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Being confounding factors, directional trends are likely to make two quantitative traits appear as spuri-
ously correlated. By determining the probability distributions of independent contrasts when traits evolve
following Brownian motions with linear trends, we show that the standard independent contrasts can not
be used to test for correlation in this situation. We propose a multiple regression approach which corrects

the bias caused by directional evolution.
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(PGLS) analysis with tip times as covariables by providing a new and more general proof of the equiva-
lence between PGLS and independent contrasts methods.

Our approach is assessed and compared with three previous correlation tests on data simulated in
various situations and overall outperforms all the other methods. The approach is next illustrated on a

real dataset to test for correlation between hominin cranial capacity and body mass.
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1. Introduction

Testing for correlation between two traits is a natural question
which has been widely studied, notably in a comparative biology
context (Groussin and Gouy, 2011; Marchini et al., 2014; Grabowski
et al.,, 2015; Will et al.,, 2017; Zhao et al., 2017). Correlation tests
may concern any kind of traits: phenotypic, genetic or other. For
instance, Seligmann (2018, 2019) observed a correlation between
the syntheny level of poxviruses with amoeban mitogenome and
their genome size. Assessing the correlation between two traits
measured on several species cannot be performed by directly com-
puting the Pearson correlation coefficient on the traits values since
these values are not independent but related through the evolu-
tionary relationships of the species involved (Diaz-Uriarte and Gar-
land, 1996). This point raises questions about how to interpret a
correlation between two traits in a phylogenetic context. Actually,
since all the observed taxa are assumed to have evolved from a
single ancestral taxa, stating that two traits shared by the taxa
are correlated can have only one significance, which is that the
respective evolutions of these traits are correlated one with the
other (Harvey and Pagel, 1991). Assumptions about traits evolution
are thus essential in order to disentangle the dependency struc-
ture of their extant values, and eventually to be able to study their
correlation by correcting biases due to their evolutionary relation-

* Corresponding author.
E-mail address: gilles.didier@umontpellier.fr (G. Didier).

https://doi.org/10.1016/j.jtbi.2019.08.013
0022-5193/© 2019 Elsevier Ltd. All rights reserved.

ships (Martins and Garland, 1991; Garland and Adolph, 1994; Diaz-
Uriarte and Garland, 1996; Martins, 1996; Oakley and Cunningham,
2000).

A widely used approach for testing correlation between traits
on a phylogenetic tree is the independent contrasts method of
Felsenstein (1985) which extracts independent quantities from the
tip values of the traits in order to estimate their correlation. The
rationale behind this approach is that if two traits follow two cor-
related Brownian motions then their matched independent con-
trasts are realizations of independent and identically distributed
pairs of Gaussian random variables correlated with the same cor-
relation as the Brownian motions. Therefore, testing for correlation
through independent contrasts is perfectly founded if one assumes
that the two traits to compare follow Brownian motions along
the phylogenetic tree, thus a neutral evolution for both of them
(Felsenstein, 1988). A strongly related method, called Phylogenetic
Generalized Least Squares (PGLS, Grafen, 1989) addresses the same
question in an equivalent way. We extend and give formal proofs
of results about the equivalence between independent contrasts
and PGLS methods for regression analysis stated in Garland and
Ives (2000), Rohlf (2001), and Blomberg et al. (2012).

Both independent contrasts and PGLS approaches make the
strong assumption that evolution of the considered traits is neutral.
There are many situations where this assumption is not granted,
for instance when evolution is driven by ecological pressures.
Arnold and Moncrieff (1994) showed that several lizard species
developed the same discrete traits in approximately the same or-
der when adapting to a same environmental condition. In the
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same way, quantitative traits may evolves toward optima or fol-
lowing a general trend. This type of non-neutral evolution, referred
to as adaptative and directional evolution, cannot be modeled by
using standard Brownian processes. Adaptation, i.e., evolution to-
ward optima, is generally modeled with Ornstein-Uhlenbeck pro-
cesses or more complex models (Cressler et al., 2015). For instance,
Hansen et al. (2008) consider traits evolving according Ornstein-
Uhlenbeck processes with optima which themselves evolve follow-
ing a Brownian process. Directional evolution is generally modeled
with arithmetic Brownian motions, i.e., Brownian process with lin-
ear trends. Note that after a change in the optimum during the
adaptation process, traits under selection may look under direc-
tional evolution until getting close to their new optima. In this
work, we focus on the directional evolution case. More precisely,
we address the question of how to detect correlation between
two traits when at least one of them is under directional evo-
lution. Among the numerous examples of evolutionary tenden-
cies in the evolution of phenotypic or genetic traits, Cope’s rule,
which predicts that the body size of species tends to increase
over evolutionary time, has gained considerable empirical support
(Kingsolver and Pfennig, 2004; Van Valkenburgh et al., 2004; Hone
and Benton, 2005; Hone et al., 2005; Hunt and Roy, 2006; Bokma
et al, 2016). Beside the Cope’s rule, there are strong evidence
that traits of some clades have evolved following trends at cer-
tain periods. For instance, there are evidence of increase in the
Mysticetes body size (Slater et al., 2010) and in the microsatellite
size in Maize (Vigouroux et al., 2003). Last, insular dwarfism and
gigantism phenomena provide numerous examples of directional
evolution (Lomolino, 2005). We emphasize that an evolutionary
tendency in increasing or decreasing the body size of species im-
plies that most of their morphological measures follow the same
trend, and would be systematically tested as significantly corre-
lated (Yule, 1926; Entorf, 1997; Deng, 2015).

In order to study the correlation between traits under direc-
tional evolution, we first determine the probability distribution
of the independent contrasts of a trait which evolves following
a Brownian motion with a linear trend. The form of these distri-
butions shows that testing for correlation between two traits un-
der directional evolution through independent contrasts makes no
sense. We propose an alternative approach based on a multiple re-
gression which includes time as explanatory variable in order to
correct the bias due to a linear trend. We show that our approach
is equivalent to performing a PGLS analysis by adding the tip times
as covariable in the regression.

A previous approach to correct the trend effect on the inde-
pendent contrasts and to test for correlation between traits un-
der directional evolution was proposed in Elliott’s (2015). Its gen-
eral idea is to “center” the independent contrasts with regard to
the trend (this method is detailed below). A thorough study of
the Elliott (2015) approach shows that it does not satisfy the re-
gression assumptions. Note that if the phylogenetic tree supporting
the evolution of the traits is ultrametric, our new method and that
of Elliott (2015) are both equivalent to the independent contrasts
method.

We simulated evolution of correlated and uncorrelated quanti-
tative traits with and without trend on hominin phylogenetic tree
in order to assess and to compare our new correlation test and
three previous ones, namely the standard correlation test on the
tips values of the traits, the correlation between independent con-
trasts of Felsenstein (1985) and that between the directional con-
trasts proposed by Elliott (2015). Simulation results shows that the
new test is the most accurate as soon as one of the traits is under
directional evolution. Despite its statistical flaws, the approach sug-
gested by Elliott (2015) performs almost as well as our approach.

Last, the approach was applied on a real dataset in order to
test for correlation between the logarithms of hominin body mass

and cranial capacity, among which the logarithm of cranial capac-
ity shows a significant positive trend. Our test concluded to a sig-
nificant correlation between the logarithms of these two traits.

R-scripts implementing the correlation tests and the simula-
tions performed for this work are available at https://github.com/
gilles-didier/Correlation.

The rest of the paper is organized as follows. The independent
contrasts and their distributions when traits follow Brownian mo-
tions with linear trends are presented in Section 2. Section 3 re-
calls three previous correlation tests on phylogenetic data and in-
troduces a new one based on a multiple regression between inde-
pendent contrasts which includes time as explanatory variable. The
four correlation tests are assessed and compared on simulated data
in Section 4. Last, our test is applied to check correlation between
hominin cranial capacity and body mass in Section 5.

2. Independent contrasts
2.1. Phylogenetic trees - Notations

In all what follows, we assume that the evolutionary history
of the species is known and given as a rooted binary phyloge-
netic tree 7 with branch lengths. Our typical tree 7 contains
2n + 1 nodes among which n are internal nodes. According to the
Felsenstein’s (1985) convention, the nodes are indexed in the fol-
lowing way:

e index O for the root,
e indices 1 to n — 1 for the other internal nodes,
« indices n to 2n for the tips.

For all nodes k, we put

r(k) and ¢(k) for the two direct descendants of k, if k is an
internal node,

a(k) for the direct ancestor of k, if k is not the root,

v, for the length of the branch ending at k,

t,, for the (absolute) time of k, which is the sum of the branch
lengths of the path relying the root to k (both included), and

e z; for the value of the trait at node k, which is defined only if
k is a tip.

2.2. Felsenstein’s (1973) algorithm

Independent contrast were introduced in Felsenstein (1973) in
order to compute the probability of the tip values of a quantitative
trait evolving on a phylogenetic tree under the assumption that
this trait follows a Brownian motion. This method extracts a se-
ries of realizations of independent Gaussian variables from the tip
values by iteratively considering differences between terminal sis-
ter taxa and by replacing them with a single terminal taxa, while
modifying the length of the branch that it ends and associating it
with an artificial trait value computed from those of the two ter-
minal sister taxa. Namely, the method recursively computes a new
branch length v, and an “artificial” trait value Zz, for all nodes k of
T in the following way.

Definition 1 (Felsenstein, 1973). Let 7 be a phylogeny and
(2} )n<k<2n be the values of a quantitative trait only known at the
tips of 7. Under the notations of Section 2.1 and for all nodes k of
T, the quantities v, z, are recursively defined as

ve if k is a tip,
Vi = Ve + VIroVed)  eherwise, and
Vrk) + Ve
ze o if k is a tip,
Ze = Ve Zrio T VrZ G arwise.

Vi + Ve
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For all internal nodes k of 7, the (standardized) independent
contrast uy, is then defined as

Zrky — Zeql)
V Vo + Ve

Contrasts can be computed thanks to the pic function in the
ape R-package (Paradis et al., 2004).

Uy =

2.3. Independent contrasts as random variables

By construction, under an evolutionary model for quantita-
tive traits, the tips values (z;),-x<z, are realizations of random
variables Z,,...,Z,. In this context, the artificial trait values
(Zk)g<k<2n computed during the independent contrasts procedure
are also realizations of random variables which can be expressed
from Z,, ...,Z5, and so are the independent contrasts.

Definition 2. Let (Z;), <<, be the random variables associated to
the tip values of a trait. For all nodes k of T, the random variable
Z is defined as

Z if k is a tip,
Z =3 Ve Zriky + Vet Zey

— = otherwise.
Vi) + Ve(k)

And for all internal nodes k of 7, the random variable Uy, is defined
as

Uk _ zr(k) - Zz(k)

v Vi) + Ve

In plain English, for all nodes k, the random variable Z, corre-
sponds to the value associated to k by the computation presented
in Definition 1. In the same way, for all internal nodes k, the con-
trast u; is a realization of the random variable Uj.

As evolutionary models of traits, we shall consider below either
the Brownian Motion (BM) model or the Brownian Motion with
linear trend, also known as the Arithmetic Brownian Motion (ABM)
model. Namely, the ABM model with parameters (xy, i, o2), i.e.,
initial value xg, trend w and variance o2, is the process (X¢);- o
defined as

dX;=pdt + cdW; and Xp=xo,

where (W;);.o is the Wiener process (Grimmett and Stirza-
ker, 2001). For all times t and s, the increments X;,s — X; are in-
dependent Gaussian random variables with law A"(us, o'%s).

Since a BM model is nothing but an ABM model with trend pa-
rameter p = 0, we shall write results and properties in the ABM
case only. Basically, any property or result granted for ABM also
holds for BM.

The ABM process with parameters (x, i, 0'2) running on the
phylogenetic tree 7 starts at the root of 7" with the value xg, then
evolves independently on each branch of 7 by splitting at each
internal node into two independent and identical processes both
starting from the value of the process at this node and eventually
ends at the tips of 7. It allows to model traits under directional
evolution, e.g., following the Cope’s rule (Kingsolver and Pfennig,
2004; Van Valkenburgh et al., 2004; Hone and Benton, 2005).

Theorem 3. Let (Z), <2 be the random variables associated to
the tip values of a trait following the ABM model with parameters
(X0, 14, 0%) on T. For all nodes k of T, the random variable Z, can
be written as

Z = X0 + 1t + i) + 0 Wy + W (W),

where
0 if k is a tip,
Yie = 1 Veay Wriy + Ve) + Ve Ve + Verwy)

— — otherwise, and
Vi) + Ve(k)

and ¥ (W) is a linear combination of increments of the form W, —
Wi recursively defined as
0 if k is a tip,

(W) = 1 vy (Wtr(k) W 1) (W)>+Vr(k) <sz(l<) W+ (1 (W))
Vr(o ek

otherwise.

For all internal nodes k of T, the random variable U, can be written
as

Up = uhy + D (W), (1)

o
V Vet + Ve

0 if k is a tip,
hy = Vit + Vrk) — Vetk) — Ve(k)

vV Vit + Ve
D (W) = Wy, —We) + Wy W) — Wiy — W) — oy W)
Random variables ¥, (W) and @, (W) have Gaussian distributions

N(O, %) and N (0, Vi (k) + Ve(k)) Tespectively.

where

otherwise, and (2)

Proof. Appendix A. O

Corollary 4. Under the ABM model with parameters (xo, |1, 02), for
all internal nodes k of T, the independent contrast random variables
Uy are independent from one another and Gaussian distributed with

Uk NN(th,O’z).

Proof. The proof of the independence of the independent contrasts
under the ABM model follows the same arguments as the proof of
the same property in the BM case provided in Felsenstein (1973).
The form of the distribution of the independent contrasts is a di-
rect consequence of Theorem 3. O

Proposition 5. Let 7 be an ultrametric tree and T be the length of
the path from the root to the tips. For all nodes k of T, we have that
ysz_tk and hk:O

Proof. Appendix B. O
2.4. Correlation and independent contrasts

Independent contrasts are mainly used in order to test for cor-
relation between two quantitative traits known only at the tips of
a phylogenetic tree (Felsenstein, 1985). The rationale behind this
approach is that if two quantitative traits follow two correlated
Brownian motions then their standardized independent contrasts
are realizations of independent and identically distributed pairs of
Gaussian random variables with the same correlation as the corre-
lated Brownian motions. The transpose of a matrix or a vector D is
noted D'.

Definition 6. Let (X/);.o and (XF);»o two ABM models with pa-
rameters (X3, ua.02) and (x5, g, 07) respectively and let (W/)-g
and (WB);.¢ be two Wiener processes such that

XA = XD+ uat +oaWA  and  XB = xB + upt + oW

The processes (X/)¢o and (X)¢-o are correlated with correla-
tion coefficient p if for all t>0, the random vector (WtA, WtB)/ has
covariance matrix t¥ where

(s 1)
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Any pair of Wiener processes (WA, WtB)tz() with correlation ma-
trix ¥ can be obtained from two independent Wiener processes
(W)¢=0 and (Wp),~¢ by applying the Cholesky decomposition on
their covariance matrix X (Gupta, 2013). Namely, by decomposing
¥ as ¥ =LL' where

1 0
L= ,
(p V1= 02)

the random vector (WA, W2)' = L(WA, WB)' has covariance matrix
PR

In sum, two ABM processes (X!)r-o and (XP)»o with param-
eters (XA, ua, 04) and (xB, jup, op) are correlated with correlation
coefficient p if and only if they can be written as

X[A = Xg + /,LAf —+ O'AWtA and
XP = xB + ugt + op(oWA + /1 — p2WE),

where (WA)..o and (Wp)..o are two independent Wiener pro-
cesses.

Theorem 7. Let (X!');-o and (XF)i>o be two ABM processes running
on T with parameters (X3, ua,02) and (x5, g, o2) respectively and
(Z)n<k<an and (ZB),_y<on be the random variables associated to the
values of these processes at the tips of T. The processes (X{‘)[zo and
(XB)¢=0 are correlated with correlation coefficient p if and only if for
all internal nodes k of T, the independent contrast random variables
Uf and U} computed from (Z})nx<on and (Z8),i<zq are correlated
with correlation coefficient p.

Proof. Let us assume that the ABM processes (XtA)tZg and (XB)s=0
of parameters (x4./4.02) and (x5, /5, 02) respectively are cor-
related with correlation coefficient p. It is equivalent to say that
there exist two independent Wiener processes (W{‘) and (W[B)
such that

XA = XA+ pat + o,W/  and
XE = xB + gt + o(pWA + /1 — p2Wp).

By applying Eq. (1) of Theorem 3 to X{‘ and XB, we then have
that for all internal nodes k, the independent contrast random vari-
ables U# and UP can be written as

U = pahy + ——2—— @ (W*)and (3)
v Vrt) Ve
~ ors/1 — 02 ~
UP = iy + —Z82 (W) + 2P g (WP, (4)

V Vo + Ve vV Vro + Ve

Since Theorem 3 ensures that Var (P (W4)) =V, + V). it
follows that

OAC]

Cov (Uf. UE) = _0n08P

— 3 x Var (@,(W4)) = 64030,
Vo Vo (PL(W?)) = oa0pp

thus Cor (Ug, UF) = p for all internal nodes k of 7, which ends the
proof. O

3. Correlation tests

In practical situations, evaluating or testing for correlation be-
tween two random variables is performed by considering a series
of a certain number n of independent realizations of this pair of
random variables. Let us remark that sampling independently n
times a pair of random variables is equivalent to draw a joint sam-
ple of n independent and identically distributed pairs of random
variables with the same correlation between the random variables
of all the pairs. Standard regression analysis can thus be applied in
this last case.

We emphasize the fact that performing a correlation test on a
joint sample of n pairs of random variables which are not identi-
cally distributed makes absolutely no sense, even if each pair has
the same correlation. Moreover, if we do not have independence
between the pairs of random variables, then assumptions required
by correlation tests are violated.

Linear regression is a usual tool for studying the association be-
tween two variables. Statistic analysis of regression requires addi-
tional assumptions, which are referred to as the key assumptions in
Fox (2015), namely the constancy of the error variance, the Gaus-
sianity of the errors, their null mean, and their independence. In
the multiple linear regression, testing for correlation between the
response variable and one of the regressors is performed by test-
ing the nullity of the corresponding regression coefficient. Under
the key assumptions, this test of nullity is based on the fact that,
by assuming that the coefficient is null, the ratio of the ordinary
least squares estimate of this coefficient to its standard deviation
follows a Student distribution with a number of degrees of free-
dom equal to the difference between the number of samples and
the number of regressors (including the intercept if there is one,
Fox, 2015). In the case of the simple linear regression with inter-
cept, testing the nullity of the regression coefficient corresponding
to the slope is equivalent to performing a Pearson’s correlation test
between the response and the explanatory variables (Kendall and
Stuart, 1961, p985).

Let A and B be two traits, z4 = (2)<k<2n and zg = (28)pk<2n
be their tip-value vectors (of dimension n+ 1) and u, = (Uﬁ)osl«n
and ug = (u£)0§k<n be the corresponding independent contrast
vectors (of dimension n) and 1 be for the vector with all entries
equal to 1 (its dimension depending on the context). Below, we
shall present several ways of testing for correlation between A and
B.

3.1. Standard regression (SR)

The most basic way to test for correlation between two traits
A and B is to consider the standard Pearson’s correlation test ob-
tained from the linear equation:

zp = asg1 + bsrzp + €5, (5)

which will be referred to as the SR method. In the SR method, the
Pearson’s correlation test between traits A and B amounts to test-
ing for the nullity of the coefficient bgg.

Let

- =) [

be the vector of ordinary least square estimates of the coefficients
asg and bsg. The variance estimate of bsg is 62 (z,24)~" where

.,  (zp—as1 — bspza)' (zp — Gsg1 — bsgza)
Osg =
n-1

is the residual variance estimate. Under the key assumptions of
the regression model, testing the nullity of the coefficient bgg is
performed thanks to the fact that if bsg = 0 then the ratio of the
coefficient estimate bsg to its standard error ESZR(ZAZA)” fol-
lows a Student distribution with n—1 degrees of freedom. Un-
fortunately the key assumptions of the regression model are not
granted here since entries of the error vector &sg are not sampled
from independent and identically distributed random variables be-
cause of the evolutionary relationships between the species in-
volved (Harvey and Pagel, 1991). Though one expects correlation
tests with the SR method to be inaccurate in a phylogenetic con-
text (except if 7 is a star tree), the SR method is included in the
study in order to be used as a basis of comparison.



M. Royer-Carenzi and G. Didier/Journal of Theoretical Biology 482 (2019) 109982 5

3.2. Independent contrasts (IC)

The usual way to cope with the evolutionary dependency be-
tween the tip values of the traits is to consider their independent
contrasts (Felsenstein, 1985), referred to as the IC method below,
which is based on the regression through origin between the inde-
pendent contrasts according to the equation:

ug = bicuy + €yc. (6)

The IC method is widely used and has been assessed in several
works (Grafen, 1989; Martins and Garland, 1991; Pagel, 1993; Gar-
land and Adolph, 1994; Martins, 1996; Diaz-Uriarte and Garland,
1996). In the IC approach, testing correlation between traits A and
B amounts to testing for the nullity of the coefficient bic in the
regression through the origin. The ordinary least square estimate
bic = (Wjuy)~'u,uy of bic has variance G2 (u,u,)~! where

~y _ (ug —bsguy)' (up — bspuy)

Oic = n—1 .

Under the key assumptions of the regression analysis, if bjc =0
then the ratio of bjc to its standard deviation follows a Student
distribution with n — 1 degrees of freedom.

Testing for the nullity of b;c by using this property is theoret-
ically founded if one assumes that both traits A and B evolve fol-
lowing a BM model since Corollary 4 and Theorem 7 ensures that
their respective independent contrasts are realizations of indepen-
dent and identically distributed centered Gaussian random vari-
ables (Uf)g_x-p and (Uf)ox., with the same correlation as the
two traits. Putting p, Gj and GBZ for this correlation and the vari-
ances of (U?)OS,K,, and (U£)05k<n, respectively, and considering a
Cholesky decomposition of their covariance matrix, we get that the
random contrasts Ul‘f can be written as

o8P
Uk = GLAU,ﬁ +0py/1— p2&.

where the terms (&)o<x.n, are independent centered standard
Gaussian variables. This shows that the key assumptions of the
regression analysis are well granted. The correlation between the
independent contrast random variables (U)ox.n, and (UF)o—k-n.
thus between the traits A and B, can be assessed by regres-
sion through origin between the contrast series (”'/2)05k<n and

(UE)ng<n-

In the case where at least one of the two traits to compare fol-
lows an ABM model with a non-zero trend, Theorem 7 still en-
sures that their respective independent contrasts are correlated
with the same correlation as the traits. Unfortunately, since from
Corollary 4 their independent contrasts are no longer identically
distributed but depend on k (we have U} ~ A (ushy. 02) and UB ~

N(ughk,ag) with hy # 0 in the general case), it makes no sense
to test for their correlation through a joint sample.

Fig. 1 illustrates how directional trends may make independent
contrasts computed from two uncorrelated traits look strongly cor-
related. This was expected since spurious correlations due to a
common dependency on a third factor is a classical phenomenon
(Yule, 1926; Entorf, 1997; Deng, 2015).

3.3. Directional contrasts (DC)

A first approach to correct the independent contrasts when
at least one of the two traits to compare evolves with a linear
trend was proposed in Elliott (2015). The general idea of Elliott’s
(2015) approach is to center the independent contrasts in order to
make them identically distributed. To this end, Elliott (2015) de-
fined the B-directional contrasts d(8). The formal definition of the
B-directional contrasts is recalled in Appendix D in which we show
that, for all internal nodes k, the B-directional contrasts di(f8) of

Elliott (2015) are equal to the B-centered contrasts c;(8) defined
as:

& (B) = ug— Bhy,

which have a direct interpretation with regards to the formalism
of Section 2.

Let us first remark that under an ABM model with trend wu,
Theorem 3 ensures that the p-centered/u-directional contrasts are
well independent and identically distributed thus could be used in
correlation tests. Unfortunately, obtaining these corrected contrasts
requires to have the trend parameter ©. More exactly, for testing
correlation between two traits A and B, their respective trends x4
and pp have to be known, but they are a priori unknown in prac-
tical situations. Elliott (2015) proposed to use instead their esti-
mates [i4 and fg (Eq. (C.2)) and to consider the correlation be-
tween the (estimated) directional contrasts df(j14) and df (iip).
where df (j14) = uf} — fiahy and df (jig) = ub — fighy for all internal
nodes k of 7.

Regression between estimated directional contrasts will be re-
ferred to as the DC method. Namely, by putting d,4 and dp for the
vectors of directional contrasts (d(fia))o<k<n and (di(ilp))o<k<n-
it is based on the following linear equation:

dz = apc1 + bpcdy + épc. (7)
Let

- () )[4

be the vector of ordinary least square estimates of the coefficients
apc and bpc and

~, _ (dg—dpcl — bocdy)’ (d — o1 — bpcda)
bc = n-2 ’

be the residual variance (vectors d4 and dg have dimension n).
Testing for correlation between traits A and B amounts to testing
for the nullity of the parameter bpc, which, under the key assump-
tions of the regression model, is performed thanks to the fact that,
by assuming that bpc = 0, the ratio of the coefficient estimate bpc
to its standard error agc(djqu)*1 follows a Student distribution
with n — 2 degrees of freedom.

Unfortunately, since the trends fis and fig are estimated from
independent contrasts, the estimated directional contrasts are nei-
ther independent, nor identically distributed under ABM models
(Appendix D). Applying standard correlation tests on estimated di-
rectional contrasts is not founded from a statistical point view.

3.4. Multiple regression (MR)

If traits A and B follows two ABM models (x.s.02) and
(xB, g, o2) then, for all internal nodes k of 7, both independent
contrast random variables U,':‘ and U,‘f depend on the same explana-
tory variable hy (Eq. (1)). As shown in Fig. 1, this dependence on a
common factor is likely to cause a systematic correlation between
the random variables U,f and Ulf. Neutralizing this spurious corre-
lation requires to include the common explanatory variable h; in
the regression (Yule, 1926; Deng, 2015). By combining Eqgs. (3) and
(4), we get that

B _ OBP A 980 \n opy/1 - p? &, (WE
Up = Ue + (s = —=Ha Jl + —= — & (W?).
A o VVro + Ve

This suggests to consider the multiple regression through origin
between contrasts by including hj as co-variable, i.e., to consider
the equation:

ug = byrus + cvrh + Eyr, (8)
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Fig. 1. Independent contrasts of two traits A and B simulated on the tree of Fig. 2 under two uncorrelated ABM models with trends w4 = 0.5 and pp = 0.2 respectively.

which will be referred to as the MR method. The multi-
ple regression procedure is statistically sound here since the
entries of the error vector are sampled from random vari-

ables(“"i V10 ¢ (WB ) which are independent and Gaus-
Frio e K W?) 0cken p

sian distributed with mean zero and constant variance ag(l —p?)
under the current assumptions. The vector of ordinary least square
estimates of by and cyR is

~ -1
bMR ll, u/
and the variance of the estimator of by is ~/61\2/1R(“A“A)_1 where

~y  (up— burus — Cugh)’ (ug — byguy — Cugh)
Opr = S .
Egs. (3) and (4) show that if traits A and B follows two ABM mod-
els (x4, j1a,02) and (x8, g, 02) with correlation p, the random

contrasts UF can be written as
ogy/ 1 — p2 ~
(W),

O O]
Ut = UL/:OU{? + (,bLB - L'OMA)hk +

o4 Vit + Vedo
. —_ 2 Y
where the random error variables (”37 Vlf’aﬁk(WB)) are
Vit ek 0<k<n

independent and Gaussian distributed with mean zero and con-
stant variance ag(l — p2). The key assumptions of the regression
analysis are thus granted if traits A and B follow two ABM models.
Testing for correlation between traits A and B can be performed by
testing for the nullity of coefficient by thanks to the fact that if
byr = 0 then the ratio of the coefficient estimate by to its stan-
dard deviation follows a Student distribution with n — 2 degrees of
freedom.

It is worth pointing out that the MR test does not require to
estimate neither trend w4 nor trend ip.

3.5. Relation with PGLS method

PGLS method was introduced in Grafen (1989) and further stud-
ied in Martins and Garland (1991), Pagel (1997), and Martins and
Hansen (1997). It is a generalized least squares method specifically
designed to take into account the phylogenetic dependency of the
regression errors. This dependency relies on evolutionary assump-
tions. In particular under the BM model, the dependency struc-
ture is exactly the same as for the IC method which is based on

the same model. Namely, the covariance matrix of the tip random
variables of 7 has the form ¢2% where o2 is the variance of the
Brownian model and ¥ is the matrix indexed on the tips of 7 such
that for all pairs of tips (i, j), the entry (i, j) is the total time be-
tween the root of 7 and the most recent common ancestor of i and
j. The PGLS approach is based on the following linear equation

2z = apgis1 + bpgrsza + €pgrs.

which looks the same as that of the SR method but the error vec-
tor &pgs is now assumed to be sampled from a centered Gaus-
sian vector with covariance matrix proportional to X. The vector
of general least square estimates of the coefficients apgs and bpgs
is

. -1
dpcrs 2 L 1|

~ = 1 z > 'zp,
[bl’as} ([zﬁ] [ A]) [Zﬁ] ’

and the residual variance estimate is

5 (zg—Gpcis1 — bpersza) X1 (zp — Apers1 — bpcisza)
Opgrs = n—1 .

Under the PGLS assumptions, testing the nullity of the coefficient
bpgys is performed thanks to the fact that, by assuming that bpgs =
0, the ratio of the coefficient estimate bpgs to its standard error
follows a Student distribution with n — 1 degrees of freedom.

The strong relation between PGLS and IC approaches
is well known (Garland and Ives, 2000; Rohlf, 2001).
Blomberg et al. (2012) provided a formal proof that, in the
simple regression case, least square estimates of the regression
coefficient of the explanatory variable is exactly the same with
the IC as with the PGLS methods, namely that bpgg = bic. In
Appendix E, we prove the same result in the multiple regression
case and show that the variance of the least square estimates
of the coefficients are also the same with the IC and the PGLS
methods.

Theorem 8. Let zy, 1, ...Zp be the tip value vectors of traits or co-
variables (e.g., tip times, environmental variables...) and u, uy, ..up
be the corresponding independent contrast vectors, ,TBIC be the vector
of the ordinary least square coefficient estimates from the linear equa-
tion though origin

Uy = [ll] up]ﬂlc + €c,
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and let ﬁPGLS be the vector of the generalized least square coefficient
estimates from the linear equation with intercept

QpGLS
;... Zp]|: + €rqis,

2 =1 Brcrs

where the error vector epgis is assumed to be a realization of a cen-
tered Gaussian vector with covariance matrix proportional to X (the
covariance matrix associated to the tree T ). The vectors Bic and Bpcs
as well as covariance matrices of the corresponding least squares es-
timators are equal. Moreover, the degrees of freedom involved in the
nullity tests of their coefficients are both equal to n — p with the two
approaches.

Proof. Appendix E. O

Theorem 8 directly implies that testing for correlation between
two traits with IC and PGLS is completely equivalent, even by con-
sidering others traits or covariables.

In order to show the relation between the MR and the PGLS
approaches, let us add the tip times as an explanatory covariable
in the PGLS regression, i.e., let us consider the linear equation

2g = apgrse 1 + bpersiZa + Cperset + Epcists (9)

where t = (ty),<k<2n is the tip time vector. The vector of general
least square estimates of the coefficients apgs;, bpgrse and cpgse is

~ -1
Qporst 14 1

-1 -1
bp(;]__gt = Z;; > [1 Zp t] ZA > Zg.
- / /
CpGLst t t

Testing for the nullity of bpgs is performed by considering the ra-
tio of bpgse to its standard deviation in the Student distribution
with n — 2 degrees of freedom.

We prove in Appendix E that the variables (hy)q-,., are the in-
dependent contrasts of the tip times. Theorem 8 then implies that
both the least square estimates of the regression coefficient asso-
ciated to trait A and their variances are exactly the same with the
MR method and with the PGLSt method.

In short, the IC and PGLS (resp. the MR and PGLSt) methods
are interchangeable to test for correlation between two continuous
traits under neutral or directional evolution.

An important point is that computations of the PGLS method
require to inverse the covariance matrix accounting for the phy-
logenetic dependencies, which has cubic time complexity with re-
spect to the size of the tree, whereas the IC and MR methods takes
advantage of the tree structure of the phylogenetic dependencies
in order to perform the same computations in linear time.

3.6. Ultrametric trees

Proposition 5 states that if 7 is ultrametric then h, = 0 for all
internal nodes k of 7. This implies that Egs. (6) and (8) turn out
to be exactly the same in this case. In other words, on an ultra-
metric phylogenetic tree, the IC and MR methods are totally equiv-
alent to test for correlation. Moreover, since in an ultrametric tree,
the maximum likelihood estimator of the trend returns always 0
(again because h, =0 for all internal nodes k of 7, cf Eq. (C.2)),
Eq. (7) is the same as Eqgs. (6) and (8). In sum, the IC, DC and MR
methods are equivalent on ultrametric trees. Using the IC method
is statistically founded here since independent contrasts satisfy the
requirements of correlations tests in the ultrametric case.

Note that non-ultrametric phylogenetic trees arise in several
situations. In particular, phylogenetic trees containing fossil taxa
(with or without extant taxa) are not ultrametric (e.g., Laurin,
2004; Heim et al., 2015). The ultrametric character relies on the
evolutionary model used to infer the trees. For instance, the spe-
ciational model which somehow assumes a same unitary branch

length all along the tree generally provides non-ultrametric trees
(Knouft and Page, 2003; Moen, 2006; Laurin et al., 2012). Mea-
suring branch lengths in terms of genetic changes (Moen, 2006)
or scaling branch lengths by their own evolution rates in hetero-
geneous models (Baker et al., 2015; 2016) instead of considering
their geological ages also lead to non-ultrametric trees even if all
the taxa are extant.

4. Simulation study

In this section, we shall assess and compare the four correlation
tests presented in Section 3:

1. SR: standard regression of tips values (Eq. (5)),

2. IC: regression through origin of independent contrasts (Eq. (6)),

3. DC: regression of directional contrasts (Eq. (7)),

4. MR: multiple regression through origin of independent con-
trasts with hy as co-variable (Eq. (8)).

4.1. Simulation and evaluation protocol

We simulated the evolution of two quantitative traits A and B
under various conditions, i.e., under BM and ABM models with sev-
eral sets of parameters and several levels of correlation between A
and B. The simulated evolution runs on the hominin phylogenetic
tree displayed in Fig. 2 (Dembo et al., 2015).

Although the ABM model has three parameters (xg, i, 02), we
only vary the trend parameter u in the simulations. The param-
eter xp just translates the whole evolution process, which has no
effect on the correlation of a trait with another. Multiplying both
the trend and the standard deviation of an ABM model with a con-
stant just results in multiplying the values of the ABM process with
same constant (i.e., what actually matters is the ratio of the trend
to the standard deviation).

The four correlation tests were next assessed in terms of type
I error, i.e., with regard to their ability to not falsely reject the
null hypothesis, the null hypothesis being that the traits are un-
correlated, in the case where the traits to compare are actually
uncorrelated. We also displays ROC plots of the tests for summa-
rizing their ability to distinguish between correlated and uncorre-
lated traits (Zhou et al., 2011). Plots of type I error were obtained
by simulating uncorrelated traits and by plotting the proportion of
simulations for which the null hypothesis was rejected versus the
level of risk (each test associates to a simulation, a level of risk be-
tween 0 and 1, accounting for the chance that this simulation sat-
isfies the null hypothesis). ROC curves were obtained by simulating
both negative (i.e., uncorrelated) population and positive (i.e., cor-
related) population and by plotting for all levels of risk the propor-
tion of true negatives versus the proportion of false positives de-
tected by each test. We simulated 50000 evolutions of correlated
and uncorrelated pairs of traits for each plot.

4.2. Correlation tests between two traits under neutral evolution

We first simulated two traits evolving under neutral evolution
(i.e., under the BM model) with correlation levels 0 and 0.5 (results
obtained with correlation 0.7 are provided in the supplementary
information).

Fig. 3-Left displays the proportion of type I error at all level
of rejection o obtained from 50000 simulations of two uncorre-
lated traits under the BM model with variance 0.09. We do observe
that both the IC and the MR methods are perfect in the sense that
they both rejected the null hypothesis at the exact level « required
(both plots of IC and MR completely overlap with the diagonal in
Fig. 3-Left). The DC method is close to perfect but tends to reject
the null hypothesis a little bit more than it should do. Last, as ex-
pected, the worst performance comes from the SR method.



8 M. Royer-Carenzi and G. Didier/Journal of Theoretical Biology 482 (2019) 109982

G. gorilla

S. tchadensis

Ar. ramidus

P. troglodytes

Au. anamensis

K. platyops

_|_— Au. garhi

Au. afarensis

P. aethiopicus
] 4‘:'5 P. robustus
P. boisei
Au. africanus

—i Au. sediba
H. habilis

H. floresiensis

—— H. rudolfensis
H. ergaster
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H. neanderthalensis
H. heidelbergensis

Fig. 2. Hominin phylogeny (Dembo et al., 2015).
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Fig. 3. Left: Rates of false rejection of the null hypothesis at level & vs @ when both traits A and B follow the BM model with variance 0.09. Right: ROC plots of the correlation
tests obtained from two simulated traits under the BM model with variance 0.09. Negative population is simulated with uncorrelated traits and positive population with

traits correlated with correlation 0.5.

The p-values obtained from testing for the simulations are ex-
pected to be uniformly distributed with support [0,1]. We used
Kolmogorov-Smirnov (K-S) test in order to check this point. We ob-
served that p-values obtained when testing for the correlation of
independent traits follow an uniform distribution both for the IC
method (Kolmogorov-Smirnov test, p-value=0.537) and for the MR
method (K-S test, p-value=0.832). This is the case neither for the
DC nor for the SR methods (K-S test, p-values smaller than 10-8).
In sum, under the BM model, only the IC and the MR methods
have the behavior expected from a statistical test.

The ROC plots of the tests with a positive population simulated
under the same BM model, but with a correlation 0.5 between
the traits, are displayed Fig. 3-Right. It shows that under the BM

model, the most accurate test is IC but MR and DC tests have close
performances. As expected the less accurate test is SR.

4.3. Correlation tests between a trait under neutral evolution and a
trait under directional evolution

We consider here the mixed situation where one of the traits
follows a neutral evolution, here simulated under the BM model
with variance 0.09 and the other one follows a directional evo-
lution, here simulated under the ABM model with trend 0.5 and
variance 0.09.

Fig. 4-Left shows that the behavior of the type I error with
regard to the level of rejection « is essentially the same as in
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the case of two traits under neutral evolution for all the meth-
ods. Moreover, p-values obtained here still follow an uniform dis-
tribution with support [0,1] both for the IC method (K-S test, p-
value=0.345) and for the MR method (K-S test, p-value=0.586).
This is the case neither for the DC nor for the SR methods (K-S
test, p-values smaller than 10-8).

The ROC plots displayed in Fig. 4-Right shows that perfor-
mances of the IC and the SR tests are significantly lower than that
of the MR and DC tests. The MR method is slightly more accurate
than the DC test.

4.4. Correlation tests between two traits under directional evolution
In the case where the two traits are under directional evolution

(here trait A has trend 0.5, and trait B has trend 1 both with vari-
ance 0.09), the rate of type I error of both the SR and the IC meth-

ods becomes maximal (Fig. 5-Left). In plain English, the SR and
the IC method systematically reject the hypothesis that the traits
are uncorrelated, even when they are uncorrelated. This behavior
clearly prevents us to use the IC and the SR methods to detect cor-
relation between traits under directional evolution. Still with re-
gard to type I errors, performances of the MR and DC methods are
essentially the same as in the case of neutral evolution or in the
“mixed” case. The MR method looks perfect and the DC method
still tends to reject the null hypothesis a little bit more than it
should do. Taking a closer look on the p-values of the tests, we
observe that those of the IC method no longer follow an uniform
distribution (K-S test, p-value below 10-9) and so do those of the
SR and DC methods. Only the MR method has the expected behav-
ior of a test in this situation (K-S test, p-value=0.935).

Fig. 5-Right displays the ROC plots of the SR, IC, DC and MR
tests. The performance of the IC test is not better than a random
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guess and that of the SR test is almost as bad. The accuracy of the
MR and DC tests is essentially the same as in the preceding case.

4.5. Discussion

As expected, the less accurate test is SR in all the situations.
Overall, we observe that despite the flaws in its statistical proper-
ties, the DC method performs generally well with regards to the
two criteria considered, whatever the trends of the traits. How-
ever, the DC method is always outperformed by the MR method.
The “historical” IC method is outperformed by both the MR and
the DC methods as soon as one of the traits is under directional
evolution. It has the best performance from the ROC criteria only
when the two traits evolve under the BM model, which is not very
surprising since it corresponds exactly to the assumptions of this
method, but the accuracy of the MR and DC methods is very close.
The additional figures obtained from a greater variety of param-
eters and provided in the Supplementary Information lead to the
same observations.

The simulations suggest to first test for the presence of a non-
zero trend on each trait to compare, for instance by using the
method of Appendix C, then to use the MR method if at least one
of the traits shows a significant trend, and to use the standard IC
method only if the two traits are under neutral evolution.

5. Correlation between hominin cranial capacity and body
mass

5.1. Data

Evolution of hominin cranial capacity and body mass was stud-
ied in numerous works (Kappelman, 1996; Henneberg, 1998; Wood
and Collard, 1999; Leonard et al., 2003; Falk et al., 2005; We-
ber et al, 2005; Martin et al., 2006; Young, 2006; Snodgrass
et al., 2009; Montgomery et al., 2010; Potts, 2011; Shultz et al,,
2012; Schoenemann, 2013; Hofman, 2014; Grabowski et al., 2015;
Grabowski, 2016; Argue et al., 2017; Will et al,, 2017; Du et al.,
2018).

Our study is based on the hominin phylogenetic tree summa-
rizing the best trees obtained in the dated Bayesian analysis of
Dembo et al. (2015, Fig. 1), which is displayed in Fig. 2. We com-
bined data from several articles in order to get the body mass
and the cranial capacity of as many species as possible, namely
from Kappelman (1996, Table 1), Wood and Collard (1999, Ta-
ble 3), Leonard et al. (2003, Table 3), Young (2006, Table 1),
Schoenemann (2013, Tables 8.1 and 8.2), Grabowski et al. (2015,
Table 4), Will et al. (2017, Table 4) and Du et al. (2018, Elec. Supp.).
We excluded data associated to ambiguously identified species and
to juvenile specimens. We finally averaged all the collected cra-
nial capacities and body masses by species in order to obtain the
data displayed in Table 1. We excluded H. floresiensis for calibrating
our models, because being an outlier (Weber et al., 2005; Martin
et al., 2006; Falk et al., 2007; Argue et al., 2017), this species over-
influenced the results. Each time that a data required in an analysis
was missing, we did not consider the corresponding species in this
analysis. In particular, the correlation study pertains only to species
for which both cranial capacity and body mass are known.

We considered the logarithms of cranial capac-
ity and body mass data such as in Kappelman (1996),
Henneberg (1998), Leonard et al. (2003), Snodgrass et al. (2009),
Navarrete et al. (2011), and Du et al. (2018). Taking the logarithm
of quantitative trait values is quite usual since it accounts for
the fact that for instance, an increase of 100 g does not have the
same significance for an organism of 1kg as for a organism of
100kg. From a statistical point of view, log-transformation is a
particular case of Box-Cox transformations which tend to stabilize

Table 1

Cranial capacity and body mass of species of the phylogenetic tree

of Fig. 2.
Species Cranial capacity (cm®)  Body mass (g)
Ar. ramidus 300.0 38067
Au. afarensis 436.4 38680
Au. africanus 457.1 31260
Au. anamensis - 46300
Au. garhi 450.0 -
Au. sediba 420.0 26485
G. gorilla 520.2 120500
H. antecessor 1218.3 -
H. erectus 982.9 58274
H. ergaster 840.0 58164
H. floresiensis 417.0 27500
H. habilis 580.3 35782
H. heidelbergensis 1214.5 80440
H. neanderthalensis 1470.2 79573
H. rudolfensis 752.0 45597
H. sapiens 1391.8 64224
K. platyops 425.0 -
P. aethiopicus 418.2 37666
P. boisei 509.2 45971
P. robustus 527.5 36124
P. troglodytes 387.7 53011
S. tchadensis 365.0 -

the variance. It is also sometimes used to approach Gaussian
behavior required by Brownian evolution models (Legendre and
Desdevises, 2009).

We applied diagnostic tests on residuals after log-
transformation in order to check for least squares regression
validity conditions. Namely, we use Durbin-Watson'’s test to detect
autocorrelation at lag 1 (Durbin and Watson, 1950; 1951; 1971);
Harrison-McCabe’s test to detect heteroscedasticity (Harrison and
McCabe, 1979) and Jarque-Bera’s test to confirm normality
(Jarque and Bera, 1987).

5.2. Evolutionary trends of hominin cranial capacity and body mass

Several works agree with the fact that hominin brain size in-
creased through evolution (Henneberg, 1998; Montgomery et al.,
2010; Navarrete et al, 2011; Potts, 2011; Shultz et al., 2012;
Hofman, 2014). Henneberg (1998) found a significant correla-
tion between the log-transformed cranial capacity and the fos-
sil age through a direct “non-phylogenetic” regression approach.
Applying the same approach on our dataset, we also detected
a positive evolutionary trend (p-value=0.003), but least squares
regression conditions are violated (Harrison-McCabe’s test, p-
value=0.001), certainly because of the phylogenetic relationships
between tips values. Conversely, the hominin cranial capacities
fulfill the conditions of the phylogenetic trend detection test
presented introduced in Appendix C (Durbin-Watson’s test, p-
value=0.422; Harrison-McCabe’s test, p-value=0.604; Jarque-Bera’s
test, p-value=0.646). The test of Appendix C concludes to a posi-
tive trend (p-value=0.012) which amounts to multiplying the cra-
nial capacity by 1.2 per Ma.

Several studies conclude that the body mass data increased dur-
ing evolution by using non phylogenetic approaches, i.e., with-
out taking into account the evolutionary relationships between
the species (Henneberg, 1998; Will et al., 2017). Considering a di-
rect “non phylogenetic” regression of the logarithm of the body
mass of our dataset led to detect a positive evolutionary trend (p-
value=0.002), whereas, by taking into account the evolutionary re-
lationships between species, the detection test of Appendix C did
not conclude to a significant trend on the logarithm of ho-
minin body mass (p-value=0.072). Both the non phylogenetic re-
gression and our detection test satisfy the regression assump-
tions (Durbin-Watson’s test, p-value=0.243 and p-value=0.227;
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Harrison-McCabe's test, p-value=0.066 and p-value=0.796; Jarque-
Bera’s test, p-value=0.953 and p-value=0.865 respectively).

Our results are consistent with those of Montgomery et al.
(2010), who also found a positive trend in cranial capacity and
no significative trend in the body size evolution of hominids. Fi-
nally, testing for correlation between the logarithms of hominin
cranial capacity and body mass falls in a situation close to that
of Section 4.3, in which we compared a trait simulated un-
der neutral evolution with a trait simulated under directional
evolution.

5.3. Correlation between hominin cranial capacity and body mass

We applied the MR method in order to test for correlation be-
tween the logarithms of the hominin body mass and cranial ca-
pacity. These data fulfill the requirements of our correlation test
(Durbin-Watson’s test, p-value=0.819; Harrison-McCabe’s test, p-
value=0.690; Jarque-Bera’s test, p-value=0.461). Durbin-Watson’s
and Harrison-McCabe’s tests require to order the residuals with re-
spect to the explanatory variable, which is straightforward for sin-
gle regressions, but not for multiple regressions. Following Fan and
Huang (2001), we ordered the residuals with respect to most in-
formative linear combination of the explanatory variables obtained
from principal component analysis.

It is thus allowed to apply the MR test, which concluded that
the logarithms of hominin cranial capacity and body size are sig-
nificantly correlated (p-value=0.027). In plain English, even by tak-
ing into account possible evolutionary trends, the logarithms of
these two traits do not change independently. This result is con-
sistent with Grabowski (2016), who showed that the evolution of
hominin body size and that of the cranial capacity are related.

Appendix A. Distribution of independent contrasts - Proof of
Theorem 3

Let us first prove by induction that for all nodes k of 7, we
have that
Ze=xo + Lt + Vi) + 0 (Wr, + W (W)) with
0 if k is a tip,
Ve = 1 Vet Vrao + Vi) + Ve (Vew) + Vek))
Vit + Ve
0 if k is a tip,
W) = 1 %00 (Wfrao —W[’(thllr(k)(W))JrVr(k) (sz(k)’wfk k) (W))

Vi) Ve (k)

otherwise, and

otherwise.

In the base case, i.e.,, when k is a tip, the property is granted
since from Definition 2, we have that

Zy =2
= Xo + i + oW,
= Xo + W (t + i) + 0 (W + Wi (W)) with yj = 0 and ¥, (W) =0.
Let k be an internal node and let us assume that the property

holds for its direct descendants r(k) and ¢(k). From Definition 2,
we have that

7 _ Voo Zeky + Vet Zek)

Veky + Ve
Vet Xo + Vi Xo Vo Vik
= SO Yt + Vi) + =% (b + V)
Vit + Ve Vrdo + Ve Vrdo + Ve

Vego
+o | =——=— Wi + Yoo W)) + = =
<Vr<k) + Ve (W, + 1 (W) Ve + Vedk

Ve Vet
=X+ M(i) (e + Ve + Vrky) + =— : (t + Vey + Vo)

Vg + Ve Vi + Ve

Vv,
— (W, + Yo <W)))

Yok
to(w, + —L (W, —Wi + ¥ W)
< k Vi) +v[(k) ( (k) k r(k) )

Vi)
+—— (We, — Wiy + Py W)
Vit + Ve ( ) k e(k) )

= X0+ (Lt + Vi) + 0 (W, + (W),

by setting

Ve Ve + Veay) + Vego (Ve + Ve) an
Vi + Ve
Tuto (Waey = W + s W) + Tty (Wh gy = We + Wi W)

Vet + Ve

d

(W) =

s

and the property holds for all nodes k of 7.
Proving the second point of the theorem is direct since from
Definition 2, we have that

Uk _ zr(k) - zZ(k)

vV Vro + Ve

Vit + Vet — Yetk) — Vek) o

=M + = =
vV Vi) + Veck)

= = D (W),
vV Vi) + Vek)

where

D (W) =W, + Yrgo W) =Wy — Py (W)
= Wey —We) + o W) — Wy —We) — Py (W),

r(k)

By construction, for all nodes k, ¥ (W) is a linear combination
of independent centered Gaussian random variables of the form
Wi, = Wi where i is a descendant of k. It follows that ¥, (W) is a
centered Gaussian variable, which is independent from any random
variable W, — Wta(j) if j is not a descendant of k. Since (W;);. o is
the Wiener process, we have that

Var(W,, — W) = ti — tiy=V;

for all nodes i of 7(Grimmett and Stirzaker, 2001).
Let us prove by induction that

if k is a tip,

0
Var (¥, (W)) = {"m"“” otherwise

Vit +Ve(k)
which is equivalent to say that Var (¥, (W))+v, =V, from
Definition 2. It is basically true in the base case where k is a tip. If
k is an internal node, by assuming that the induction assumption
holds for its direct descendants r(k) and ¢(k), we have that

Var (¢, (W)) =
V2o (Var (We,,, — W) + Var (W (W) + Vg (Var (We
. (Vg +Vew))?
_ V2o (Veo + Var (Wi W) + Vg (Vego + Var (Pegy W)))
- S, Ve +Vew)?
Ve Vrtw T Vra Ve Vo Ve
T G V) Ve Ve
which proves the form of Var (¥ (W)).
In the same way, @, (W) is a linear combination of independent
centered Gaussian random variables of the form W; — W,;, where
i is a descendant of k, with variance

Var (9 (W)) = Var (W, — W)
+Var (Wry (W)) + Var (W, — Wy,) + Var (W (W)
= Vr( + Var (‘I’r(k) (W)) + Vo) + Var (Wz(k) (W))=Vr(k) + Vo)

— W) + Var (¥, gy (W)))

e(k)

Appendix B. Ultrametric trees - Proof of Proposition 5

Let 7 be an ultrametric tree and T be the total path-length/time
from its root to its tips.

We shall prove by induction that y, =T —t;, and h;, = 0 for all
nodes k of 7. The property is basically true if k is a tip, our base
case. Let k be an internal node and let us assume that the property
holds for its direct descendants r(k) and ¢(k). From Theorem 3, we
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have that
Ve Vet + V) + Ve (Veay + Ve)
B Vit + Ve
Vo) (T =ty + Vea) + Vi (T = Loy + Very)
Vit + Ve

Ve (T = t) + Vg (T — 1)
Vi) + Ve B

hy = Viky + Vet — Vet — Ytk

K

V Vo + Ve

WVrgy + T = b)) — (Vey + T — tey)

V Ve + Ve

— bt _ o which ends the proof.

V Vo + Ve

Appendix C. Trend estimation and detection

T —t, and,

Eq. (1) shows that under an ABM model with trend u, the inde-
pendent contrasts Uy, can be written as the product of v with the
corresponding temporal variable h;, plus an independent, centered
Gaussian term of constant variance with respect to k. This suggests
to estimate the trend p as the slope of the following linear equa-
tion

u = crh+ &R (C1)
where, from Eq. (1), the entries of the error vector &, are samples
of random variables

o Py (W)

VVrao + Ve

which are independent and Gaussian distributed with mean zero
and variance o2 under the current assumptions.
From Eq. (C.1), the linear regression estimator of w is
-1
_ Yo ushy
H=——= (C2)
izl

1.0

0.8
1

Rate of falsely rejecting Hy

0.2

0.0

\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0

Level o

Again from Eq. (C.1), testing for a trend in the evolution of trait
under an ABM model can be performed by testing for the nullity
of the slope. In order to assess the accuracy of this trend test (re-
ferred to as the “hR test”) with regard to the standard regression
of the tips values with respect to their times (referred to as the
“SR test”), we simulated evolution of quantitative traits with and
without trend on the tree of Fig. 2 and plot the type I error rate
against the rejection level and the ROC plots of these two tests. Re-
sults are displayed in Fig. C.1. The hR test clearly outperforms the
SR test. Fig. C.1-Left shows that the SR test rejects the null hypoth-
esis more than it should do whereas the hR test rejects it at the
exact level required. Moreover, their ROC plots show that the hR
test better discriminates between traits simulated with and with-
out trend than the SR test (Fig. C.1-Right).

Appendix D. Directional contrasts
Equivalence between centered and directional contrasts

Elliott (2015) associated to all nodes k of 7 and all values 8 the
quantity e,(8) defined as

Z if k is a tip,
Ve @iy (B) = BVr(y) + Vi (€e iy (B) — BVeky)
Vi + Ve

ek(ﬂ) =

otherwise,

where the modified branch lengths (Vy)o<x<2, are given in
Definition 1.

For all internal nodes k of 7, Elliott (2015) then defined the
(B-)directional contrast as

ergo (B) — e (B) 4 Vray = Ve

V Vo + Ve V Vo + Ve

Let us start to prove by induction that for all nodes k of 7, we
have that ey (8) =z, — BYx-

The equality is basically true in the base cases, since if k is a tip
of 7, we have that y, =0 and ey (8) =z, = Z.

di(B) =

e e
@« _|
o
o
T
(o))
£ o |
8 o
©
=
>
= <
S oS
[0
T
o SR
S — hR
o
o
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Rate of falsely rejecting Ho

Fig. C.1. Left: Rates of false rejection of the null hypothesis (i.e., no trend) at level @ vs « on traits simulated under the BM model with variance 0.09. Right: ROC plots
of the trend detection tests obtained from simulated traits under the BM model for negative population (i.e., under Hy) and under the ABM model with trend 0.2 for the

positive population, both with variance 0.09.
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Let k be an internal node of 7 and let us assume that the equal-
ity holds for its two direct descendants r(k) and ¢(k). We have

eu(B) = Vet €riioy (B) = BVrao) + Vi (e (B) — BVeiy)
« Vi + Veq
_ Ve @y — BYrao) + Vv @y — BYew) 4 Ve Ve + Vi Verk)

Vi) + Ve Vi + Ve
N ﬂvl(k) (Vroy + Yro) + Ve ey + Veo)
Vi + Veao

_ Ve Zriy +Vrio Zego
Vit + Ve
=%~ B
which proves the equality for all nodes of 7.
Last, we have that

€rk) B) - €o(k) B) o Vet — Ve
V Vi + Ve Vet + Ve
_ Vet @y = BYrao) + Ve @y — BYetw) o Vet Vet + Vrao Veao
Vit + Vedo Vitky + Vek
Vet Ve + Vrto) + Ve Ve + Vo)
Vet + Ve

de(B) =

_ VewZri +VroZe)
Vi) + Ve

u — Bhy

= Ck(,B)~

In plain English, for all internal nodes k and all values $, the §-
directional contrast d,(8) is equal to the S-centered contrast c,(8).

Estimated directional contrasts

In order to correct the trend effect, Elliott (2015) proposed
to consider the fi-directional contrasts where fi is the estimated
trend (Eq. (C.2)).

Let B be the random variable associated to the estimated trend.
From Eq. C.2, we have that

-1
Yo hy;
Yioht

From Corollary 4, if the trait follows the ABM model of parameters

(xo, M, 02), then for all internal nodes k of 7, the independent
contrast random variables U, are Gaussian distributed with

Uk ~ N(th, 0'2),
which implies that
/\/( s 1h2) under the ABM model (xo, i, o2).

B follows the Gaussian distribution

k=0 "k
For all internal nodes k of 7, the random variable Dy(B) associ-
ated to the k' estimated directional contrast is defined as
Dy(B) = Uy, — Bh,<
slhu
=U— 2’701,]12Jhk
ukz; ’OhJ th] OhU
J#k J#k
g h?

Corollary 4 implies that the estimated directional contrast ran-
dom variables D, (B) are Gaussian distributed with

2 _ hZ
0,071
Z] 0 J

Moreover, since the independent contrast random variables Uj,
are independent from one another, we have that for all i#k

7hkh'0'2
Z] 0 ]

Since hy, # 0 in the general case, the estimated directional contrast
random variables are neither identically distributed nor indepen-
dent.

Cov (D;(B), Dy(B)) =

Appendix E. IC and PGLS regressions - Proof of Theorem 8

In all what follows, 0 (resp. 1) denotes the column vector with
all entries equal to O (resp. to 1; their dimensions depending on
the context) and for all numbers N, Iy is the identity matrix of
dimension N x N. The transpose of a matrix or a vector A is noted
A’. We recall that n is the number of internal nodes of 7 which
thus has n+ 1 tips.

A matrix presentation of the Felsenstein’s (1973) algorithm

Let us sketch a matrix presentation of the Felsenstein’s
(1973) algorithm which iteratively computes the following vari-
ables for all nodes k of 7. By putting 7, for the subtree of 7 rooted
at k and ny, for its number of internal nodes, let

* g, be the vector of dimension n; + 1 that is such that the “ar.
tificial” trait value of node k, i.e., Z; of Definition 1, is obtained
by multiplying g, with the tip value vector of 7,

* Qy be the n x (n, + 1) matrix giving the independent contrasts
of the subtree 7, from its tip value vector, and,

« §; be the increment applied to the branch ending by k (i.e., v, —
v}, in Definition 1).

By initializing g, to the vector [1], Q; to the 0 x 0 “empty” ma-
trix and &, to O for all tips k of 7, these variables are recursively
computed for all internal nodes k of 7 with direct descendants ¢(k)
and r(k) by setting:

.g — [ Vriaoy+0r(a) By r) Vo) +0e (k) )8 ]
k Vo) 0y TVra Oy Vet F0ucy TVr(k) TOrck)
)
. Q = 0 Qr(k) ,

gé(k) r(k)
Ve 80 V(o) Fork) VVeto ey HVr () FOr (k)
o 5, = Yetot0ea) Vrgo )
Vet Hoecy Vr(k) Horcy

It is straightforward to prove by induction that g;1 =1 for all
nodes k of 7. Let us prove by induction that Q,Qle =0 for all
nodes k of 7. The property is basically true for all tips. Let us as-
sume that k is an internal node and that its direct descendants ¢(k)
and r(k) both satisfy the property. We have

Q..Q B0 Beh) “Be)Br)
Q0 = (o e Vt(k)*‘st(k)*"r(k)*‘sr(k) V((k)*‘sf(k)“’r(k)+8r(k)
’gr(k)grz(k) ’ gr(k)gr(k)
Ve(ky Pe k) Hrik) Frik) Qg G0 + Ve(ky Feio) Hriio (o)
thus
Q. Qul + Eo(oBei ! _ 0% (!
Q= | O T VT i T Ve o Ty | g
“Br(k) By (k) QU Qo + &1k 8 (k) | ’
Ve ey HVr k) TOr (k) (k) =) Vet Foe(k) HVr(k) TOr (k)
H J —_ o — / —
since g,4,1=8,4,1=1 from above and Q Q1 =

Qr/(k)Qr(kﬂ:O from the induction hypothesis, which proves

that Q;Q,1 = 0 for all nodes k of 7.

Let us set g =g/, Q=Qr and § = §; where r is the root of T
and let ¥ be the covariance matrix associated to 7, i.e., for all
pairs of tips (i, j) of 7, the (i, j)-entry of ¥ is the total time be-
tween the root and the most recent common ancestor of i and j.
Felsenstein (1973) showed that by assuming that a trait follows a
Brownian process with variance o2 and by putting Z for the ran-
dom vector of its tip values, the contrasts, i.e., the entries of QZ,
are independent centered Gaussian variables with variance o2 and
that g'Z is a centered Gaussian variable with variance ¢2§ which is
independent from all the contrasts. It follows that if Z is a Gaussian
vector with covariance matrix 02X then QZ is a n-Gaussian vector
with covariance matrix o2I,; and, by defining the (n+1) x (n+1)
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matrix P= |:8’:| that PZ is a (n+ 1)-Gaussian vector with co-
NG

variance matrix o2l ;. Since P is invertible (the standard presen-

tation of the Felsenstein’s (1973) algorithm shows that P can be

written as a product of invertible matrices), this implies PP = X!

and that

./
-1 = PP1=Q'Q1 + %:%, (E1)
which itself directly implies that
@'z ) 1=6. (E.2)

Moreover, since ¥~! is symmetric, Eq. (E.1) implies that gg’ =

8211121 and that

152112 1=0QQ. (E.3)
Note that matrix P plays the same role as the phylogenetic trans-

formation matrix in Adams and Collyer (2015) and as the matrix

D defined in a complete different way in Garland and Ives (2000,
p349).

Multiple regression with IC and PGLS

Let y and X be respectively a vector of tip values of a trait and
a matrix of tip values of p traits or co-variables (e.g., the time, an
environmental variable etc.). We shall show that testing for corre-
lation between y and any column of X leads to the same result
with the IC and the PGLS methods.

In the IC regression and under the notations of subsection
above, we consider the following linear equation

Qy = QX By + &rc,
where the error vector €j¢ is a realization of the centered Gaussian
random vector with covariance matrix proportional to I. Vector

Qy has dimension n and there are p regressors. The vector of esti-
mated regression coefficients is

-~ -1
Bic = (X'QQx) ' X'QQy

and the estimator variance of the ith coefficient [Bic]; is
EIZC[(X/Q/QX)*]” where the residual variance estimate &2

where the error vector is a realization of the centered Gaus-
sian vector with covariance matrix proportional to X = (P’P)~1.
Vector y has dimension (n+1) and there are p-+1 regressors
(including the intercept). The vector of estimated regression
coefficients is

~ , -1 ,
el ([x]=e x) []zvena

and the estimator variance of the ith coefficient [Bpgis]; is

SETEN

where the residual variance estimate 612c is
~ ’ ~
QapGLs _ QapGLs
52 _ < [ ]|:ﬁPGLSi| [ ] Brcis
PGLS = n—p :

Under the regression assumptions and that the ith coefficient
[BpgLs]; is null, the statistics

[ﬁPGLS] ;

[ )]

1,1

ii

follows the Student distribution with n — p degrees of freedom.

In order to prove that the IC and the PGLS methods are equiv-
alent to test for correlation in a multiple regression context, we
shall establish that the three following properties hold:

(s x) 2] b f laand
Ay [ ] =, (X’Q’QX)J or areal a an

two n-vectors b and c,

2. EEGLS = EIZC
3. Opgrs = O

From the block matrix inversion formula and Eqs. (E.1)-(E.3),

IC we get that
Vlsin ] T orrs o oves ][ s rvesx]
X’ TIX'z 1 XTOIX| T|IXX 1 XX

_ (X/Q/Qﬂx)f]x/g

is
52 — (Y- XBi)'Q'Qy —XBic) .
i n—p
Under the key regression assumptions and that the ith coeffi-
cient [Bic]; is null, the statistics

3]
vV o[ (X'QQX)! lii

follows the Student distribution with n — p degrees of freedom.
In the PGLS regression, the linear equation is

opGLs
=1 X + & ,
y [ ] |: :BPGLS] PGLS

(5 +gx(XQQx) 'X'g  —gx(x'Qx)”
(roex) !

5+ SPUEIX(X'EIX —$X'EMVEX) ' X'E11 —$TVEX(X'TX - 6X'E "1 E X
SS(X'TTIX - SX'E1TE1X) T XE 1

)—l
(X'T-1X -8’5 111E-1X) " }
:| which proves Property 1.

The vector ,EPGLS of the PGLS regression coefficient estimates
without the intercept is obtained by multiplying the second line of

. . 121y g—/y
the block matrix above with the column | ,, . _;7 | = S :
X'Zy X'z-ly

_(X/Q/Qx)flx/%y + (X/Q/Qx)flx/z—ly
- (X’Q’QX)_1X’<Z‘1 - %")y
= (X’Q’QX)AX’Q’QyzﬁlC which proves Property 2.

ﬂ PGLS

In the same way, the intercept estimate of PGLS is
rais = (6 + £X(XQQX)X'g) §y - gX(XQQX) X'Tly
_ g'y+g’x(X/Q’Qx)‘1x’<ng - 2—1)y
= gy - gX(X'QQX) 'X'QQy=g'(y - XB)-
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The residual variance estimate of PGLS is given by

(y — 1&pcLs _XBPGLS)/EA (y — 1apcis — XTBPGls)
n—p
_ (Y-1g'(y—XBi) —XBi)' 2 (y - 18 (v — XBic) — XByo)
n—p
_ W=XB)'E 'y = XBi) — (Y- XBi)'g1'E 18/ (y — XBic)
n—p

(y—XTﬁr[c)/(?l - %)(y—xm)

n—p
p— / / p—
_ W-XB'QQY-XBio) _ &2 which proves Property 3,
n-—p
and ends to prove that testing for correlation with IC and PGLS is
equivalent.

~2
OpcLs =

Multiple regression with time as co-variable

Let us start by showing that for all internal nodes k, h; is the
phylogenetic contrast of the tip times associated to k. By putting £
for the “artificial” time reconstructed at the internal node k by the
Felsenstein’s (1973) algorithm, it is straightforward to prove by in-
duction that ¢, = t, + y; for all nodes k of 7. For all internal nodes
k with direct descendants r(k) and ¢(k), we have that

h, — Vet + Vet — Vet — Ye o — Loy
= =

V Vo + Ve Vet + Ve

which is well the contrast of the tip times associated to node k.
It follows that the vector h = (hy);, is obtained by multiplying
the vector t = (ty) <<y Of tip times by Q, i.e,, h=Qt.

Let us consider two traits A and B and their tip-value vectors
Zy = (Z'I?)ngngn and zz = (zﬁ)ngkgn. The linear equation

b
Qzp = Q[ZA t] [C““:::] + evr=bmrU4 + cvrD + Emg,

where the error vector ey is a realization of a centered Gaussian
vector with covariance matrix proportional to I,, corresponds to
the regression considered in the MR method (Eq. (8)). We showed
in the section above that testing for correlation between traits A
and B with this equation is equivalent to testing for correlation be-
tween A and B with the linear equation

apgrst
bpcrs
CpGLst

25 = [1 Z, t] + €pgLsts

where the error vector &pgis; is a realization of a centered Gaus-
sian vector with covariance matrix proportional to X which corre-
sponds to testing for correlation between A and B with tip times
as covariables by the PGLS method.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jtbi.2019.08.013
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