk ( W ) 

)
with γk = 0 and Ψk ( W ) = 0 . 

Let k be an internal node and let us assume that the property

olds for its direct descendants r(k ) and � (k ) . From Definition 2 ,

e have that 

 k = 

v � (k ) Z r(k ) + v r(k ) Z � (k ) 

v r(k ) + v � (k ) 

= 

v � (k ) x 0 + v r(k ) x 0 

v r(k ) + v � (k ) 

+ μ

(
v � (k ) 

v r(k ) + v � (k ) 

(t r(k ) + γr(k ) ) + 

v r(k ) 

v r(k ) + v � (k ) 

(t � (k ) + γ� (k ) ) 

)
+ σ

(
v � (k ) 

v r(k ) + v � (k ) 

(
W t r(k ) 

+ Ψr(k ) ( W ) 
)

+ 

v r(k ) 

v r(k ) + v � (k ) 

(
W t � (k ) 

+ Ψ� (k ) ( W ) 
))

= x 0 + μ

(
v � (k ) 

v r(k ) + v � (k ) 

(t k + v r(k ) + γr(k ) ) + 

v r(k ) 

v r(k ) + v � (k ) 

(t k + v � (k ) + γ� (k ) ) 

)
+ σ

(
W t k + 

v � (k ) 

v r(k ) + v � (k ) 

(
W t r(k ) 

− W t k + Ψr(k ) ( W ) 
)

+ 

v r(k ) 

v r(k ) + v � (k ) 

(
W t � (k ) 

− W t k + Ψ� (k ) ( W ) 
))

= x 0 + μ(t k + γk ) + σ
(
W t k + Ψk ( W ) 

)
, 

y setting 

k = 

v � (k ) (γr(k ) + v r(k ) ) + v r(k ) (γ� (k ) + v � (k ) ) 

v r(k ) + v � (k ) 

and 

k ( W ) = 

v � (k ) 

(
W t r(k ) 

− W t k 
+ Ψr(k ) ( W ) 

)
+ v r(k ) 

(
W t 

� (k ) 
− W t k 

+ Ψ� (k ) ( W ) 
)

v r(k ) + v � (k ) 

, 

nd the property holds for all nodes k of T . 
Proving the second point of the theorem is direct since from

efinition 2 , we have that 

 k = 

Z r(k ) − Z � (k ) √ 

v r(k ) + v � (k ) 

= μ
v r(k ) + γr(k ) − v � (k ) − γ� (k ) √ 

v r(k ) + v � (k ) 

+ 

σ√ 

v r(k ) + v � (k ) 

Φk ( W ) , 

here 

k ( W ) = W t r(k ) 
+ Ψr(k ) ( W ) − W t � (k ) 

− Ψ� (k ) ( W ) 
= ( W t r(k ) 

− W t k ) + Ψr(k ) ( W ) − ( W t � (k ) 
− W t k ) − Ψ� (k ) ( W ) , 

By construction, for all nodes k , Ψk ( W ) is a linear combination

f independent centered Gaussian random variables of the form

 t i 
− W t a (i ) 

where i is a descendant of k . It follows that Ψk ( W ) is a

entered Gaussian variable, which is independent from any random

ariable W t j 
− W t a ( j) 

if j is not a descendant of k . Since ( W t ) t > 0 is

he Wiener process, we have that 

ar ( W t i − W t a (i ) 
) = t i − t a (i ) = v i 

or all nodes i of T ( Grimmett and Stirzaker, 2001 ). 

Let us prove by induction that 

ar ( Ψk ( W ) ) = 

{
0 if k is a tip, 

v r(k ) v � (k ) 

v r(k ) + v � (k ) 
otherwise, 

hich is equivalent to say that Var ( Ψk ( W ) ) + v k = v k from

efinition 2 . It is basically true in the base case where k is a tip. If

 is an internal node, by assuming that the induction assumption

olds for its direct descendants r(k ) and � (k ) , we have that 

ar ( Ψk ( W ) ) = 

v 
2 
� (k ) 

(
Var 

(
W t r(k ) 

− W t k 

)
+ Var 

(
Ψr(k ) ( W ) 

))
+ v 

2 
r(k ) 

(
Var 

(
W t � (k ) 

− W t k 

)
+ Var 

(
Ψ� (k ) ( W ) 

))
( v r(k ) + v � (k ) ) 2 

 

v 
2 
� (k ) 

(
v r(k ) + Var 

(
Ψr(k ) ( W ) 

))
+ v 

2 
r(k ) 

(
v � (k ) + Var 

(
Ψ� (k ) ( W ) 

))
( v r(k ) + v � (k ) ) 2 

 

v 
2 
� (k ) v r(k ) + v 

2 
r(k ) v � (k ) 

( v r(k ) + v � (k ) ) 2 
= 

v r(k ) v � (k ) 

v r(k ) + v � (k ) 

, 

hich proves the form of Var ( Ψk ( W ) ) . 

In the same way, Φk ( W ) is a linear combination of independent

entered Gaussian random variables of the form W i − W a (i ) where

 is a descendant of k , with variance 

ar ( Φk ( W ) ) = Var 
(
W t r(k ) 

− W t k 

)
 Var 

(
Ψr(k ) ( W ) 

)
+ Var 

(
W t � (k ) 

− W t k 

)
+ Var 

(
Ψ� (k ) ( W ) 

)
 v r(k ) + Var 

(
Ψr(k ) ( W ) 

)
+ v � (k ) + Var 

(
Ψ� (k ) ( W ) 

)
= v r(k ) + v � (k ) . 

ppendix B. Ultrametric trees - Proof of Proposition 5 

Let T be an ultrametric tree and T be the total path-length/time

rom its root to its tips. 

We shall prove by induction that γk = T − t k and h k = 0 for all

odes k of T . The property is basically true if k is a tip, our base

ase. Let k be an internal node and let us assume that the property

olds for its direct descendants r(k ) and � (k ) . From Theorem 3 , we
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have that 

γk = 

v � (k ) (γr(k ) + v r(k ) ) + v r(k ) (γ� (k ) + v � (k ) ) 

v r(k ) + v � (k ) 

= 

v � (k ) (T − t r(k ) + v r(k ) ) + v r(k ) (T − t � (k ) + v � (k ) ) 

v r(k ) + v � (k ) 

= 

v � (k ) (T − t k ) + v r(k ) (T − t k ) 

v r(k ) + v � (k ) 

= T − t k and , 

h k = 

v r(k ) + γr(k ) − v � (k ) − γ� (k ) √ 

v r(k ) + v � (k ) 

= 

(v r(k ) + T − t r(k ) ) − (v � (k ) + T − t � (k ) ) √ 

v r(k ) + v � (k ) 

= 

−t k + t k √ 

v r(k ) + v � (k ) 

= 0 which ends the proof. 

Appendix C. Trend estimation and detection 

Eq. (1) shows that under an ABM model with trend μ, the inde-

pendent contrasts U k can be written as the product of μ with the

corresponding temporal variable h k , plus an independent, centered

Gaussian term of constant variance with respect to k . This suggests

to estimate the trend μ as the slope of the following linear equa-

tion 

u = c hR h + ε hR (C.1)

where, from Eq. (1) , the entries of the error vector ε hR are samples

of random variables 

σΦk ( W ) √ 

v r(k ) + v � (k ) 

, 

which are independent and Gaussian distributed with mean zero

and variance σ 2 under the current assumptions. 

From Eq. (C.1) , the linear regression estimator of μ is 

̂ μ = 

∑ n −1 
j=0 u j h j ∑ n −1 

j=0 h 

2 
j 

. (C.2)
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Fig. C.1. Left: Rates of false rejection of the null hypothesis (i.e., no trend) at level α vs

of the trend detection tests obtained from simulated traits under the BM model for neg

positive population, both with variance 0.09. 
gain from Eq. (C.1) , testing for a trend in the evolution of trait

nder an ABM model can be performed by testing for the nullity

f the slope. In order to assess the accuracy of this trend test (re-

erred to as the “hR test”) with regard to the standard regression

f the tips values with respect to their times (referred to as the

SR test”), we simulated evolution of quantitative traits with and

ithout trend on the tree of Fig. 2 and plot the type I error rate

gainst the rejection level and the ROC plots of these two tests. Re-

ults are displayed in Fig. C.1 . The hR test clearly outperforms the

R test. Fig. C.1 -Left shows that the SR test rejects the null hypoth-

sis more than it should do whereas the hR test rejects it at the

xact level required. Moreover, their ROC plots show that the hR

est better discriminates between traits simulated with and with-

ut trend than the SR test ( Fig. C.1 -Right). 

ppendix D. Directional contrasts 

quivalence between centered and directional contrasts 

Elliott (2015) associated to all nodes k of T and all values β the

uantity e k ( β) defined as 

 k (β) = 

{ 

z k if k is a tip, 
v � (k ) (e r(k ) (β) − βv r(k ) ) + v r(k ) (e � (k ) (β) − βv � (k ) ) 

v r(k ) + v � (k ) 

otherwise, 

here the modified branch lengths ( v k ) 0 ≤k ≤2 n are given in

efinition 1 . 

For all internal nodes k of T , Elliott (2015) then defined the

 β-)directional contrast as 

 k (β) = 

e r(k ) (β) − e � (k ) (β) √ 

v r(k ) + v � (k ) 

− β
v r(k ) − v � (k ) √ 

v r(k ) + v � (k ) 

. 

Let us start to prove by induction that for all nodes k of T , we

ave that e k (β) = z k − βγk . 

The equality is basically true in the base cases, since if k is a tip

f T , we have that γk = 0 and e k (β) = z k = z k . 
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Let k be an internal node of T and let us assume that the equal-

ty holds for its two direct descendants r(k ) and � (k ) . We have 

 k (β) = 

v � (k ) (e r(k ) (β) − βv r(k ) ) + v r(k ) (e � (k ) (β) − βv � (k ) ) 

v r(k ) + v � (k ) 

= 

v � (k ) ( z r(k ) − βγr(k ) ) + v r(k ) ( z � (k ) − βγ� (k ) ) 

v r(k ) + v � (k ) 

− β
v � (k ) v r(k ) + v r(k ) v � (k ) 

v r(k ) + v � (k ) 

= 

v � (k ) z r(k ) + v r(k ) z � (k ) 

v r(k ) + v � (k ) 

− β
v � (k ) (v r(k ) + γr(k ) ) + v r(k ) (v � (k ) + γ� (k ) ) 

v r(k ) + v � (k ) 

= z k − βγk , 

hich proves the equality for all nodes of T . 
Last, we have that 

 k (β) = 

e r(k ) (β) − e � (k ) (β) √ 

v r(k ) + v � (k ) 

− β
v r(k ) − v � (k ) √ 

v r(k ) + v � (k ) 

= 

v � (k ) ( z r(k ) − βγr(k ) ) + v r(k ) ( z � (k ) − βγ� (k ) ) 

v r(k ) + v � (k ) 

− β
v � (k ) v r(k ) + v r(k ) v � (k ) 

v r(k ) + v � (k ) 

= 

v � (k ) z r(k ) + v r(k ) z � (k ) 

v r(k ) + v � (k ) 

− β
v � (k ) (v r(k ) + γr(k ) ) + v r(k ) (v � (k ) + γ� (k ) ) 

v r(k ) + v � (k ) 

= u k − βh k 
= c k (β) . 

In plain English, for all internal nodes k and all values β , the β-

irectional contrast d k ( β) is equal to the β-centered contrast c k ( β).

stimated directional contrasts 

In order to correct the trend effect, Elliott (2015) proposed

o consider the ̂ μ-directional contrasts where ̂ μ is the estimated

rend ( Eq. (C.2) ). 

Let B be the random variable associated to the estimated trend.

rom Eq. C.2 , we have that 

 = 

∑ n −1 
j=0 h j U j ∑ n −1 

j=0 h 

2 
j 

. 

rom Corollary 4 , if the trait follows the ABM model of parameters

 x 0 , μ, σ 2 ), then for all internal nodes k of T , the independent

ontrast random variables U k are Gaussian distributed with 

 k ∼ N 

(
μh k , σ

2 
)
, 

hich implies that B follows the Gaussian distribution

 

(
μ, σ 2 ∑ n −1 

k =0 
h 2 

k 

)
under the ABM model ( x 0 , μ, σ 2 ). 

For all internal nodes k of T , the random variable D k ( B ) associ-

ted to the k th estimated directional contrast is defined as 

 k (B ) = U k − Bh k 

= U k −
∑ n −1 

j=0 h j U j ∑ n −1 
j=0 h 

2 
j 

h k 

= 

U k 
∑ n −1 

j=0 
j � = k 

h 2 
j 
−h k 

∑ n −1 

j=0 
j � = k 

h j U j 

∑ n −1 
j=0 h 

2 
j 

. 

Corollary 4 implies that the estimated directional contrast ran-

om variables D k ( B ) are Gaussian distributed with 

 k (B ) ∼ N 

( 

0 , σ 2 

[ 

1 − h 

2 
k ∑ n −1 

j=0 h 

2 
j 

] ) 

. 

Moreover, since the independent contrast random variables U k 

re independent from one another, we have that for all i � = k 

ov ( D i (B ) , D k (B ) ) = 

−h k h i σ
2 ∑ n −1 

j=0 h 

2 
j 

. 

ince h k � = 0 in the general case, the estimated directional contrast

andom variables are neither identically distributed nor indepen-

ent. 
ppendix E. IC and PGLS regressions – Proof of Theorem 8 

In all what follows, 0 (resp. 1 ) denotes the column vector with

ll entries equal to 0 (resp. to 1; their dimensions depending on

he context) and for all numbers N , I N is the identity matrix of

imension N × N . The transpose of a matrix or a vector A is noted

 

′ . We recall that n is the number of internal nodes of T which

hus has n + 1 tips. 

 matrix presentation of the Felsenstein’s (1973) algorithm 

Let us sketch a matrix presentation of the Felsenstein ’s

1973) algorithm which iteratively computes the following vari- 

bles for all nodes k of T . By putting T k for the subtree of T rooted

t k and n k for its number of internal nodes, let 

• g k be the vector of dimension n k + 1 that is such that the “ar-

tificial” trait value of node k , i.e., z k of Definition 1 , is obtained

by multiplying g ′ 
k 

with the tip value vector of T k , 
• Q k be the n k × (n k + 1) matrix giving the independent contrasts

of the subtree T k from its tip value vector, and, 
• δk be the increment applied to the branch ending by k (i.e., v k −

v k in Definition 1 ). 

By initializing g k to the vector [1], Q k to the 0 × 0 “empty” ma-

rix and δk to 0 for all tips k of T , these variables are recursively

omputed for all internal nodes k of T with direct descendants � ( k )

nd r ( k ) by setting: 

• g ′ 
k 

= 

[ 
(v r(k ) + δr(k ) ) g 

′ 
� (k ) 

v � (k ) + δ� (k ) + v r(k ) + δr(k ) 

(v � (k ) + δ� (k ) ) g 
′ 
r(k ) 

v � (k ) + δ� (k ) + v r(k ) + δr(k ) 

] 
, 

• Q k = 

⎡ ⎢ ⎣ 

Q � (k ) 0 

0 Q r(k ) 
g ′ 

� (k ) √ 

v � (k ) + δ� (k ) + v r(k ) + δr(k ) 

−g ′ 
r(k ) √ 

v � (k ) + δ� (k ) + v r(k ) + δr(k ) 

⎤ ⎥ ⎦ 

, 

• δk = 

(v � (k ) + δ� (k ) )(v r(k ) + δr(k ) ) 

v � (k ) + δ� (k ) + v r(k ) + δr(k ) 
. 

It is straightforward to prove by induction that g ′ 
k 
1 = 1 for all

odes k of T . Let us prove by induction that Q 

′ 
k 
Q k 1 = 0 for all

odes k of T . The property is basically true for all tips. Let us as-

ume that k is an internal node and that its direct descendants � ( k )

nd r ( k ) both satisfy the property. We have 

 

′ 
k 
Q k = 

⎡ ⎢ ⎣ 

Q 

′ 
� (k ) 

Q � (k ) + 

g 
� (k ) g 

′ 
� (k ) 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

−g 
� (k ) g 

′ 
r(k ) 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

−g r(k ) g 
′ 
� (k ) 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

Q 

′ 
r(k ) 

Q r(k ) + 

g r(k ) g 
′ 
r(k ) 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

⎤⎥⎦
hus 

 

′ 
k 
Q k 1 = 

⎡ ⎢ ⎣ 

Q 

′ 
� (k ) 

Q � (k ) 1 + 

g 
� (k ) g 

′ 
� (k ) 

1 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

−
g 
� (k ) g 

′ 
r(k ) 

1 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

−g r(k ) g 
′ 
� (k ) 

1 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

+ Q 

′ 
r(k ) 

Q r(k ) 1 + 

g r(k ) g 
′ 
r(k ) 

1 

v 
� (k ) + δ� (k ) + v r(k ) + δr(k ) 

⎤ ⎥ ⎦ 

= 0, 

ince g ′ 
r(k ) 

1 = g ′ 
� (k ) 

1 = 1 from above and Q 

′ 
� (k ) 

Q � (k ) 1 =
 

′ 
r(k ) 

Q r(k ) 1 = 0 from the induction hypothesis, which proves

hat Q 

′ 
k 
Q k 1 = 0 for all nodes k of T . 

Let us set g ′ = g ′ r , Q = Q r and δ = δr where r is the root of T 
nd let � be the covariance matrix associated to T , i.e., for all

airs of tips ( i , j ) of T , the ( i , j )-entry of � is the total time be-

ween the root and the most recent common ancestor of i and j .

elsenstein (1973) showed that by assuming that a trait follows a

rownian process with variance σ 2 and by putting Z for the ran-

om vector of its tip values, the contrasts, i.e., the entries of Q Z ,

re independent centered Gaussian variables with variance σ 2 and

hat g ′ Z is a centered Gaussian variable with variance σ 2 δ which is

ndependent from all the contrasts. It follows that if Z is a Gaussian

ector with covariance matrix σ 2 � then Q Z is a n -Gaussian vector

ith covariance matrix σ 2 I n and, by defining the (n + 1) × (n + 1)
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matrix P = 

[ 

Q 

g ′ √ 

δ

] 

, that P Z is a (n + 1) -Gaussian vector with co-

variance matrix σ 2 I n +1 . Since P is invertible (the standard presen-

tation of the Felsenstein ’s (1973) algorithm shows that P can be

written as a product of invertible matrices), this implies P ′ P = �−1 

and that 

�−1 1 = P ′ P 1 = Q 

′ Q 1 + 

g g 

′ 1 

δ
= 

g 

δ
, (E.1)

which itself directly implies that 

(1 

′ �−1 1 ) −1 = δ. (E.2)

Moreover, since �−1 is symmetric, Eq. (E.1) implies that g g ′ =
δ2 �−1 11 ′ �−1 and that 

�−1 − δ�−1 1 1 

′ �−1 = Q 

′ Q . (E.3)

Note that matrix P plays the same role as the phylogenetic trans-

formation matrix in Adams and Collyer (2015) and as the matrix

D defined in a complete different way in Garland and Ives (20 0 0 ,

p349). 

Multiple regression with IC and PGLS 

Let y and X be respectively a vector of tip values of a trait and

a matrix of tip values of p traits or co-variables (e.g., the time, an

environmental variable etc.). We shall show that testing for corre-

lation between y and any column of X leads to the same result

with the IC and the PGLS methods. 

In the IC regression and under the notations of subsection

above, we consider the following linear equation 

Qy = QX βIC + ε IC , 

where the error vector ε IC is a realization of the centered Gaussian

random vector with covariance matrix proportional to I n . Vector

Q y has dimension n and there are p regressors. The vector of esti-

mated regression coefficients is 

 βIC = 

(
X 

′ Q 

′ QX 

)−1 
X 

′ Q 

′ Qy 

and the estimator variance of the i th coefficient [ βIC ] i iŝ σ 2 
IC 

[
(X ′ Q 

′ QX ) −1 
]

i,i 
where the residual variance estimate ̂ σ 2 

IC 

is 

̂ σ 2 
IC = 

(y − X ̂

 βIC ) 
′ Q 

′ Q(y − X ̂

 βIC ) 

n − p 
. 

Under the key regression assumptions and that the i th coeffi-

cient [ βIC ] i is null, the statistics [ ̂ βIC 

] 
i √ ̂ σ 2 

IC [ (X 

′ Q 

′ QX ) −1 ] i,i 

follows the Student distribution with n − p degrees of freedom. 

In the PGLS regression, the linear equation is 

y = 

[
1 X 

][αPGLS 

βPGLS 

]
+ ε PGLS , 

([
1 

′ 
X 

′ 

]
�−1 

[
1 X 

])−1 

= 

[
1 

′ �−1 1 1 

′ �−1 X 

X 

′ �−1 1 X 

′ �−1 X 

]−1 

= 

[
δ−1 1

X 

′ �−1 1 X

= 

[ 

δ + δ2 1 

′ �−1 X 

(
X 

′ �−1 X − δX 

′ �−1 11 

′ �
−δ
(
X 

′ �−1 X − δX 

′ �−1 11 

′ �−1 X 

)
= 

[ 

δ + g 

′ X 

(
X 

′ Q 

′ QX 

)−1 
X 

′ g −g 

′ X 

(
X 

′ Q 

′ Q
−
(
X 

′ Q 

′ QX 

)−1 
X 

′ g 

(
X 

′ Q 

′ QX 
here the error vector is a realization of the centered Gaus-

ian vector with covariance matrix proportional to � = (P ′ P) −1 .

ector y has dimension (n + 1) and there are p + 1 regressors

including the intercept). The vector of estimated regression

oefficients is ̂ αPGLS ̂ βPGLS 

]
= 

([
1 

′ 
X 

′ 

]
�−1 

[
1 X 

])−1 [
1 

′ 
X 

′ 

]
�−1 y and , 

nd the estimator variance of the i th coefficient [ βPGLS ] i is 

̂ 

2 
PGLS 

[ ([
1 

′ 
X 

′ 

]
�−1 

[
1 X 

])−1 
] 

i,i 

here the residual variance estimate ̂ σ 2 
IC 

is 

̂ 

2 
PGLS = 

(
y −

[
1 X 

][̂ αPGLS ̂ βPGLS 

])′ 
�−1 

(
y −

[
1 X 

][̂ αPGLS ̂ βPGLS 

])
n − p 

. 

Under the regression assumptions and that the i th coefficient

 βPGLS ] i is null, the statistics [ ̂ βPGLS 

] 
i √ √ √ √ ̂ σ 2 

PGLS 

[ ([
1 

′ 
X 

′ 

]
�−1 

[
1 X 

])−1 
] 

i,i 

ollows the Student distribution with n − p degrees of freedom. 

In order to prove that the IC and the PGLS methods are equiv-

lent to test for correlation in a multiple regression context, we

hall establish that the three following properties hold: 

1. 

([
1 ′ 
X ′ 
]
�−1 

[
1 X 

])−1 

= 

[
a b 

′ 

c 
(
X ′ Q 

′ QX 
)−1 

]
for a real a and

two n -vectors b and c , 

2. ̂ βPGLS = ̂

 βIC , 

3. ̂ σ 2 
PGLS 

= ̂

 σ 2 
IC 

. 

From the block matrix inversion formula and Eqs. (E.1) –(E.3) ,

e get that 

 X 

1 X 

]−1 

 

)−1 
X 

′ �−1 1 −δ1 

′ �−1 X 

(
X 

′ �−1 X − δX 

′ �−1 11 

′ �−1 X 

)−1 

 �−1 1 

(
X 

′ �−1 X − δX 

′ �−1 11 

′ �−1 X 

)−1 

] 

1 
] 

which proves Property 1 . 

The vector ̂ βPGLS of the PGLS regression coefficient estimates

ithout the intercept is obtained by multiplying the second line of

he block matrix above with the column 

[
1 ′ �−1 y 

X ′ �−1 y 

]
= 

[
g ′ 
δ

y 

X ′ �−1 y 

]
: 

 

PGLS = −
(
X 

′ Q 

′ QX 

)−1 
X 

′ g g ′ 
δ

y + 

(
X 

′ Q 

′ QX 

)−1 
X 

′ �−1 y 

= 

(
X 

′ Q 

′ QX 

)−1 
X 

′ 
(
�−1 − g g ′ 

δ

)
y 

= 

(
X 

′ Q 

′ QX 

)−1 
X 

′ Q 

′ Qy = ̂

 βIC which proves Property 2 . 

In the same way, the intercept estimate of PGLS is 

 PGLS = 

(
δ + g 

′ X 

(
X 

′ Q 

′ QX 

)−1 
X 

′ g 

)
g ′ 
δ

y − g 

′ X 

(
X 

′ Q 

′ QX 

)−1 
X 

′ �−1 y 

= g 

′ y + g 

′ X 

(
X 

′ Q 

′ QX 

)−1 
X 

′ 
(

g g ′ 
δ

− �−1 

)
y 

= g 

′ y − g 

′ X 

(
X 

′ Q 

′ QX 

)−1 
X 

′ Q 

′ Qy = g 

′ (y − X ̂

 βIC ) . 
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The residual variance estimate of PGLS is given by 

̂ 

2 
PGLS = 

(y − 1 ̂  αPGLS − X ̂  βPGLS ) 
′ �−1 (y − 1 ̂  αPGLS − X ̂  βPGLS ) 

n − p 

= 

(y − 1g ′ (y − X ̂  βIC ) − X ̂  βIC ) 
′ �−1 (y − 1g ′ (y − X ̂  βIC ) − X ̂  βIC ) 

n − p 

= 

(y − X ̂  βIC ) 
′ �−1 (y − X ̂  βIC ) − (y − X ̂  βIC ) 

′ g 1 ′ �−1 1g ′ (y − X ̂  βIC ) 

n − p 

= 

(y − X ̂  βIC ) 
′ 
(

�−1 − g g ′ 
δ

)
(y − X ̂  βIC ) 

n − p 

= 

(y − X ̂  βIC ) 
′ Q 

′ Q(y − X ̂  βIC ) 

n − p 
= ̂

 σ 2 
IC which proves Property 3 , 

nd ends to prove that testing for correlation with IC and PGLS is

quivalent. 

ultiple regression with time as co-variable 

Let us start by showing that for all internal nodes k , h k is the

hylogenetic contrast of the tip times associated to k . By putting t k 
or the “artificial” time reconstructed at the internal node k by the

elsenstein ’s (1973) algorithm, it is straightforward to prove by in-

uction that t k = t k + γk for all nodes k of T . For all internal nodes

 with direct descendants r(k ) and � (k ) , we have that 

 k = 

v r(k ) + γr(k ) − v � (k ) − γ� (k ) √ 

v r(k ) + v � (k ) 

= 

t r(k ) − t � (k ) √ 

v r(k ) + v � (k ) 

, 

hich is well the contrast of the tip times associated to node k .

t follows that the vector h = (h k ) 1 ≤k<n is obtained by multiplying

he vector t = (t k ) n ≤k ≤2 n of tip times by Q , i.e., h = Qt . 

Let us consider two traits A and B and their tip-value vectors

 A = (z A 
k 
) n ≤k ≤2 n and z B = (z B 

k 
) n ≤k ≤2 n . The linear equation 

 z B = Q 

[
z A t 

][b MR 

c MR 

]
+ ε MR = b MR u A + c MR h + ε MR , 

here the error vector ε MR is a realization of a centered Gaussian

ector with covariance matrix proportional to I n , corresponds to

he regression considered in the MR method ( Eq. (8) ). We showed

n the section above that testing for correlation between traits A

nd B with this equation is equivalent to testing for correlation be-

ween A and B with the linear equation 

 B = 

[
1 z A t 

][ 

a PGLSt 

b PGLSt 

c PGLSt 

] 

+ ε PGLSt , 

here the error vector ε PGLSt is a realization of a centered Gaus-

ian vector with covariance matrix proportional to � which corre-

ponds to testing for correlation between A and B with tip times

s covariables by the PGLS method. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2019.08.013 
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