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HIGHLIGHTS

e The evolution of an ingroup bias is
analysed for various symmetric two-
player games.

e [n some games the bias evolves even
without reciprocity and kin selection.

e This does not apply to co-operation
games, but to (anti-)co-
ordination games.

e Certain (anti-)co-ordination games are
particularly conducive to the bias.

e This includes games relying on trust,
such as the stag hunt.

ARTICLE INFO

GRAPHICAL ABSTRACT

Both analyses and simulations show that an ingroup bias evolves in (anti-)co-ordination games. The
simulations further show that the strategy becomes particularly prevalent in stag hunts. The picture
depicts, to the left, the games derived from the game matrix, in the middle, for different values of x and
y. The panel to the right shows the simulated proportional prevalence of an ingroup bias for the different
games when there are 10 groups in the population.
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ABSTRACT

There is an increasing wealth of models trying to explain the evolution of group discrimination and an
ingroup bias. This paper sets out to systematically investigate the most fundamental assumption in these
models: in what kind of situations do the interactions take place? What strategic structures — games -
support the evolution of an ingroup bias? More specifically, the aim here is to find the prerequisites for
when a bias also with respect to minimal groups - arbitrarily defined groups void of group-specific
qualities - is selected for, and which cannot be ascribed to kin selection.

Through analyses and simulations of minimal models of two-person games, this paper indicates that
only some games are conducive to the evolution of ingroup favouritism. In particular, this class does not
contain the prisoners' dilemma, but it does contain anti-co-ordination and co-ordination games.
Contrasting to the prisoners' dilemma, these are games where it is not a matter of whether to behave
altruistically, but rather one of predicting what the other person will be doing, and where [ would benefit
from you knowing my intentions.

In anti-co-ordination games, on average, not only will agents discriminate between groups, but also
in such a way that their choices maximise the sum of the available payoffs towards the ingroup more
often than towards the outgroup. And in co-ordination games, even if agents do manage to co-ordinate
with the whole population, they are more likely to co-ordinate on the socially optimal equilibrium
within their group. Simulations show that this occurs most often in games where there is a component
of risk-taking, and thus trust, involved. A typical such game is the stag hunt or assurance game.
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1. Introduction

Human beings are often quick at dividing people into groups,
implicitly or explicitly, and then let these divisions guide their
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behaviour towards them. More specifically, we tend to have an
ingroup bias, meaning that we give preferential treatment to fellow
group members.

The bias has been demonstrated in numerous settings, such as
field studies and laboratory experiments (Brewer and Campbell,
1976; Kramer and Brewer, 1984; Yamagishi and Mifune, 2009;
Balliet et al, 2014). The puzzle is that in some of these settings,
people either lose in potential benefits from discriminating against
outgroup members, or they take on net costs for helping out ingroup
members when it would appear beneficial to abstain. Within small
groups, apparently altruistic behaviour can often evolve by kin
selection (Hamilton, 1964) or reciprocity (Trivers, 1971). In these
groups, it would be more straightforward to use individual recogni-
tion rather than relying on weak group signals, and the ingroup bias
observed would be an average preference based on whom people
manage to co-operate with, rather than an evolved bias for how to
behave beyond individual recognition. Meanwhile, people do display
an ingroup bias also in situations where these mechanisms are not at
work, and have shown to have preferences based purely on group
signals. The bias can be triggered by minimal cues from arbitrary
group definitions (Tajfel et al., 1971; Doise et al., 1972; Ahmed, 2007).
What needs to be understood is thus how a bias that is activated
among complete strangers has emerged. Co-operation can emerge as
a spill-over effect from experiences from repeated interactions where
it is rational (see e.g. Kiyonari et al., 2000; Rand et al., 2014), but it
remains to explain the mechanisms that then lead to a bias towards
strangers that is dependent on minimal signals. There is evidence
that the bias works on an implicit level (Otten and Wentura, 1999)
and that it is regulated by the hormone oxytocin (De Dreu et al.,
2011), suggesting deep biological roots. Thus, it seems reasonable to
look for an adaptationist explanation.

The human species is not alone in giving preferential treatment
to similar individuals. In this respect, the bias resembles the green-
beard effect (Hamilton, 1964; Dawkins, 1976; Gardner and West,
2009; West and Gardner, 2010) that has been observed in less
complex organisms (Keller and Ross, 1998; Queller et al., 2003).
Individuals have phenotypes that other individuals can condition
their behaviour on, with the result being preferential treatment
towards individuals with a certain phenotype. However, the
human bias stretches far beyond kin recognition, is highly flexible
and applies also to cultural cues (Lindenfors, 2013). While theories
on green-beards are concerned with how selective altruism can
withstand invasion by cheaters (with the phenotype but without
the co-operative genotype), for a bias that is activated for so many
various situations as the human one, we likely need to extend the
question beyond conditions for altruistic behaviour and ask, in
general, in what situations does group discrimination give an
evolutionary advantage, also without kin selection?

Defining situations, or interactions with strategic structures
with consequences for the fitness of individuals, brings us into the
realm of game theory. When accounting for selective altruism,
some version of the prisoners' dilemma is assumed. In this situa-
tion, the ingroup bias can be formally expressed as a propensity to
choose the individually costly but socially optimal co-operative
strategy towards fellow group members, while choosing the
individually rational defective strategy towards others.

In a one-shot game, an individual with such a bias has an
evolutionary disadvantage to anyone defecting in both cases. Several
evolutionary models of discriminating co-operative behaviour try to
solve this by introducing elements of group selection (Wilson and
Dugatkin, 1997; Eshel and Cavalli-Sforza, 1982; Bowles et al., 2003) or
group conflict (Choi and Bowles, 2007; Lehmann and Feldman, 2008).
The former models assume high cognitive demand, small groups and
high degrees of between-group selection related to selection within
the groups for free-riders to be kept at stake (although some
conditions have been derived for when groups may be large, see

Boyd and Richerson, 1990). As for the latter models, it is controversial
whether conflict is likely to have been a major mechanism in evolving
an ingroup bias (Brewer and Caporael, 2006; Brewer, 1999; Brewer
and Campbell, 1976; Yamagishi and Mifune, 2009; Halevy et al., 2008;
Cashdan, 2001; Mds and Dijkstra, 2014; Balliet et al., 2014). In the end,
the phenomenon under study does include preferential treatment
towards the ingroup, whether or not this entails hostility towards the
outgroup, and a model is more parsimonious if it can explain the
former without assuming the latter.

What these models, and other models taking departure in the
one-shot prisoners' dilemma, have in common, is that the aim is to
find the conditions under which what is played is no longer a
dilemma. For example, in an infinitely repeated version of the
game, the folk theorem states that co-operation is an equilibrium.
Given the right (and sufficiently many) assumptions, the situation
can be tweaked so that people play a game where co-operation is
rational within the group, while they still play the prisoners'
dilemma between groups.

Before setting out to make assumptions that lead away from a
social dilemma, we should know what situation to aim for. That is,
what set of games support the evolution of an ingroup bias? A
partial answer is those sets where we have different games for
ingroup and outgroup interactions such that co-operation is
rational in the former but not the latter. However, evidence
suggests that the bias is activated also when the same game
applies to both types of interactions. The aim here is thus to
answer the question when all individuals play the same game.

Depending on the game in question, it is not always obvious
how to define an ingroup bias. Let (p,q) be the probability that a
random agent chooses the strategy that is most beneficial towards
the partner from the ingroup (p) or the outgroup (q). We would
then have group discrimination on the population level if p # q,
and this would be an ingroup bias if p >gq. Of course, what is
beneficial needs to be defined, and will depend on the game. In
general, this may be the socially optimal strategy, as in prisoners'
dilemmas, but for other classes of games, such as anti-co-
ordination games, where people are better off making different
choices, it may be more reasonable to use another definition. We
will return to making such a definition in Section 2.3.

First, theoretical analyses will be conducted to systematically
define categories of two-person games that allow for group discrimi-
nation to evolve, and then, through simulations, we will find payoffs
that optimally drive evolution towards an ingroup bias.

1.1. Previous models

Previous models of the evolution of ingroup favouritism typi-
cally focus on a specific game, commonly the prisoners' dilemma.

A well-cited model was presented by Riolo et al. (2001), where
agents have a visible marker on a continuum and co-operate with
sufficiently similar others. The number of offspring is determined by
the success of the interactions and offspring inherit marker and
tolerance level, subject to mutations. The result is that co-operation
is maintained within small tolerance levels, but as tolerance levels
increase due to drift, mutants with lower tolerance levels invade
and form new co-operative clusters consisting of their offspring.
Thus, in this model, and typical for models in its wake, preferential
treatment based on the marker is successful if and only if it
correlates highly with relatedness, with signals being but proxies
for kin recognition. Another restriction in this model is that co-
operation relies on the fact that agents are not given the possibility
of co-operating with no one (Roberts and Sherratt, 2002). Similar
models have been developed where groups are many and small
(Traulsen and Nowak, 2007), agents have different mutation rates
for tags and strategies (Antal et al., 2009), or a reputation (Masuda
and Ohtsuki, 2007).
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In an elaborate mathematical treatment of a similar situation,
Fu et al. (2012) derived conditions for when in-group favouritism
emerges. There are circumstances that allow for discrimination
also when full defection is an available strategy, but the crucial
part is still that the number of available markers and mutation
levels need to be so high that groups remain small and shift signals
before relatedness levels fall and the group can be overrun by
falsebearded defectors. We should thus remain sceptical of any
other accounts not acknowledging kin selection as the main drive
of an ingroup bias in the prisoners' dilemma in the absence of
mechanisms for direct reciprocity.

Another approach is spatially assorted interactions, where interac-
tion partners are not drawn uniformly from the whole population, but
where you have a higher probability of being matched with some
agents than others, combined with a visible group tag (Jansen and van
Baalen, 2006; Axelrod et al., 2004; Hammond and Axelrod, 2006). This
allows for the groups to grow larger since you only interact locally in a
small and constant fraction of the group. The mechanisms are still the
same, with model designs that maintain a high concentration of kin
within the interacting neighbourhoods. Also, when you interact mostly
with your offspring, co-operation is more viable than defection, and
group markers make a marginal change in the amount of co-operation
taking place, by excluding neighbouring non-kin. See Read (2010) and
Jansson (2013) for a further discussion on this type of models and an
analysis of the model of Hammond and Axelrod (2006).

Unless we resort to group conflict (Garcia and van den Bergh,
2011) and group selective accounts, a one-shot prisoners' dilemma
will not form the breeding ground for group discrimination. There
is a small, but growing, number of models explicitly based on
other games. Colman et al. (2012) tested six games with specific
payoffs that can be classified into versions of both dilemmas and
co-ordination games. The analysis was however restricted to such
small populations that inclusive fitness is at work. McElreath et al.
(2003) looked at how markers can evolve as a co-ordination
device also without requiring high concentration of kin. Axtell
et al. (2001) showed that discrimination can also evolve in a
hawk-dove game.

What this overview gives at hand is that even if a single
interaction on the individual level may be a prisoners’ dilemma,
this is not the game that leads to group discrimination, but rather,
the model must be designed so that the game that is being played
cumulates to some other game. Indeed, group discrimination can
emerge in models explicitly based on other games. This calls for a
systematic treatment of what games are liable to preferential
treatment. Such a treatment could inform modellers on specifi-
cally what strategic structure the agents in their models must face
in the long run, and also contribute to the general understanding
of basic adaptive mechanisms of discrimination.

1.2. Overview of the paper

The objective here is to derive analytically the specific conditions
for group discrimination to evolve with respect to all symmetric two-
player games with two strategies, through replicator dynamics. We
begin with a presentation on how to categorise games with respect to
equilibria and then find conditions for each class of games. In order to
incorporate mutations and random drift and their effects also on
more than two groups, simulations are conducted for sets of payoffs
that cover important subclasses of games.

2. Analysis

The full analysis can be found in the Appendix. The details are
thus omitted here and the presentation focuses on the main
findings.

2.1. Game space

The presentation here follows Weibull (1995). All symmetric
two-by-two games can be described by a payoff matrix

ay;r drp
ay axn )’

where a; is the payoff to an agent choosing strategy i after an
interaction with an agent choosing strategy j. In order to find
evolutionary stable strategies in this game space, first note that
evolutionary stable strategies (ESS) are defined in terms of payoff
differences, so what matters for stability is not the absolute
payoffs, but rather the differences in payoff between two strate-
gies. By subtracting the left column, payoffs for responses to
strategy 1, by a,; and the right column, responses to strategy 2,
by ai,, we get a simpler normalised form

app —an 0 a O
0 Ay — a1y = 0 [¢5) :

With respect to ESSs, there are only four (or three, modulo
renamed strategies) classes of games: prisoners' dilemmas and
harmony games, with one evolutionary stable equilibrium; co-
ordination games, with two equilibria; and anti-co-ordination
games, with three equilibria.

Naming strategy 1 co-operate and strategy 2 defect, all games
where a; is negative and a, positive are prisoners' dilemmas, with
defection always being a rational response, while shifting the signs
makes it into a harmony game, an identical game, only with
renamed strategies.

With positive payoffs on the diagonal, the best response is to do
what the opponent does, resulting in a co-ordination game. Only
these two pure strategies are ESSs. Apart from the ESSs, there is
also a mixed strategy Nash equilibrium where strategy 1 is chosen
with probability
a=—2_

a,+ax

With negative payoffs on the diagonal, the best response is to
do the opposite of what the opponent does, an anti-co-ordination
game. In these games, a is an ESS. There are also two pure
asymmetric equilibria.

2.2. Evolutionary dynamics

We here look at the replicator dynamics for all the classes of
games. For prisoners' dilemmas and harmony games, the whole
population will converge to the single ESS, full co-operation and
defection, respectively, in both types of interactions (assuming at
least one individual with that strategy at time zero). It remains to
analyse co-ordination and anti-co-ordination games, first with
respect to within-group interactions, then between-group inter-
actions, and finally, assuming within- and between-group inter-
actions at equilibrium, relative group sizes are computed, giving
the relative success of the possible combinations of strategies.

2.2.1. Within-group interactions
Let p{(t) be the population share of individuals playing strategy
i at time t. The population dynamics are

P} = (a1p; —az2p2)P1D2

and p, = —pj. There is an interior fixed point a. In co-ordination
games, either of the ESSs will be reached, with the population
drifting away from «, towards full dominance of strategy 1 if the
initial share p;(0)>a and strategy 2 if p;(0)<a. For anti-co-
ordination games, « is instead an attractor, with a basin including
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all interior initial points, and the population will converge to the
mixed strategy equilibrium.

2.2.2. Between-group interactions

Let p(t) and g;(t) be the share of individuals in group X and Y,
respectively, playing strategy i at time t. The replicator dynamics
are

Py = (a1¢1 —0242)P1D2s
qy = (@11 — 0242)G1 9.
p,=-p; and g, = —q;.

For co-ordination games, there is a curve m that divides the
strategy space into two basins of attraction. Except for strategies
on the curve, which will converge to the saddle point (a, @), both
groups will converge to strategy 1 or 2 depending on whether
(p1,q;) is above or below m, respectively. For further analyses
below, note that m has tangent q; = 2a — p, in the saddle point and
that p;,q; > @ and p;,q; < a are below and above m, respectively.

In anti-co-ordination games, if both groups employ the same
frequency of strategy 1, then they will converge to the mixed
strategy (a, a). In all other cases, the population will converge to
an asymmetric equilibrium. Strategies 1 and 2 will be reached by
the group with the largest initial frequency.

In sum, prisoners' dilemmas and co-ordination games have the
same dynamics within and between groups. Co-ordination games
can result in one strategy towards the ingroup and another
towards the outgroup, depending on initial conditions. Finally, in
anti-co-ordination games, not only may agents have different in-
and outgroup strategies, but on the group level, they will. Within
the group, the only stable equilibrium is the symmetric mixed
strategy, while encounters with another group allow for polarisa-
tion and specialisation. Contrasting to within-group interactions,
between groups, all agents may encounter the same strategy in all
interactions, for which the other strategy is the best response.

2.2.3. Mixed interactions

It remains to investigate how groups that have arrived at one of
the possible equilibria will fare against each other, that is, what
will be the respective group sizes. Setting up replicator equations
where both groups play equilibrium strategies and encounter both
in- and outgroup members gives the following results.

As was derived above, in co-ordination games, both groups will
have the same outgroup strategy, but may have converged on
different ingroup strategies. If the two groups have different
strategies, then the group with the highest-paying strategy will
take over the whole population. If the groups have the same
ingroup strategy, but this is different from the outgroup strategy,
then the result depends on which of the strategies is more
successful. If the outgroup strategy has a higher payoff, then the
groups will converge to having the same size, while in the
opposite case, the group with the largest initial population share

Table 1

will take over. With both payoffs being equal, all population ratios
are stable.

These results are robust to assortment, that is, changing the
frequency of which an agent meets an ingroup versus outgroup
member, such that the probability for an ingroup member to be
chosen as an interaction partner may differ from that of an
outgroup member.

Within the groups, agents will on average play a mixed strategy
in anti-co-ordination games, while the groups will choose differ-
ent pure strategies between the groups. With the mixed strategies,
the replicator dynamics are no longer invariant under a local shift
of payoffs in the game matrix, so we need to revert to the original
matrix and allow all four payoffs to be different in the analysis.
This gives us two types of anti-co-ordination games, depending on
whether one or both anti-co-ordination payoffs (a;» and a,;) are
better than both co-ordination payoffs (a;; and as»).

In games where one group would have earned more from the
other group co-ordinating on their strategy than anti-co-ordinat-
ing, the former group will go extinct. These are the games where
the diminishing group earns more from ingroup than outgroup
interactions, and they constitute a well-known subclass of games
commonly referred to as hawk-dove games.

In games where anti-co-ordination is always more profitable
than co-ordination, both groups will survive, and the group
playing strategy 1 towards the outgroup will converge to a share

f= (12 —a11)(a2 —ax)
(@12 —a11)(A12 — A22) +(A21 — A11)(A21 — A22)

of the population.

2.3. Conclusions

Let p’ and ¢' denote the ratio of the respective populations of
two groups playing strategy 1 towards the ingroup and p° and q°
be the ratios towards the outgroup. To avoid fixed endpoints,
assume that p',q',p° q°¢{0,1}. For notational convenience, we
will also assume that in the co-ordination games, (1,1) is the
socially optimal strategy, that is, a;; > ay,. Note that this still
includes all co-ordination games, modulo renaming strategies. The
notations @, f and m are as above. The results are compiled
in Table 1.

Neither prisoners' dilemmas nor harmony games offer any
conditions for an ingroup bias, as in- and outgroup members are
always treated the same.

In the co-ordination games, it suffices that any of the groups
has a majority of agents choosing the strategy with the highest
maximum payoff in the ingroup interactions for it to take over the
whole population, while in outgroup interactions, the ratio must
reach a threshold g° > m(p°) in the population as a whole. This
leads to the following.

Strategies are denoted by ab, where a is the strategy towards the ingroup and b towards the outgroup. In the anti-co-ordination games, « denotes the mixed ESS strategy. In
all other games, agents in both groups have the same strategy set. In the co-ordination games with the socially optimal strategy 11 for both in- and outgroups, one group
overtakes the population if initially p' <a or ¢' < a. Unstable nodes (p' = a, ¢' = @) and saddle points ((p°.q°) = (a.,@)) are not included in the listing.

Game Strategies Size of largest group Initial conditions
Prisoners' dilemma 22 Any Any
Harmony 11 Any Any
Co-ordination 1 Any |1 p’ >a and|or q’ >aq, qo > m(po)
21 12 P.q <a, q°>m@p°)
12 1 p'>aorq >a q°<mp°
22 Any phq' <a, ¢° <m(p°)
Anti-co-ordination al/a2 min (max(g,1-p),1) q° #m(p°)
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Proposition 1. In a co-ordination game, the basin of attraction for
the ingroup strategy to be socially optimal at equilibrium is at least as
large as that of the outgroup strategy.

Proof. With the notation above, the socially optimal strategy is
(1,1). The ingroup strategy will converge to this if either p' > a or
q' > a, so the size of the basin of attraction is 1 —a?. The outgroup
strategy will converge to the same if and only if g° > m(p®). We
know that q° <m(°) if p® <a and q° <a, and thus the area
where ¢° > m(p®) has a size no greater than 1—a?. ©

In anti-co-ordination games, almost all initial conditions result in a
group distinctive strategy set, where, on the group level, agents use a
mixed strategy towards the ingroup and a pure strategy towards the
outgroup. This means that outgroup interactions are pareto optimal,
while ingroup interactions are not always.

Define by a benevolent strategy one that maximises the sum of
the payoffs that are available to the other agent. We then have the
following.

Proposition 2. In an anti-co-ordination game, at equilibrium, more
agents will choose the benevolent strategy towards an ingroup
member than an outgroup member.

Proof. If ay; > a1 > ayy > a; or ajp > azy > d; > ay; (one of the
co-ordinated strategies is pareto optimal, also known as hawk-
dove games), then the group choosing the non-benevolent out-
group strategy (“hawks”) will take over the population, while the
ingroup strategy remains mixed and thus sometimes benevolent.
In all other games (where co-ordination is never pareto optimal),
the difference between the share of agents choosing strategy
1 towards the outgroup and the ingroup is

a—f= a (a12—a11)az
a1 +a; (a1 —dx2)a; +(a12 —ag1)az
] a;
- T ay —a >
a+a B ra

which is positive if and only if ay; —ax > a;; —ay;, which is
equivalent to aj;+dz; > a3 +ay;. Thus, strategy 1 is more com-
mon in ingroup interactions if and only if it is benevolent.

The following is worth repeating from the above proof.

Corollary 1. In a hawk-dove game, one group will overtake the
population, playing a mixed strategy towards the ingroup and hawk
towards the outgroup. Thus, agents are more inclined to play hawk
towards an outgroup member.

3. Simulations

The replicator dynamics assume several simplifications com-
pared to previous models in the literature. The dynamics are
deterministic in that they operate on selection on the group level
rather than interactions among randomly selected pairs of agents
and there are no mutations. We will here investigate what
happens when we introduce mutations, immigration and more
than two groups, by running simulations of an agent-based model.

In order to stay close to the analytical model when increasing
the number of groups, agents do not distinguish between different
outgroups, but have one strategy towards the ingroup, and one
towards any outgroup. It would be possible to extend the number
of groups to a continuous scale and add tolerance levels for
accepting agents as ingroup members, but this would sacrifice
model simplicity and introduce kin selection as a driving force, as
discussed in Section 1.1 and Jansson (2013).

The model here largely follows the protocol of the Hammond
and Axelrod (2006) model, but excludes the spatial structure that
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has also been shown to produce results based mainly on kin
selection (Jansson, 2013).

Following a previous systematic approach to chart the spatial
Hammond and Axelrod model for different games (Kaznatcheev,
2010), simulations will be run for a large enough set of payoff
matrices to include various subclasses of the four games.

3.1. Description of simulation model

For each simulation, interactions are modelled by a specific
game with payoffs held constant throughout the simulation.
Different simulations are run for different payoff matrices. For
each game reported on here, 500 simulations were run and the
results averaged from the last round in each simulation. One
simulation, in turn, runs for 2000 rounds and the outline of a
round in a simulation is the following:

Immigration: An agent from a random group and with one
random strategy (1 or 2) towards the ingroup and one towards the
outgroup enters the population (which is empty in the beginning).
The potential to reproduce (PTR) of all agents is (re)set to 0.12.

Interaction: For each agent, another agent is chosen at random
for an interaction. The agent observes the group membership of
the random partner and chooses a strategy accordingly. The agents
receive the payoff of the interaction as an increase or decrease
in PTR.

Reproduction: The density of the population is the number of
agents divided by 2500 (which thus caps the population size). The
PTR of all agents is multiplied by one minus the density. Each
agent produces one offspring with the probability of their new
PTR. The offspring inherits the traits of its parent, but each of the
traits group marker, ingroup strategy and outgroup strategy are
subject to a mutation probability of 0.005 per trait, meaning that
the marker would change into another randomly chosen marker
and the strategy to the opposite strategy.

Death: Each agent has a probability of 0.1 to die.

In order to plot different games in a two-dimensional figure,
note that

app dp2 aj1—0dy  A12—0 11

a1 a2 - a1 —ax 0 +a22<1 1)
a2 —0a

=@ —-a2)| | g5y —a e

21— 022

apr—ax

a 11
+ 22(1 1)

provided that a;;—az; #0, so all games where the diagonal
elements are not equal can be represented by the payoff matrix

(5 o)

To fit the magnitude of the PTR, the matrix will be multiplied by a
scalar 0.06, such that the following payoff matrix will be used, for
xe[—-2,2]l,ye[—1,3]

006]X
061, o)

With this payoff matrix, prisoners' dilemmas are the games where
x<0, y>1, harmony games where x>0, y <1, co-ordination
games where x <0, y<1 and anti-co-ordination games where
x>0, y>1. This set of games can be further divided into sub-
classes of games depending on whether x and y are smaller or
greater than 0 and 1, y > x (which of the strategies give the highest
payoff when agents anti-co-ordinate), and 1+x >y (which strat-
egy is risk dominant).
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Fig. 1. Simulation results. Average population ratios of strategy 1, “co-operation”, in interactions with only ingroup (panels a and e) and only outgroup members (b and f),
strategy set (1,2), “ingroup bias” (c and g), and largest group (d and h), for different games in the range xe[—2,2],ye[—1,3].

3.2. Results

Fig. 1 illustrates the average values, represented by colours,
from 500 runs of the simulations for 17 x 17 different games in the
range x e [—2,2],y € [— 1, 3]. Simulation results are given for popu-
lations consisting of two (panels a-d) and ten (panels e—f) groups.
The values are the ratio of agents choosing strategy 1 (interpreted
as co-operate in most games) in ingroup (a,e) and outgroup (b,f)
interactions, and the prevalence of strategy set (1,2) (interpreted
as an ingroup bias in most games) (c,g). The figure also depicts the
average size of the largest group in the last iteration (d,h).

In order to identify the different games more easily, each panel is
divided by solid lines into four areas, each of which corresponds to
the four classes of games (top left: prisoners' dilemmas, top right:
anti-co-ordination games, bottom left: co-ordination games, bottom
right: harmony games). The area is further divided by dotted lines to
identify subclasses of games, as described in the previous section and
discussed further below. We can see the following.

First of all, we can note that prisoners' dilemmas (x <0, y > 1)
result in no discrimination among two groups. With ten groups,
however, the ingroup biased strategy is prevalent at low levels in
the population, with a 10-20% frequency. This is consistent with
the fact that with many groups present, some of them will be
small with high levels of kinship.

For the most part, harmony games (x>0, y<1) offer no
ingroup bias. Remarkably, however, for the limited area
0 <x<y<1, about one-third of the population has such a bias.
It seems that here, the harmony game rather turns into a kind of
harming game. Within the groups, the game remains a harmony
game, but not between groups. Agents gain mutually by co-
operating, but an agent that defects not only takes on a cost, but
also imposes a larger cost on its partner (irrespective of whether
that agent co-operates or defects). The dynamics may be quite
intricate here and call for further research. A defecting group
benefits against the outgroup, and its individuals will reproduce
more. Meanwhile, the individual gains by co-operating, so defect-
ing is unsuccessful within groups, and cannot be sustained in the

long run between groups, neither is it beneficial with many other
groups around.

Co-ordination games (x <0,y < 1) are the ones where we see
the highest frequency of an ingroup bias. The highest values are
attained where y is sufficiently smaller than 1 and y > x. A similar
argument as above may be applied here. Also here, mutual co-
operation has the highest payoff, but defection harms alter more
than ego. Furthermore, mutual defection is a Nash equilibrium. For
y>x+1, defection is also risk-dominant. As y approaches 1, and
the relative gain from taking the risk of co-operating diminishes,
co-operation plummets also within groups, when there are only
two groups available.

As the number of groups increases, however, the ingroup bias
takes a more beneficial course. In the same area where co-operation
is the mutually beneficial and defection the risk dominant equili-
brium, agents start co-operating within the group. This is in line with
the analytical result for two groups that only one group needs to
reach the socially dominant equilibrium in ingroup interactions for
the strategy to take over the population: the more groups, the more
likely it is that at least one of them will succeed. The only area where
agents with an ingroup bias constitute the majority of the population
is where x <0 and x+1 <y <1 (with ten groups). This is a well-
studied class of games called stag hunt or assurance games. It
appears that in the presence of competition from several groups,
the population can avoid the risk dominant and reach the socially
optimal equilibrium in interactions within the group.

For anti-co-ordination games (x >0, y > 1), co-operation (play-
ing strategy 1, the benevolent strategy in this area) is generally more
likely towards the ingroup than the outgroup. For x <y <x+1,
playing strategy 1 towards the ingroup and 2 towards the outgroup
is also the most successful strategy. This is particularly the case for
x> 1, where anti-co-ordination is more beneficial for both parties
than any co-ordination. Here we will always get anti-co-ordination
between groups, with one group being better off than the other.
When y > x, this will be the defecting group. Finally, if y > x+ 1, then
defection becomes risk dominant, and takes over also within groups,
making agents less biased.
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3.2.1. Convergence and variation

The results presented above deal with average values after
2000 rounds. Have the strategies converged to potential equilibria
at this point and how do the results vary between simulations?

First, for most of the games, the average frequency of an
ingroup bias has converged within 500 rounds, and the results
look roughly the same as after the complete simulation. Conver-
gence is slightly slower for borderline games, where x is close to
0 or y is close to 1, but average ratios change very little towards the
end of the simulations.

Looking at each of the simulations, instead of average results,
the prevalence of the ingroup bias changes by less than 10
percentage units during the last 1000 rounds in almost all the
runs of most of the games, except for borderline and co-ordination
games. In the latter, ratios change more than 10 percentage units
in up to 50% of the runs, but this applies mainly to games where
the largest group takes over the population, with there being less
selection on the outgroup strategy.

In general, there is little variation between simulation runs of
two groups in the success of ingroup favouritism, with a standard
deviation (often well) below 0.1, except for some borderline and
co-ordination games. The average frequency is close to zero in
prisoners' dilemmas and harmony games, with a standard devia-
tion consequently on par. (Note however that the outcomes in the
borderline harmony games where there is an ingroup bias vary
widely.) The outcomes in anti-co-ordination games fall closely to
the mean, with a narrow, approximately normal distribution. The
co-ordination games, instead, have wide distributions, with stan-
dard deviations up to 0.3. All these results, except for borderline
harmony games, are consistent with the analytical findings.

The pattern is similar for ten groups, but with some increased
variation in ingroup co-operation for prisoners' dilemmas. As
discussed earlier, co-operation towards the ingroup can spread
in small groups with a high density of kin.

3.2.2. Robustness

In the simulations presented here, all parameter values except
for the payoff matrix were held constant. The parameters were set
to the same values as those in the spatial Hammond and Axelrod
(2006) model. Are the choices of these parameter values crucial to
the results or is the model robust?

Keeping the PTR fixed, all other parameters can be modified to
measure their relative impact. Increasing or decreasing the immi-
gration rate has a similar effect to varying the mutation rate. It
remains to investigate, then, whether the results are stable with
respect to varying death and mutation rate.

The short answer is that extreme death and mutation rates can
stimulate kin selection, but for other values, the results are robust
against variation.

With two groups, the same pattern emerges independent of
variable values as long as the death rate does not greatly exceed
the PTR and the mutation rate is small (some percent). With a large
death rate, discrimination can occur in any game due to random
effects, while a high mutation rate eliminates discrimination, since
group marker can no longer correlate with strategy. By decreasing the
mutation rate, discrimination increases in the same games as in Fig. 1.

Also with ten groups, the results are similar for small values of
the parameters, except for death rates close to zero. Again, for
large death rates, discrimination occurs randomly, while a high
mutation rate eliminates it. For both small death rates and those
slightly exceeding the PTR, discrimination is common in the
prisoners' dilemma. These two extremes have a high relatedness
coefficient in common: for small death rates, around one-third of
the population are related, and for high rates, more than one half.
In the former case, since agents rarely die, the end result is highly

dependent on initial conditions, for which the population consists
of several small groups with high relatedness, in which ingroup
discriminators are favoured. In the latter case, the explanation also
spells small groups, since the high death rate maintains groups at
a constant small size.

4. Conclusions

There is an increasing wealth of models trying to explain the
evolution of group discrimination and an ingroup bias. This
paper set out to systematically investigate the most fundamental
assumption in these models: in what kind of situations do the
interactions take place? What strategic structures support the
evolution of an ingroup bias?

First of all, in order to study the effects of this very assumption,
a minimal model with as few other assumptions as possible was
constructed. In terms of the five mechanisms that can promote co-
operation (Nowak, 2006), the model assumes no kin selection or
reciprocity; spatial selection only in the form of group tags; and it
allows for multilevel selection only in that agents benefit indivi-
dually from being in a group that has co-ordinated on an optimal
equilibrium. This model was analysed for the space of symmetric
two-by-two games with two strategies, using replicator dynamics.
This led to the general result that games of (anti-)co-ordination,
with more than one equilibrium, are conducive to an ingroup bias,
while games of co-operation are not. It was found that not only do
games of co-ordination enable group discrimination, but on
average they will make agents more prone to choose strategies
that are favourable to their interlocutor when meeting an ingroup
rather than an outgroup member. These results should shed some
light on when and why an ingroup bias emerges. In games of co-
ordination, there is a selective pressure for such a bias. It should be
kept in mind that these games can take many faces. For example,
repeated interactions or reputation can transform the one-shot
prisoners' dilemma into a co-ordination game.

Anti-co-ordination games occur when there is a benefit of
specialisation, and have a built-in mechanism for group discrimi-
nation: if agents can discriminate, then they will, on the group
level, apply different strategies depending on group membership.
Whether the resulting discrimination is truly an ingroup bias is a
matter of definition - and it calls for a broader definition of the
term that extends beyond social dilemmas. One definition was
suggested here, based on a concept of benevolent strategies.
Within-group interactions did have the bias to more often lead
to the strategy that maximises the sum of the payoffs available to
the interlocutor.

It is perhaps not surprising that co-ordination games are also a
breeding ground for group discrimination. If the exchange with
certain groups is rare, then the parties may not know what to co-
ordinate on and rather refrain from interacting at all, if anti-co-
ordination is costly, or play a safe strategy. However, as was seen in
the analysis here, discrimination is also possible at equilibrium,
after ample contact. Discrimination favours the ingroup over the
outgroup in that ingroup interactions are more likely to be socially
optimal. Due to group competition, it suffices that one group
converges to the socially optimal strategy for it to dominate the
population. It should be noted that this group competition is not in
the form of exploiting other groups, but rather having a selective
advantage from the behaviour within the own group. Similar to
ideas advanced already by Wright (1932), by a subdivision of the
population into smaller groups, chances are higher that at least
one of them will reach a higher peak in the fitness landscape.

The ingroup bias can also result from negative competition -
competition that rather than enabling co-operation in a risky
setting, increases defection when none such is to be expected in
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the absence of competition. When stochasticity was introduced
into the model, in the form of drift, immigration and mutations,
agents adopted a harming behaviour towards the outgroup in a
small subset of harmony games. Group competition can take away
the harmony from harmony games, but the very dynamics of this
is an area for further research.

Another effect in the simulations with ten groups not
accounted for in the two-group analyses is that the ingroup bias
is a prevalent strategy also in prisoners' dilemmas, though at low
levels. Adding more groups would increase the prevalence of the
bias. This is to no surprise, however, since the ingroup bias can be
accounted for by increased ingroup co-operation, which can in
turn be accounted for by the fact that several of the groups will be
small with high measures of kinship. These groups are not
minimal, with a marker void of meaning, but an indicator of a
shared gene pool.

The simulations indicate that certain co-ordination games may
promote an ingroup bias more than others. Increasing the number
of groups increases the range of games for which the socially
optimal strategy dominates within-group interactions, while
between-group interactions are not discernibly affected at all. An
ingroup bias, in the sense of social optimality, occurs mainly when
the strategy that may lead to the social optimum is also the
strategy associated with the greatest risk. In particular, the
difference between in- and outgroup strategy is largest for the
class of games commonly referred to as stag hunt or assurance
games, at least for the subset where the risk dominant equilibrium
is not socially optimal.

Several authors have suggested that the stag hunt plays a key
role in human interactions and may advance the understanding of
social dilemmas (see for example Skyrms, 2004; Kollock, 1998a).
We have seen here that an ingroup bias may occur quite easily in
these games, and there is also empirical evidence under a minimal
group paradigm (Ahmed, 2007), and that expectations of trust are
an important parameter (Jansson and Eriksson). In experiments,
arbitrary group tags are sufficient signals for people to trust each
other on opting for the socially optimal strategy, and other
empirical studies confirm the dynamics presented here: that
intergroup competition may facilitate group co-ordination
(Bornstein et al., 2002; Riechmann and Weimann, 2008).

In fact, experiments show that while being presented with a
prisoners' dilemma in monetary terms, people often perceive such
a situation subjectively as an assurance game (Kollock, 1998b;
Kiyonari et al., 2000). Subjects are more liable to make this
transformation when paired with an ingroup member (Kollock,
1998b), suggesting that people may be more likely to use a
heuristic from repeated interactions in these cases, in turn
suggesting that an ingroup bias might have emerged as a spill-
over effect from different game structures on average within and
between groups. However, the same experiments show that also
outgroup interactions are commonly transformed into assurance
games, and the models presented here show that we do not need
to consider asymmetric games for an ingroup bias to evolve.
Rather, the game that subjects play subjectively in experiments
is also the game where an ingroup bias is most liable in these
models.

This may also provide explanations as to why ingroup favourit-
ism has been observed also in prisoners’ dilemmas. If an ingroup
bias has evolved under circumstances where the assurance game
has been particularly prevalent, and people do perceive other
games as assurance games, then we would in fact expect the bias
to be activated also in these other games. The models presented
here give conditions for when ingroup favouritism may evolve, but
other processes, such as spill-over effects, could potentially elicit it
under other circumstances. Experimental studies that compare the
effects between different games are called for.

Future research on ingroup favouritism and group discrimina-
tion in general may be successful in adopting an increased focus
on games of co-ordination where risk dominance competes with
social optimality, such as the assurance game, and anti-co-ordina-
tion, rather than co-operation and defection, such as the prisoners’
dilemma, without necessarily having to resort to complex social
structures nor outgroup hostility.

Finally, the evidence for an innate propensity for ingroup
favouritism suggests that interaction structures selecting for such
a bias may have been important in our evolutionary past. With the
ample indications of ingroup favouritism in society, there may also
be a bias beyond biological roots, selected through cultural
evolution and reflecting also current strategic situations in our
everyday life. The models here investigate only symmetric two-by-
two games with two strategies, but, unless people systematically
play different games towards ingroup versus outgroup strangers,
these can also be used as simplified models of more complex
games including externalities such as reputation mechanisms. The
results found here are also consistent with the empirical evidence
for how people perceive interaction strategies subjectively, sug-
gesting that games of co-ordination, in particular the stag hunt or
assurance game, and anti-co-ordination games may have played,
and may still play, a key role.
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Appendix A. Evolutionary stable strategies

All symmetric two-by-two games can be described by a payoff
matrix

apyr a2
Gy axn )’

where aj; is the payoff to an agent choosing strategy s; after an
interaction with an agent choosing strategy s;. In order to find
evolutionary stable strategies in this game space, first note that
evolutionary stable strategies (ESS) are defined in terms of payoff
differences, so what matters for stability is not the absolute
payoffs, but rather the differences in payoff between two strate-
gies. By subtracting the left column, payoffs for responses to
strategy si, by a»; and the right column, responses to strategy s-,
by a;,, we get a simpler normalised form

a1 —az; app—ap a O
a1 —ay ap—ap ) \0 a)

Following Weibull (1995), the game space can now be classified
into only four categories, based on their ESSs, of which two can be
merged into one.

Prisoners' dilemmas: All games where a; is negative and a,
positive have strategy s, as the only Nash equilibrium (NE), which
is also an ESS. Naming strategy s; co-operate and strategy s,
defect, these are the games where defection is always a rational
response, thus referred to as prisoners' dilemmas.

Harmony games: Shifting the signs, we get an identical game,
only with renamed strategies. Strategy s;, co-operation, is the
only ESS.
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Co-ordination games: With positive payoffs on the diagonal, the
best response is to do what the opponent does. Pure strategies s,
and s, and a mixed one, where strategy s; is chosen with
probability a@ = a,/(a; +ay), are all NE. However, agents with pure
strategies earn the same against agents with the mixed strategy as
they do, but more against themselves. Thus, only the pure
strategies are ESSs.

Anti-co-ordination games: With negative payoffs on the diag-
onal, the best response is to do the opposite of what the opponent
does. Contrasting to the other categories, these games have two
asymmetric equilibria apart from the symmetric mixed one, which
is the same as in the co-ordination games. The mixed strategy is
also an ESS. To see this, let s, denote the mixed strategy where 1 is
chosen with probability  and s, be any strategy where 1 is chosen
with probability y. The payoff 7,y to s, is independent of counter-
part sy, since

Tay =aya; +(1—a)(1-y)az

[¢5) aja
———|(1-y)ay = .
al+az>( )2 a;+ap

a
=—-Yya, + 1
a+a " (

The payoff to s, is
Ty =y2a1+(1-y)a3 < 7y,
where equality is attained only when s, = s, since

a _
ap +dp B

s

7y, =2ya; =2(1-y)ay =0 =y =

which is a maximum, since ﬂ)",y =2a;+2a,; <0.

Appendix B. Replicator dynamics
B.1. Within-group interactions

Let x;(t) be the number of individuals playing strategy s; at time
t, pi(t) = x:(t)/(x1(H)+x2(t)), and p(t) = (p,(t), p,(t)) be the popula-
tion state vector (which gives a mixed strategy s,), and 7; be the
payoff to an individual playing strategy s; towards and individual
playing s;. Given a base fitness b and a death rate d, the population
dynamics are

xi(t) = (b+7ip(t) — d)xi().
The proportion p; = x;(t)/x(t) can then be simplified to
Xi(t) X (Ox'(t)

PO=50 " 2
_ bz A0 X(Ob-+ (D)~
a x(t) x(t)

= (Tip(t) — 7pp(0))P;(0),

which is thus independent of base fitness and death rate. Also the
replicator dynamics are invariant to shifts of payoffs (adding a
constant to any column or row will not change the difference
TTip—7pp), SO We can use the normalised matrix form. Given the
game matrix

aq 0
0 a )

the replicator equation for the corresponding two-player game can
be written as
Py = (a1py —a2p3)P1P2

=(a1p; —ax(1-p)p:(1-py)

= ((a1 +az)py —a2)p1(1—py)

and p, = —p}. Let p'(t) = f(p(t)). The fixed points are

f)=0<p;=0vp;=1vp; = =a ifaa;>0

%2
a,+a

and p, = 1—p,. For determining stability of the fixed points, the
derivative is

f/(Pl) = (ay+az)p;(1—py)+((a; +az)p; —az)(1—-2py)
= —3(a; +ax)p3 +2(ay +2a2)p; — az,

so the derivatives of the fixed points are

f(0)=—ay,

f)=—a,

fay=-3-2 120,42 B —a2=a2<1—a—2).
a,+dp a,+dap a,+ax

Prisoners' dilemmas (a; <0, a, > 0): The fixed point 0 is stable,
since f'(0) <0, while 1 is unstable, since f'(1)>0. Thus, the
population share p; always declines, and the population will reach
the ESS.

Harmony games (a, <0, a; > 0): These games are identical to
prisoners' dilemmas, but with strategies renamed. The population
share p; will always grow, towards the ESS.

Co-ordination games (a; > 0, a, > 0): The interval endpoints are
stable (f'(0), f'(1)<0), while the interior fixed point is
unstable (f'(a)> 0). The population will converge to one of the
ESSs, either strategy s; or strategy s, dominance, depending on
whether p; is greater or smaller than «, respectively.

Anti-co-ordination games (a; <0, a; <0): This case is the
opposite of the co-ordination games, with unstable interval end-
points and a stable interior point. Hence, given any share p; {0, 1},
the population will converge to the ESS a.

B.2. Between-group interactions

Let x;(t) and y,(t) be the number of individuals in group X and Y,
respectively, playing strategy s; at time ¢, and let p;(t)=x;(t)/
(x1(H)+x2(t)) and q;(t) =y;(t)/(y1(t)+Yy,(t)) be their associated
population shares. With the same payoff matrix for both groups,
the replicator dynamics are

Py = (a1G1 — 02G3)p1 P2 = (a1 +a2)q; — a2)p1 (1 —p1)=f (D1, q1).
q7 = (a1p1 — a2p2)q1q2 = (a1 + a2)p; — a2)q1(1 —q1)=g(P1. 41)s

p, = —p) and q, = —q;. The fixed points are all the corners (0,0),
(0,1), (1,0) and (1,1), and the interior point (,«) when a;a, > 0.
The Jacobian of the system is

fp,(P1,q1) f:h(ph%))

Alpr ) = <g},,(P1,Q1) 84, (P1,4q1)

((a1 +az)p; —az)(1-2qy)

_ (a1 +a2)qq —az)(1—-2p;)
(a1+a2)q:(1—qy)

(ay+ax)p;(1—-py) )

The Jacobians at the fixed points are thus

—ay 0 aq 0
A(0,0)=< 0 _a2>, A(O,l):(o az)’

a O —aq 0
A(l,O):<0 a1>’ A(l,l):< 0 —a1>’

0 aia
Ao, a) = G 0 )
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The eigenvalues of these matrices are given by the following
equations:

|A(0,0)—Al| = (—az—/{)z:O = A= —ay,

A, D)= Al = (a1 =M@~ =0 < de{ara},

IA(1,0)= Al = (@2 =@ - =0 <= de{as,a},

[A(1, 1) —Al| = (-(11—/1)2:0 = A=—-a,

Aaa)—Al = (-2 -2a? =0 <= = +-1%2
[A(a, ) —Al| = (—1)" —afa < tora

Since all eigenvalues are real, the fixed points are nodes and saddle
points.

Prisoners' dilemmas (a, <0, a; >0): The point (1,1) is an
unstable node, (0,1) and (1,0) are saddle points, and (0,0) is a
stable node. Thus, as long as there exists a defector in any of the
groups, the whole group will converge to defection, slightly faster
in the group with most defectors.

Harmony games (a; <0, a; > 0): This case is identical to the
previous one, modulo renaming of strategies. The whole popula-
tion will converge to full co-operation.

Co-ordination games (a; > 0, a, > 0): The points (0,1) and (1,0)
are unstable nodes, (a,«) is a saddle point and both (0,0) and (1,1)
are stable nodes. Except for points on the stable manifold to the
saddle point, the population will converge to either of the pure
equilibria. If p; < @, then g, will decrease, and vice versa. If p; > a,
then g, will increase, and vice versa. So, if both p; <a and q; < q,
then the population will converge to (0,0), while if p; >a and
q, > a, then the population will converge to (1,1). For the other
two quadrants, the outcome is not as easily predicted, but at (a,),
the tangent to the separatrix between the two basins of attraction
(the stable manifold, the only curve attracted by the saddle point)
is q; = 2a—p,, since the eigenvector associated with the negative
eigenvalue of A(a, @) is t(1,—1), teR.

Anti-co-ordination games (a; <0, a; <0): The points (0,0) and
(1,1) are unstable nodes, (a,a) is a saddle point and both (0,1) and
(1,0) are stable nodes. The stable manifold of the saddle point is
the line p; = q;. If p; < ¢, then the population will converge to the
point (0,1), and for p; > g, to the point (1,0).

B.3. Mixed interactions

Let p and 1—p be the proportion of agents in group X and Y,
respectively. Assuming all agents play a strategy at equilibrium, all
population distributions are stable in prisoners' dilemmas and har-
mony games, since all agents will receive equal payoffs. It remains to
analyse the dynamics of co-ordination and anti-co-ordination games.

B.3.1. Co-ordination games (a; >0, a; >0)

In a co-ordination game, the population may converge to either
of the two pure strategies. Within the group, the groups may
converge to different equilibria, but the between-group strategy
will be the same for both. Let a and c be the payoffs of the
respective ingroup interactions and b the common payoff of
between-group interactions. Assume that an agent meets any
other agent with equal probability, irrespective of group member-
ship. The replicator dynamics are then

p'=(pa+(1—-p)b—((1—p)c+pb)(1-p)p
=({(a-2b+c)p+b—c)(1—-p)p
)(1 —pp.

b—c

=(a—2b+c) (p+m

given that a, b and c are not all equal (in which case p’=0). We
have two cases: either the two ingroup strategies are equal, or (at
least) one of the ingroup strategies is equal to the outgroup
strategy.

Equal ingroup strategies: Assume that a=c. The dynamics
become

p’=2(b—a)(p—1)(p—%>p-

Hence, the fixed points are 0, } and 1. If b > g, then ] is stable, while
the endpoints are unstable, and for a > b, we have the opposite.
Thus, if outgroup interactions are more successful than those with
the ingroup, then the groups will reach equal size, while if ingroup
interactions have a more favourable payoff, then the initially
largest group will take over the population.

One of the ingroup strategies equal to the outgroup strategy:
Assume that b=c. The dynamics become

p'=b-ap-1)p*

If b > a, then p will converge to 0, and with a > b to 1. Thus, the
group with the highest payoff from ingroup interactions will
take over.

Weighted interactions: The assumption that agents from both
groups meet with equal probability can be relaxed. Multiplying the
frequency of ingroup interactions by a weight w, such that an
ingroup member is w times more likely to be selected for a
random interaction, gives the replicator dynamics

. (wpa+(1 -p)b_w(l—p)c+pb
1+w-1)p w—(w-1)p

)(1 —pp.

For a=c the equation simplifies to (calculations are omitted)
B w
- (A+w-1p)w—(w—1)p)

and for b=c

/

p

1
2([,,@@,1)(1,,5)1,

B w
T14+w-1)p

/

p (b—a p—1)p?,
which both have the same fixed points with the same stability
properties as for w=1.

B.3.2. Anti-co-ordination games (a; <0, a; <0)

Within the groups, agents will play a mixed strategy, while the
groups will choose different pure strategies between the groups.
With the mixed strategies, the replicator dynamics are no longer
invariant under a local shift of payoffs in the game matrix.
Reverting to the original matrix, and assuming, without loss of
generality, that group X plays strategy s; against Y, the dynamics
are

p= (p(azau +a(l—a) (@ +a)+(1—a)azy)+(1-pan
—((1=p)@*a+a(l —a)a;; +az1)+(1 —05)2022)+P021))(1 -pp,

which simplifies to (calculations are omitted)

, (@12 —a11)(a12 — A) +(az1 — A11)(A21 — dz2)
A1z — a2 +0az1 —ary

p

_ (@12 —a11)(@12 — a22)
(@12 —11)(A12 — A22) +(A21 — A11)(A21 — A22)

(p—1p.

Note that in an anti-co-ordination game, a; —a;; >0 and
aij; —0ayp >0. Also note that this implies that a;;—a;; and
ap1 —dy; cannot both be negative. Thus, there exists an interior
fixed point £ if and only if both differences are positive. To see this,
we can write /3 as
po_9 b _1-P

a+b “a - p°
which is positive if and only if € (0, 1).
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Let p/'(t) = f(p(t)). The derivatives of the fixed points are

f/(o):(au—an)(alz—azz)<O
Q13 — 02 +0d1 — a1

Fly= (a1 —ay1)(Az21 —az2) <0
Q12 — 02 +0z1 — a1

, a1 —a11)(az —a

f(ﬂ)=—( 21— 011)(A21 22)ﬂ<0,

Q13 — 0z +0d —ag

if dip—ad < 0,

if Ay —axy» <0 and

which is defined for
ﬁ€(0,1)©a12—a1] >0 Aay; —ay >0.

Thus, in games where one group would have earned more from
the other group co-ordinating on the strategy of the former, the
former group will go extinct. These are the games where the
diminishing group earns more from ingroup than outgroup inter-
actions, commonly known as hawk-dove games. In games where
anti-co-ordination is always more profitable than co-ordination,
both groups will survive, and the group playing strategy s;
towards the outgroup will converge to a share 3 of the population.
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